

SY75572L

267MHz 1:2 3.3V HCSL/LVDS Fanout Buffer

PrecisionEdge™

General Description

The SY75572L is a high-speed, fully differential 1:2 clock fanout buffer with a 2:1 input MUX optimized to provide two identical output copies with 137fs phase jitter and a maximum of 50ps output-to-output skew. Designed to be used with PCI Express applications, the SY75572L accepts and outputs HCSL or LVDS logic levels.

The SY75572L operates from a 3.3V \pm 5% power supply and is guaranteed over the full industrial temperature range (-40°C to +85°C). It is available in a 16-pin QFN lead-free package.

The SY75572L is part of Micrel's high-speed, ultra-low jitter, PrecisionEdge™ product line. The SY75572L supports PCIe Gen1-Gen3 requirements with sufficient performance margin for pending PCIe Gen4 applications.

Datasheets and support documentation are available on Micrel's website at: <u>www.micrel.com</u>.

Functional Block Diagram

Features

- Two differential pairs of LVDS or HCSL outputs
- Two pairs of differential inputs accept LVDS or HCSL logic levels
- 267MHz maximum frequency
- Ultra-low phase jitter:
 - 137fs_{RMS}, 200MHz (12kHz–20MHz)
 - 153fs_{RMS}, 156.25MHz (12kHz–20MHz)
 - 212fs_{RMS}, 100MHz (12kHz-20MHz)
- <2ps total jitter (peak-to-peak), 200MHz (BER = 10⁻¹²)
- 50ps output-to-output skew
- 3.3V ±5% power supply operation
- -40°C to +85°C operating temperature
- Available in 16-pin (3mm × 3mm) QFN lead-free package

Applications

- Blade servers
- Desktop servers
- Workstations
- Storage area networks
- IP routers and switches
- Telecom and datacom
- High performance computing

PrecisionEdge[™] is a registered trademark of Micrel, Inc.

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

Ordering Information⁽¹⁾

Part Number Package Type Operating Range Package		Package Marking	Lead Finish	
SY75572LMG	QFN-16	Industrial 572L with Pb-Free bar-line indicator		NiPdAu
SY75572LMG TR ⁽²⁾	QFN-16	Industrial	572L with Pb-Free bar-line indicator	NiPdAu

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_A = 25^{\circ}C$, DC electricals only.

2. Tape and reel.

Pin Configuration

16-Pin QFN

Pin Description

Pin Number	Pin Name	Pin Function		
1	/IN1	HCSL/LVDS inverted input 1.		
2	PDB	PDB = 0 powers down the chip and tri-states outputs. The pin is attached to an internal pull-up resistor.		
3	IN2	HCSL/LVDS input 2.		
4	/IN2	HCSL/LVDS inverted input 2.		
5	OE	Tri-state outputs. High = enable outputs. Low = disable outputs. Internal pull-up resistor, outputs are enabled by default.		
6	GND	Ground.		
7	IREF	External resistor R _{REF} between pin IREF and GND controls reference current.		
8	/Q1	Inverted Output 1.		
9	Q1	Non-inverted Output 1.		
10	VDD	3.3V power supply.		
11	GND	Ground.		
12	/Q0	Inverted Output 0.		
13	Q0	Non-inverted Output 0.		
14	SEL	SEL = 0 propagates IN2, /IN2 to outputs. SEL = 1 propagates IN1, /IN1 to outputs. Internal pull- up resistors, IN1, /IN1 is selected by default.		
15	VDDIN	3.3V power supply.		
16	IN1	HCSL/LVDS input 1.		

Absolute Maximum Ratings⁽³⁾

Supply Voltage (V _{DD} , V _{DDIN})	5.5V
Input Voltage (V _{IN})	-0.5V to V _{DDIN} + 0.5V
Lead Temperature (soldering, 20s)	
Maximum Junction Temperature	125°C
Storage Temperature (T _s)	65°C to +150°C
ESD Protection (input)	2000V min.

Operating Ratings⁽⁴⁾

Supply Voltage (V _{DD} , V _{DDIN})	3.135V to 3.465V
Ambient Op Temperature (T _A)	40°C to +85°C
Package Thermal Resistance ⁽⁵⁾	
QFN-16	
Still-air (θ_{JA})	
Junction-to-board (ψ_{JB})	

DC Electrical Characteristics⁽⁶⁾

 V_{DD} = V_{DDIN} = 3.135V to 3.465V, T_A = -40°C to +85°C, unless otherwise stated. R_{REF} = 475 Ω

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{DD} , V _{DDIN}	Power Supply Voltage Range		3.135	3.3	3.465	V
C _{IN}	Input Capacitance				6	pF
C _{OUT}	Output Capacitance				5	pF
L _{PIN}	Pin Inductance				4	nH
R _{OUT}	Output Resistance		3			kΩ
R _{PULL-UP}	Pull up Resistance	SEL, PDB, OE		110		kΩ
V _{IH}	Input High Voltage	SEL, PDB, OE	2		V _{DDIN} + 0.3	V
VIL	Input Low Voltage	SEL, PDB, OE	-0.3		0.8	V
V _{IH}	Input High Voltage	HCSL, IN, /IN	660	750	850	V
VIL	Input Low Voltage	HCSL, IN, /IN	-150	0		V
V _{IN}	Differential Input Voltage Range	LVDS, IN, /IN	250	350	550	mV
VINPUT OFFSET	Input Common Mode Voltage	LVDS, IN, /IN,	1.125	1.25	1.375	V
V _{OH}	Output High Voltage	HSCL	660	750	850	mV
V _{OL}	Output Low Voltage	HSCL	-150	0	27	mV
V _{CROSS} ^(7, 8)	Crossing Point Voltage	Absolute	250	350	550	mV
VCROSS_VARIATION ^(7, 8, 9)	Variation of Crossing Point Voltage	Variation over all edges			140	mV
		50Ω, 2pF		42	60	mA
I _{DD}	Power Supply Current For V _{DD} + V _{DDIN}	No load, PDB = Low			0.4	mA
		OE = Logic Low			20	mA
ا _{ال} (¹⁰⁾	Input Leakage Current	$0 < V_{IN} < V_{DDIN}$	-5		5	μA

Notes:

3. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this datasheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

4. The datasheet limits are not guaranteed if the device is operated beyond the operating ratings.

5. Package thermal resistance assumes that the exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB. ψ_{JB} and θ_{JA} values are determined for a 4-layer board in still-air unless otherwise stated. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

6. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

7. Test setup is $R_L = 50\Omega$ with 2pF, $R_{REF} = 475\Omega \pm 1\%$.

8. Measurement taken from Q and /Q.

9. Measured at the crossing point where instantaneous voltages of Q and /Q are equal.

10. Inputs with pull-up/pull-down resistances are not included.

AC Electrical Characteristics⁽⁶⁾

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
4	Maximum Fragmanau	HCSL			267	
IMAX	Maximum Frequency	LVDS			100	MHz
t _{PD}	Propagation Delay	Note 11		2	3	ns
t _{skew}	Output-to-Output skew	Notes 12, 13			50	ps
t _r , t _f	Output Rise/Fall Times 0.175V to 0.525V / 0.525V to 0.175V	At full output swing. 50Ω, 2pF	150	350	700	ps
T _{r/f_VAR}	Rise/Fall Time Variation	At full output swing. 50Ω, 2pF			125	ps
		At 200MHz		137		fs _{rms}
T _{JITTER}	Phase Jitter	At 156.25MHz		153		fs _{rms}
		At 100MHz		212		fs _{rms}
T _{TJ_JITTER}	Total Jitter	BER = 10^{-12} , T _{DJ} = 0, at 200MHz		2		ps
T _{OE_ENABLE}	Output Enable Time	All Outputs		2		μs
T _{OE_DISABLE}	Output Disable Time	All Outputs		10		ns
T _{DCY}	Duty Cycle		45	50	55	%

 $V_{DD} = V_{DDIN} = 3.135V$ to 3.465V, $T_A = -40^{\circ}C$ to +85°C, unless otherwise stated.

Notes:

11. Measured from the differential input crossing point to the differential output crossing point.

12. Output-to-output skew is the difference in time between outputs, receiving data from the same input, for the same temperature, voltage, and transition.

13. This parameter is defined in accordance with JEDEC Standard 65.

Jitter Analysis

Jitter is defined as the deviation of a signal from its ideal position. Phase noise is the presence of signal energy at frequencies other than the carrier. Random jitter has a Gaussian distribution and is specified as an RMS unit, which is one standard deviation of the distribution. Since Gaussian distribution is unbounded in an infinite sample, no communication system can be completely error free. Instead, communication links are rated with a maximum bit error rate (BER), which is typically around 10^{-12} for high-speed communication equipment. Achieving a desired BER requires accounting for a number of standard deviations of random noise by using the appropriate value for N (see Table 1) in the formula in Equation 1.

$$T_{J} = N \times R_{J} + D_{J}$$
 Eq.

Where T_J is total jitter, R_J is random jitter, and D_J is deterministic jitter. If routing clock signals, the deterministic jitter is usually negligible and the T_J is dominated by the random jitter. Calculating T_J from R_J using Equation 1 gives the values in Table 1.

Table 1. Standard Deviations of	Random Noise
---------------------------------	--------------

BER	Ν	R _j at 200MHz	T _j at 200MHz
10 ⁻¹⁰	12.723	137fs _{RMS}	1.743ps
10 ⁻¹¹	13.412	137fs _{RMS}	1.837ps
10 ⁻¹²	14.069	137fs _{RMS}	1.927ps
10 ⁻¹³	14.698	137fs _{RMS}	2.013ps

1

Phase Noise Plots

Phase jitter = 137fs_{RMS}, 200MHz carrier frequency; integration range: 12kHz–20MHz

Phase Noise Plots (Continued)

Phase jitter = 153fs_{RMS}, 156.25MHz carrier frequency; integration range: 12kHz–20MHz

Phase Noise Plots (Continued)

Phase jitter = 212fs_{RMS}, 100MHz carrier frequency; integration range: 12kHz–20MHz

Functional Characteristics

HCSL Waveform Diagram

HCSL Interface Application

LVDS Waveform Diagram

LVDS Interface Application

Package Information⁽¹⁴⁾

Note:

14. Package information is correct as of the publication date. For updates and most current information, go to www.micrel.com.

16-Pin QFN

Recommended Land Pattern⁽¹⁴⁾

STACKED-UP

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel, Inc. is a leading global manufacturer of IC solutions for the worldwide high performance linear and power, LAN, and timing & communications markets. The Company's products include advanced mixed-signal, analog & power semiconductors; high-performance communication, clock management, MEMs-based clock oscillators & crystal-less clock generators, Ethernet switches, and physical layer transceiver ICs. Company customers include leading manufacturers of enterprise, consumer, industrial, mobile, telecommunications, automotive, and computer products. Corporation headquarters and state-of-the-art wafer fabrication facilities are located in San Jose, CA, with regional sales and support offices and advanced technology design centers situated throughout the Americas, Europe, and Asia. Additionally, the Company maintains an extensive network of distributors and reps worldwide.

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this datasheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2014 Micrel, Incorporated.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip: SY75572LMG-TR