PRO MATE[®]/PRO MATE[®] II DEVICE SUPPORT

Information contained in this publication regarding device applications and the like is intended by way of suggestion only. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip.

© 1997 Microchip Technology Incorporated. All rights reserved.

The Microchip logo, name, PIC, PICMASTER, PICSTART, PRO MATE, KEELOQ are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. MPLAB, *Smart Serial* and PICmicro are trademarks of Microchip Technology in the U.S.A. and other countries.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Windows and MS-DOS are registered trademarks of Microsoft Corporation.

All product/company trademarks mentioned herein are the property of their respective companies.

Table of Contents

Chapter 1	Socket	Modules
-----------	--------	----------------

	Introduction
	Highlights1
	Currently Supported Devices and Socket Modules1
	Socket Life Expectancy and Cleaning Procedures
	Socket Life Expectancy3
	Socket Contact Cleaning Procedure4
	Methyl Alcohol:4
	Not Recommended4
Chapter 2.	Programming KEELOQ Encoders
	Key Generation
	Manufacturer's Code8
	Entering the Manufacturer's Code8
	Calculating Custodian Key Checksum8
	Changing the Manufacturer's Code
	Key Generation Source and Algorithms
	HCS200 Options
	HCS200 Options Automatically Set
	HCS300/301 Option11
	HCS300 Options Automatically Set12
	HCS360 Options
	HCS360 Options Automatically Set14
	Transmission Speed Options14
	HCS361 Options
	HCS361 Options Automatically Set16
Chapter 3.	Programming Microchip Memory Parts
	Programming Microchip Memory Parts17
Chapter 4.	PIC14C000 Support
	PIC14C000 Support

Chapter 1. Socket Modules

Introduction

This document lists the part numbers for the socket modules that support each device and discusses the life expectancy and cleaning procedures for the different socket types. These sockets work on both PRO MATE and PRO MATE II.

Note: The information listed in this document is current as of this printing. If you are using a device not listed, refer to the PRO MATE README.PRO file located on the MPLAB distribution diskette for the latest socket module information.

For socket modules with 2 sets of screws, the longer screws are for PRO MATE, the shorter screws are for PRO MATE II.

Highlights

This document contains the following information:

- · Currently supported devices and socket modules
- Socket Contact Cleaning Procedures

Currently Supported Devices and Socket Modules

The following table lists the part numbers for the socket modules that support each device.

Model Name/ Device #	Pin Count	DIP	SOIC	SSOP	PLCC	MQFP	TQFP
24CXX24LCXX	8	AC004001	AC004002				
93CXX/93LCXX	8	AC004001	AC004002				
HCS200	8	AC004001	AC004002				
HCS300	8	AC004001	AC004002				
HCS301	8	AC004001	AC004002				
HCS360	8	AC004001	AC004002				
HCS361	8	AC004001	AC004002				
HCS500	8						
HCS509	8						
HCS512	8						
PIC12C508	8	AC124001	AC124001				

Note: When using a 28-pin device in a 40-pin socket, align pin 1 to the pin 1 indicator (socket is top justified). Shaded area indicates not applicable.

Model Name/ Device #	Pin Count	DIP	SOIC	SSOP	PLCC	MQFP	TQFP
PIC12C509	8	AC124001	AC124001				
PIC14C000	28	AC144001	AC144002	AC144002			
PIC16C52	18/20	AC164001	AC164002	AC164015			
PIC16C54	18/20	AC164001	AC164002	AC164015			
PIC16C54A	18/20	AC164001	AC164002	AC164015			
PIC16C55	28	AC164001	AC164002	AC164015			
PIC16C554	18/20	AC164010	AC164010	AC164018			
PIC16C558	18/20	AC164010	AC164010	AC164018			
PIC16C56	18/20	AC164001	AC164002	AC164015			
PIC16C57	28	AC164001	AC164002	AC164015			
PIC16C58A	18/20	AC164001	AC164002	AC164015			
PIC16C61	18	AC164010	AC164010				
PIC16C620	18/20	AC164010	AC164010	AC164018			
PIC16C621	18/20	AC164010	AC164010	AC164018			
PIC16C622	18/20	AC164010	AC164010	AC164018			
PIC16C62A	28	AC164012	AC164017	AC164021			
PIC16C63	28	AC164012*	AC164017	AC164021			
PIC16C642	28	AC164012	AC164017				
PIC16C64A	40/44	AC164012			AC164013	AC164014	AC164020
PIC16C65A	40/44	AC164012			AC164013	AC164014	AC164020
PIC16C65A	40/44	AC164012			AC164013	AC164014	AC164020
PIC16C66	28	AC164012	AC164017	AC164021			
PIC16C662	40/44	AC164012			AC164013	AC164014	AC164020
PIC16C67	40/44	AC164012			AC164013	AC164014	AC164020
PIC16C71	18	AC164010	AC164010				
PIC16C710	18	AC164010	AC164010	AC164018			
PIC16C711	18	AC164010	AC164010	AC164018			
PIC16C715	18	AC164010	AC164010	AC164018			
PIC16C72	28	AC164012	AC164017	AC164021			
PIC16C73A	28	AC164012	AC164017				
PIC16C74A	40/44	AC164012			AC164013	AC164014	AC164020
PIC16C76	28	AC164012	AC164017	AC164021			
PIC16C77	40/44	AC164012			AC164013	AC164014	AC164020
PIC16C923	64/68	AC164025			AC164022		AC164023

Note: When using a 28-pin device in a 40-pin socket, align pin 1 to the pin 1 indicator (socket is top justified). Shaded area indicates not applicable.

Model Name/ Device #	Pin Count	DIP	SOIC	SSOP	PLCC	MQFP	TQFP
PIC16C924	64/68	AC164025			AC164022		AC164023
PIC16F83	18	AC164010	AC164010				
PIC16F84	18	AC164010	AC164010				
PIC17C42A	40/44	AC174001			AC174002	AC174004	AC174005
PIC17C43	40/44	AC174001			AC174002	AC174004	AC174005
PIC17C44	40/44	AC174001			AC174002	AC174004	AC174005
PIC17C756	68/64	AC174009			AC174007		AC174008

Note: When using a 28-pin device in a 40-pin socket, align pin 1 to the pin 1 indicator (socket is top justified). Shaded area indicates not applicable.

ZIF

TQFP

The following table defines the acronyms for the microcontroller device packages.

Device Package Names:

DIP Dual Inline Package

MQFP Metric Quad Flat Pack

- SOIC Small Outline Integrated Circuit
- SSOP Shrink Small Outline Package
- PLCC Plastic Leaded Chip Carrier

Socket Life Expectancy and Cleaning Procedures

Microchip uses socket types from manufacturers including: Aries, AMP, 3M Textool, and Yamaichi. Each socket module has different cleaning and insertion times. Look at the socket module to determine the name of the manufacturer. The Yamaichi socket is not labeled; identify a Yamaichi socket by looking for the letters IC51- (as the prefix to a part number) on the socket.

Zero Insertion Force

Thin Quad Flat Pack

Socket Life Expectancy

The expected life for manual insertions has been found to be less than the manufacturer's reported number. The number of manual insertions depends on the socket condition and how often the socket is cleaned.

The following table gives the expected life (in number of automatic insertions) for each socket module as reported by the manufacturer. The expected life of a socket module is normally listed as the number of automatic insertions.

Careless insertions or dirty socket conditions can bring the number of insertions down to less than 5,000. Cleanliness and care in inserting devices into a socket are most important with surface mount devices as the socket contactors must remain planar to function properly.

Any bent or non-planar contacts will result in a failure. Non-planar socket module contacts occur earlier in the life of a socket module when devices are inserted manually into a socket module. Early contact failure from manual insertions is due to the non-repeatability of the manual insertion method.

Therefore, the listed number of insertions may not be reached for sockets where devices are inserted manually. No good method exists to ensure that the contacts are planar.

Manufacturer	Insertions	Cleaning
Aries(28 pin)	10,000	Not Recommended
AMP (18 pin)	25,000	Not Recommended
3M Textool	10,000	Methyl Alcohol
AMP (Dip)	25,000	Not Recommended
3M Textool(SOIC)	10,000	Methyl Alcohol
Aries	10,000	Not Recommended
Yamaichi	25,000	Methyl Alcohol

 Table 1:
 Socket Life Expectancy and Cleaning Method

Socket Contact Cleaning Procedure

Methyl Alcohol:

Clean with methyl alcohol, and then blow off the contacts with dry compressed air.

WARNING: Methyl alcohol is highly flammable. Use methyl alcohol in a well ventilated area away from sparks, flames, or any other source of ignition.

> Methyl alcohol is poisonous and may cause blindness if taken internally. Avoid inhaling methyl alcohol vapor.

Not Recommended

There is no cleaning procedure for this socket type. If contacts get extremely contaminated, replace the socket module.

Chapter 2. Programming KEELOQ Encoders

Programming of KEELOQ Encoders requires 4 steps.

- (1) Select the encoder
- (2) Enter the manufacturer's code
- (3) Select the decoder
- (4) Select the encoder options.

A KEELOQ encoder can be selected as you would any other device supported by PRO MATE.

Device	:\$200
D's and Checksum Device ID N/A Checksum N/A	Program Statistics Pass 000000 Fail 00000
Voltages	Total 000000
VDD His 5.000 VDD Max 5.000 VPP 5.000	Reset
SUTPOR No SUTP	Lie Beng Used
Sentenas mession	

Figure 2.1 – Programmer Status Dialog

The next step is to click on the Program button. The user will then be prompted for two 20-bit custodian keys. These are combined to form the manufacturer's key. The manufacturer's key is used in key generation as described further in the document.

atodian Key 1:	
	Calculate Decksum
√ ∝	Kaneel

Figure 2.2 – Custodian Key Dialog

The appropriate dialog for the selected device will be displayed. The user should then select a decoder. Some of the decoders have multiple key generation methods. If the selected decoder has different key generation options the user will be prompted to select these options at this time. After this the user should select the encoder options as desired. These options are described further in the document. Programming can now begin. As seen in the different data sheets there are a multitude of interdependent options available to the user. These options are automatically set by the software to allow the encoder to be compatible with the selected decoder.

Program Security D	evice		
Decoder:	[MCDEC	
User <u>S</u> erial Number	r		
0001000] []/	Auto <u>I</u> ncrement
Baud Rate Select			
	- () <u>4</u> 00) uS All	🔶 <u>2</u> 00 uS 1/2
Low Voltage Trip			
		~	🔶 <u>H</u> igh
Program			Close

Figure 2.3 – HSC200 Dialog

Key Generation

The key generation options and process is described in detail in the Tech Brief "Secure Learning RKE Systems Using KEELOQ Encoders," document number DS40144. A summary is given below.

KEELOQ encoder transmissions have 2 parts. The unencrypted portion consists of the encoder's serial number and other status bits such as button status. The second portion (HOP code) is encrypted and contains information such as the synchronization counter, counter overflow bits and discrimination values.

Every KEELOQ encoder has it's own encryption and decryption key pair. Key generation has 3 parts as shown in Figure 4 below. The first part, the manufacturer's code, is an input to the key generation algorithm. The manufacturer's code (64 bits) customizes the key generation algorithm to a specific manufacturer. This means that if two manufacturers use the same algorithm, and same source (e.g. serial number of 123) the key pairs generated will be different. The encoders produced by one manufacturer won't be learnable on decoders produced by a second manufacturer and prevents the cloning of transmitters by competitors. The second part is also an input to the key generation. This can either be the encoder's serial number or the encoder's seed. The third part of key generation is the key generation algorithm.

The algorithm and source are automatically selected when the user selects a decoder as shown in Figure 4. If, as in the HCS512, the key generation source or algorithm can be changed the user will be shown the options when the decoder is selected. This allows the user to select the key generation method being used in the system.

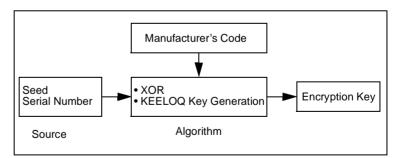


Figure 2.4 – KEELOQ Key Generation

Manufacturer's Code

When an HCS product is selected as the device to be programmed by the PRO MATE programmer, the 'Enter Key' dialog box is displayed when 'Program' is pressed. As mentioned in the previous paragraph the manufacturer's code is very important to prevent cloning of transmitters and should be carefully guarded. To ensure that the manufacturer's code remains secret two trusted people, key custodians, should be given a 20-digit number each. This prevents the entire manufacturer's code being entrusted to a single person. The two custodian keys are XORed to form the manufacturer's code.

Entering the Manufacturer's Code

Each of two key custodians are required to enter their custodian key an HCS part is first selected. The two custodian keys, if entered correctly, are used to generate the manufacturer's code. The first 16 digits entered by each custodian are used to generate the manufacturer's code and the last 4 digits are a checksum which prevent the custodian entering an incorrect manufacturer's code as this directly influences the encryption keys generated. If the checksum entered does not match the key entered, the custodian will be asked to re-enter the key.

It is only possible to enter the manufacturer's code once during each session, when Program is first selected. This prevents the manufacturer's code being inadvertently changed during a programming session.

Calculating Custodian Key Checksum

The user should enter the 16-digit portion used to calculate the manufacturer's code and press the 'Calculate Checksum' button. This will allow the program to generate a checksum for the user. The checksum will be calculated and the complete 20-digit custodian key displayed on the screen. The key should be written down and stored securely.

Changing the Manufacturer's Code

It is possible that a manufacturer would like to have different manufacturer's codes for different product lines. It is not possible to change the manufacturer's code during a programming session. This prevents the manufacturer's code being inadvertently changed during a programming session.

If the user needs to change the manufacturer's code he should exit PRO MATE, and enter the new manufacturer's code when the program is restarted.

Key Generation Source and Algorithms

The key generation source and algorithms are selected when the user selects a decoder. The souce and algorithm selected for each decoder is given in the table below.

Decoder	Sou	irce	Algo	rithm
	Serial Number	Seed	Decryption	Algorithm
SIMDEC*	No key generation.	The simple decoder u	ises the manufacture	r's code
MCDEC*	Х		Х	
MCSLRN*		Х	Х	Х
HCS512	Х	Х	Х	Х

Table 2.1: KEELOQ Decoder Key Generation Methods

*The MCDEC, MCSLRN and SIMDEC decoders are software decoders. These decoders have been written as a 'quick start' to a customer who would like to write a custom decoder. The source code for the decoders and application note describing each of the decoders is available by ordering DS40149 from your local Microchip representative.

HCS200 Options

Program Security D	evice	×
Decoder:	MCDEC	•
User <u>S</u> erial Number	r	
0001000		Auto <u>I</u> ncrement
Baud Rate Select		
	♦ <u>4</u> 00 uS All	
Low Voltage Trip		
	♦ <u>L</u> ow	∲ <u>H</u> igh
Program		Close

Figure 2.5 – HSC200 Dialog

Option	Description
Serial Number	The encoder's 28-bit (7-hex digits) serial number should be entered here. See Note 1.
Baud Rate Select	 400us All: Basic Pulse Width (BPW) of 400 μs with all the code words transmitted. 200us 1/2: BPW of 200 μs and one in two code words transmitted.
Low Voltage Trip	Low: VLOW bit in transmission set at V_{DD} =4V. High: VLOW bit in transmission set at V_{DD} =8V.

Note: If the Auto Increment check box is selected the serial number and/or user seed will be automatically incremented when an encoder is successfully programmed.

HCS200 Options Automatically Set

Option	Set to:
SEED	The 32-bit SEED is a randomly generated number.
EN_KEY	The 16-bit envelope key is set to 0000 and envelope encryption is disabled in the configuration word.
Discrimination Bits	The discrimination bits in the configuration word are set to mirror the 12 least significant bits of the serial number
EENC	Envelope Encryption Select bit in the configuration word is automatically cleared as none of the decoders currently support envelope encryption.

HCS300/301 Option

Decoder:	MCDEC		2
Uper Serial Number			
1001000	1000	lute Increment	
Counter Overflow			
* Mone	0 Once	Ince	
Low Voltage Trip			
	Low	+ High	
Baud Rate Select			
	400 uS All	+ 200 uS 1/	12
	100 45 1/2	100 uS 1/	14
P. Auto Shutoff To	iner		
Program		Chus	- 1

Figure 2.6 – HSC300 Dialog

Option	Description		
Serial Number	The encoder's 28-bit (7-hex digits) serial number should be entered here. See Note.		
Counter Overflow	None: None of the overflow bits are set. Once: One of the overflow bits are set. Twice: Both overflow bits are set.		
Low Voltage Trip	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
Baud Rate Select	 400us All: Basic Pulse Width (BPW) of 400 µs with all the code words transmitted. 200us 1/2: BPW of 200 µs and one in two code words transmitted. 100us 1/2: BPW of 100 µs and one in two code words transmitted. 100us 1/4: BPW of 100 µs and one in four code words transmitted. 		
Auto-shutoff Timer	The automatic shutoff can be enabled preventing the battery of a transmitter going flat if the transmitter is accidentally pressed in a pocket or purse.		

Note: If the Auto Increment check box is selected the serial number and/or user seed will be automatically incremented when an encoder is successfully programmed.

HCS300 Options Automatically Set

Option	Set to:
SEED	The 32-bit SEED is a randomly generated number.
EN_KEY	The 16-bit envelope key is set to 0000 and envelope encryption is disabled in the configuration word.
Discrimination Bits	The discrimination bits in the configuration word are set to mirror the 12 least significant bits of the serial number.
EENC	Envelope Encryption Select bit in the configuration word is automatically cleared as none of the decoders currently support envelope encryption.

HCS360 Options

Decoder:	MCDEC	
	MEDEL	- 4
User Serial Humber		
00000000	Auto Increme	nt
Medulation Format		
PWH	Maschester	
Baud Rate Select		
400 uS → 200 uS Long 200 uS Short 100 uS	 (00 u5) 400 u5 (jump Time 0 400 u5 Short Time 1 200 u5 	
 ✓ Ende Word Blanking Delayed Mode ✓ Auto Shutoff Timer Counter Overflow 		
Program	Clase	- 1

Figure 2.7 – HSC360 Dialog

Chapter 2. Programming KEELOQ Encoders

Option	Description
Serial Number	The encoder's 32-bit (8-hex digits) serial number should be entered here. See Note.
Modulation Format	If this is enabled the transmitted string is Manchester modulated, if the option is not enabled Pulse Width Modulation (PWM) is used.
Baud Rate Select	See Table Below.
Code Word Blanking	Every alternate code word can be blanked out thereby increasing the amount of power transmitted per transmission if needed.
Delayed Mode	If this is enabled the encoder will transmit a delayed transmission after a time, see the data sheet for more details.
Auto Shutoff Timer	If this bit is enabled the encoder will automatically shutoff after about a time (dependent on the transmission speed) preventing the battery of a transmitter going flat if the transmitter is accidentally pressed in a pocket or handbag.
Counter Overflow	If this is enabled the overflow bit will be set.

Note: If the Auto Increment check box is selected the serial number and/or user seed will be automatically incremented when an encoder is successfully programmed.

HCS360 Options Automatically Set

Option	Set to:
SYNC_A	Counter set to 0
SEED_0, SEED_1, SEED2	The 48 bit SEED is a randomly generated number.
SEED	The SEED bit in the configuration word is set if a decoder that uses secure learn is selected.
IND	The IND bit in the configuration word always cleared disabling independent mode.
USRA0, USRA1	The USRA bits in the configuration words are set equal to the serial number bits 9 and 10 extending the discriminator to 10 bits.
USRB0, USRB1	The USRB bits in the configuration word are set to 00.
XSER	The XSER bit in the configuration word is always set to 00.
TMPSD	The TMPSD bit in the configuration word is always set to 0.

Transmission Speed Options

Option	PWM, used when 'Enable Manch…' is cleared	Manchester Transmissions, used when 'Enable Manch' is set
400 800	400 μs Basic Pulse Width (BPW)	800 µs BPW.
200 400-Long Timeout	200 µs BPW with a time-out value of about 30s if time-out is enabled.	400 µs BPW with a time-out value of about 60s if time-out is enabled.
200 400-Short Timeout	200 µs BPW with a time-out value of about 15s if time-out is enabled.	400 µs BPW with a time-out value of about 20s if time-out is enabled.
100 200	100 µs BPW.	200 µs BPW.

HCS361 Options

Deceder:	MCDEC	6	2
User Serial Number			
0001000	100	Auto Inciement	
Modulation Format			
+ PM04	YPWH		
Transmission Format			
+ 1/ <u>3</u> - 2/3 1/ <u>5</u> - 2/6		up Disabilitat up Enubled	
Boud Rate Select			
	Stow	+ East	
Code Word Blanking Delayed Mode Auto Shutoff Timer Counter Qverflow			
Program		Close	-1

Figure 2.8 – HSC361 Dialog

Option	Description
Serial Number	The encoder's 32-bit (8-hex digits) serial number should be entered here. See Note.
Modulation Format	This selects between PWM and VPWM modulation of data.
Transmission Format	If this option is enabled and Enable Variable Pulse width modulation is cleared a 1/6;2/6 transmission format is used, otherwise a wakeup pulse train is transmitted before the first transmission.
Baud Rate Select	Slow: Basic pulse width of 400 μs Fast: Basic pulse width is 200 μs
Code Word Blanking	Every alternate code word can be blanked out thereby increasing the amount of power transmitted per transmission if needed.
Delayed Mode	If this is enabled, the encoder will transmit a delayed seed transmission after about 3 seconds. See the data sheet for more details.

Option	Description
Auto Shutoff Timer	If this bit is enabled, the encoder will automatically shutoff after a time (dependent on the transmission speed) preventing the battery of a transmitter going flat if the transmitter is accidentally pressed in a pocket or handbag.
Counter Overflow	If this is enabled the overflow bit will be set.

Note: If the Auto Increment check box is selected the serial number and/or user seed will be automatically incremented when an encoder is successfully programmed.

HCS361 Options Automatically Set

Option	Set to:
SYNC_A	Counter set to 0
SEED_0, SEED_1, SEED2	The 48 bit SEED is a randomly generated number.
SPM	The SPM bit in the configuration word is always set to 1.
SEED	The SEED bit in the configuration word is set if a decoder that uses secure learn is selected.
IND	The IND bit in the configuration word always cleared disabling independent mode.
USRA0, USRA1	The USRA bits in the configuration words are set equal to the serial number bits 9 and 10 extending the discriminator to 10 bits.
USRB0, USRB1	The USRB bits in the configuration word are set to 00.
XSER	The XSER bit in the configuration word is always set to 00.
TMPSD	The TMPSD bit in the configuration word is always set to 0.

Chapter 3. Programming Microchip Memory Parts

Programming Microchip Memory Parts

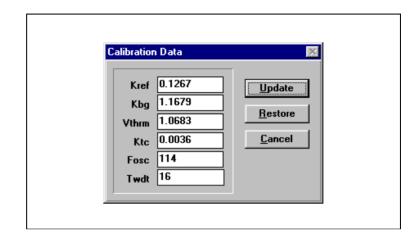
PRO MATE supports many of Microchip's Memory devices, specifically the 24 and 93 series Serial EEPROMs.

The data displayed in the Program Memory window will be in by-16 for those parts that support a by-16 mode, and by-8 for those devices that only support by-8. The HEX file format is standard INHX8M format for either the by-8 or by-16 devices.

Device selection is done via the Programmer Status Dialog interface. Once a device is selected, there may be additional selections for the *Smart Serial*[™] devices. These additional options allow the user to select the High Endurance Block, the Write Protect Starting Block and the Number of Write Protect Blocks.

All programming/verifying is done at 5 volts VDD, and the user can perform the standard functions, Read, Blank Check, Programming, and Verification.

Device	24AA65		-1	
High Endur. Block				
Write Prot. Star				
	<u> </u>			
Write Prot. Blocks	0			
ID's and Checksum	Prog	ram Statisti	cs	
D's and Checksum Device ID N/A	Prog Pas		_	
	Pas		00	
	Pas	s 00000 00000	DO DO	
Device ID N/A Checksum E000) Fail Tot	s 00000 00000	DO DO	
Device ID N/A Checksum E000 Voltages	Pas Fail Tot	s 00000 00000 al 00000	DO DO	
Device ID N/A Checksum E000 Voltages VDD Min 5.000) Pas Fail	s 00000 00000 al 00000	DO DO	
Device ID N/A Checksum E000 Voltages VDD Min 5.000 VDD Max 5.000 VPP 5.000) Pas Fail	s 00000 00000 al 00000 Reset <u>C</u> lose	00 00	


Chapter 4. PIC14C000 Support

PIC14C000 Support

Configuration bits and program memory are the same as any other high end PIC. The calibration data is displayed in a separate window by selecting *Window > Calibration Data*.

On windowed devices, the calibration data should be read out of the device and stored in a file prior to first use. Once saved, calibration files may be loaded using the IMPORT command on the FILE menu.

Device Specifications		
Device	PIC14000	-
Oscillator	Internal RC	
Watchdog Timer		
Processor Mode		~
Brown Out Detect	-	
Code Protect	Ωff	
Power Up Timer	Off	
Master Clear		
Parity		-
D's and Checksum	Progr	am Statistics
Device ID 7F7F7	'F7F Pass	000000
Checksum 2FFD	Fail	000000
/oltages	Tota	I 000000
VDD Min 3.000		Reset
VDD Max 6.000		indust
VPP 13.000		<u>C</u> lose
SQTP File No SQ	TP File Being	Used
<u>B</u> lank <u>R</u> ead	Program	<u>V</u> erify

WORLDWIDE SALES & SERVICE

AMERICAS

Corporate Office

Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 602-786-7200 Fax: 602-786-7277 *Technical Support*: 602 786-7627 *Web*: http://www.microchip.com

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

Microchip Technology Inc. 5 Mount Royal Avenue Marlborough, MA 01752 Tel: 508-480-9990 Fax: 508-480-8575

Chicago

Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Microchip Technology Inc. 14651 Dallas Parkway, Suite 816 Dallas, TX 75240-8809 Tel: 972-991-7177 Fax: 972-991-8588

Dayton

Microchip Technology Inc. Two Prestige Place, Suite 150 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Los Angeles

Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 714-263-1888 Fax: 714-263-1338

New York

Microchip Technology Inc. 150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 516-273-5305 Fax: 516-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

Microchip Technology Inc. 5925 Airport Road, Suite 200 Mississauga, Ontario L4V 1W1, Canada Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC

Hong Kong

Microchip Asia Pacific RM 3801B, Tower Two Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2-401-1200 Fax: 852-2-401-3431

India

Microchip Technology Inc. India Liaison Office No. 6, Legacy, Convent Road Bangalore 560 025, India Tel: 91-80-229-0061 Fax: 91-80-229-0062

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea Tel: 82-2-554-7200 Fax: 82-2-558-5934

Shanghai

Microchip Technology RM 406 Shanghai Golden Bridge Bldg. 2077 Yan'an Road West, Hong Qiao District Shanghai, PRC 200335 Tel: 86-21-6275-55700 Fax: 86 21-6275-5060

Singapore

Microchip Technology Taiwan Singapore Branch 200 Middle Road #07-02 Prime Centre Singapore 188980 Tei: 65-334-8870 Fax: 65-334-8850

Taiwan, R.O.C

Microchip Technology Taiwan 10F-1C 207 Tung Hua North Road Taipei, Taiwan, ROC Tel: 886 2-717-7175 Fax: 886-2-545-0139

EUROPE

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44-1189-21-5858 Fax: 44-1189-21-5835

France

Arizona Microchip Technology SARL Zone Industrielle de la Bonde 2 Rue du Buisson aux Fraises 91300 Massy, France Tei: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 Müchen, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-39-6899939 Fax: 39-39-6899883

JAPAN

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa 222 Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

10/31/97

All rights reserved. © 1997, Microchip Technology Incorporated, USA. 11/97 🤹 Printed on recycled paper.

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.