3-1/2 Digit, Analog-to-Digital Converter

Features:

- Accuracy: $\pm 0.05 \%$ of Reading ± 1 Count
- Two Voltage Ranges: 1.999 V and 199.9 mV
- Up to 25 Conversions Per Second
- $Z_{\text {IN }}>1000 \mathrm{M}$ Ohms
- Single Positive Voltage Reference
- Auto-Polarity and Auto-Zero
- Overrange and Underrange Signals Available
- Operates in Auto-Ranging Circuits
- Uses On-Chip System Clock or External Clock
- Wide Supply Range: $\pm 4.5 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$

Applications:

- Portable Instruments
- Digital Voltmeters
- Digital Panel Meters
- Digital Scales
- Digital Thermometers
- Remote A/D Sensing Systems
- MPU Systems

Device Selection Table

Part Number	Package	Temperature Range
TC14433AEJG	24-Pin CERDIP (Wide)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC14433AELI	28-Pin PLCC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC14433AEPG	$24-$-Pin PDIP (Wide)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC14433COG	$24-$-Pin SOIC (Wide)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TC14433EJG	$24-$ Pin CERDIP (Wide)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC14433ELI	$28-$-Pin PLCC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
TC14433EPG	$24-$ Pin PDIP (Wide)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Package Type

TC14433/A

General Description

The TC14433 is a low-power, high-performance, monolithic CMOS 3-1/2 digit A/D converter. The TC14433 combines both analog and digital circuits on a single IC, thus minimizing the number of external components.

This dual slope A/D converter provides automatic polarity and zero correction with the addition of two external resistors and two capacitors. The full scale voltage range of this ratiometric IC extends from 199.9 millivolts to 1.999 volts. The TC14433 can operate over a wide range of power supply voltages, including batteries and standard 5 -volt supplies.

The TC14433A features improved performance over the industry standard TC14433. Rollover, which is the measurement of identical positive and negative signals, is specified to have the same reading within one count for the TC14433A. Power consumption of the TC14433A is typically 4 mW , approximately onehalf that of the industry standard TC14433.
The TC14433/A is available in 24-Pin PDIP, 24-Pin CERDIP, 24-Pin SOIC (TC14433 device only), and 28-Pin PLCC packages.

Typical Application

1.0 ELECTRICAL CHARACTERISTICS

Supply Voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$) -0.5 V to +18 V
Voltage on Any Pin:
Reference to V_{EF} \qquad 0.5 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.5\right)$

DC Current, Any Pin: \qquad $\pm 10 \mathrm{~mA}$
Power Dissipation $\left(\mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$:
Plastic PLCC 1.0W
Plastic PDIP 940W
SOIC 940W
CERDIP 1.45W
Operating Temperature Range

\qquad
*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TABLE 1-1: TC14433/A ELECTRICAL SPECIFICATIONS
Electrical Characteristics: $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{C}_{1}=0.1 \mu \mathrm{~F}$, (Mylar), $\mathrm{C}_{0}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{C}}=300 \mathrm{k} \Omega, \mathrm{R}_{1}=470 \mathrm{k} \Omega @ \mathrm{~V}_{\mathrm{REF}}=2 \mathrm{~V}, \mathrm{R}_{1}=$ $27 \mathrm{k} \Omega @ \mathrm{~V}_{\text {REF }}=200 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Min	Typ	Max	Min	Typ	Max	Units	Test Conditions
Analog Input									
SYE	Rollover Error (Positive) and Negative Full Scale Symmetry	-1	-	+1	-	-	-	$\begin{aligned} & \text { Count } \\ & \text { s } \end{aligned}$	200 mV Full Scale $V_{I N}-V_{I N}=+V_{I N}$
NL	Linearity Output Reading (Note 1)	-0.05	+0.05	+0.05	-	-	-	\%rdg	$\mathrm{V}_{\text {REF }}=2 \mathrm{~V}$
		-1 count	-	+1 count	-	-	-	\%rdg	$\mathrm{V}_{\text {REF }}=200 \mathrm{mV}$
SOR	Stability Output Reading (Note 2)	-	-	2	-	-	-	LSD	$\begin{aligned} & V_{X}=1.99 \mathrm{~V}, \\ & V_{\text {REF }}=2 \mathrm{~V} \end{aligned}$
		-	-	3	-	-	-	LSD	$\begin{aligned} & V_{X}=199 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{REF}}=200 \mathrm{mV} \end{aligned}$
ZOR	Zero Output Reading	-	0	0	-	-	-	LSD	$\mathrm{V}_{\mathrm{X}}=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2 \mathrm{~V}$
I_{N}	Bias Current: Analog Input Reference Input Analog Ground	-	± 20	± 100	-	-	-	pA	
		-	± 20	± 100	-	-	-	pA	
		-	± 20	± 100	-	-	-	pA	
CMRR	Common mode Rejection	-	65	-	-	-	-	dB	$\begin{aligned} & \mathrm{V}_{\mathrm{X}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2 \mathrm{~V}, \\ & \mathrm{~F}_{\mathrm{OC}}=32 \mathrm{kHz} \end{aligned}$

Note 1: Accuracy - The accuracy of the meter at full scale is the accuracy of the setting of the reference voltage. Zero is recalculated during each conversion cycle. The meaningful specification is linearity. In other words, the deviation from correct reading for all inputs other than positive full scale and zero is defined as the linearity specification.
2: The LSD stability for 200 mV scale is defined as the range that the LSD will occupy 95% of the time.
3: Pin numbers refer to 24 -pin PDIP.

TABLE 1-1: TC14433/A ELECTRICAL SPECIFICATIONS (CONTINUED)
Electrical Characteristics: $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{C}_{1}=0.1 \mu \mathrm{~F}$, (Mylar), $\mathrm{C}_{0}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{C}}=300 \mathrm{k} \Omega, \mathrm{R}_{1}=470 \mathrm{k} \Omega @ \mathrm{~V}_{\mathrm{REF}}=2 \mathrm{~V}, \mathrm{R}_{1}=$ $27 \mathrm{k} \Omega @ V_{\text {REF }}=200 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Min	Typ	Max	Min	Typ	Max	Units	Test Conditions
Digital									
$\mathrm{V}_{\text {OL }}$	Output Voltage (Pins 14 to 23) (Note 3)	-	0	0.05	-	-	0.05	V	$\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$, "0" Level
		-	-5	-4.95	-	-	-4.95	V	$\mathrm{V}_{\text {SS }}=-5 \mathrm{~V}$, "0" Level
V_{OH}	Output Voltage (Pins 14 to 23) (Note 3)	4.95	5	-	4.95	-	-	V	$\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$, "1" Level
		4.95	5	-	4.95	-	-	V	$\mathrm{V}_{\text {SS }}=-5 \mathrm{~V}$, "1" Level
${ }^{\mathrm{OH}}$	Output Current (Pins 14 to 23)	-0.2	-0.36	-	-0.14	-	-	mA	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=4.6 \mathrm{~V}$ Source
		-0.5	-0.9	-	-0.35	-	-	mA	$\mathrm{V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=5 \mathrm{~V}$ Source
${ }^{\text {OLI }}$	Output Current (Pins 14 to 23)	0.51	0.88	-	0.36	-	-	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \text { Sink } \end{aligned}$
		1.3	2.25	-	0.9	-	-	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}=-5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OL}}=-4.5 \mathrm{~V} \text { Sink } \end{aligned}$
${ }^{\text {f CLK }}$	Clock Frequency	-	66	-	-	-	-	kHz	$\mathrm{R}_{\mathrm{C}}=300 \mathrm{k} \Omega$
I_{DU}	Input Current -DU	-	$\begin{gathered} \pm 0.00 \\ 001 \end{gathered}$	± 0.3	-	-	± 1	$\mu \mathrm{A}$	
Power									
I_{Q}	Quiescent Current: 14433A:	-	-	-	-	-	-	-	V_{DD} to $\mathrm{V}_{\mathrm{EE}}, \mathrm{I}_{\text {SS }}=0$
		-	0.4	2	-	-	3.7	mA	$\mathrm{V}_{\mathrm{DD}}=5, \mathrm{~V}_{\text {EE }}=-5$
		-	1.4	4	-	-	7.4	mA	$\mathrm{V}_{\mathrm{DD}}=8, \mathrm{~V}_{\mathrm{EE}}=-8$
	Quiescent Current: 14433:	-	-	-	-	-	-	-	V_{DD} to $\mathrm{V}_{\mathrm{EE}}, \mathrm{I}_{\text {SS }}=0$
		-	0.9	2	-	-	3.7	mA	$\mathrm{V}_{\mathrm{DD}}=5, \mathrm{~V}_{\text {EE }}=-5$
		-	1.8	4	-	-	7.4	mA	$\mathrm{V}_{\mathrm{DD}}=8, \mathrm{~V}_{\mathrm{EE}}=-8$
PSRR	Supply Rejection	-	0.5	-	-	-	-	mV / V	$V_{D D}$ to $V_{E E}, I_{S S}=0$, $V_{\text {REF }}=2 V$, $V_{D D}=5, V_{E E}=-5$

Note 1: Accuracy - The accuracy of the meter at full scale is the accuracy of the setting of the reference voltage. Zero is recalculated during each conversion cycle. The meaningful specification is linearity. In other words, the deviation from correct reading for all inputs other than positive full scale and zero is defined as the linearity specification.
2: The LSD stability for 200 mV scale is defined as the range that the LSD will occupy 95% of the time.
3: Pin numbers refer to 24 -pin PDIP.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Pin No. (24-Pin PDIP) (24-Pin CERDIP) (24-Pin SOIC)	Pin No. (28-Pin PLCC)	Symbol	Description
1	2	V_{AG}	This is the analog ground. It has a high input impedance. The pin determines the reference level for the unknown input voltage $\left(\mathrm{V}_{\mathrm{X}}\right)$ and the reference voltage ($\mathrm{V}_{\mathrm{REF}}$).
2	3	$\mathrm{V}_{\text {REF }}$	Reference voltage - Full scale output is equal to the voltage applied to $\mathrm{V}_{\text {REF }}$. Therefore, full scale voltage of 1.999 V requires 2 V reference and 199.9 mV full scale requires a 200 mV reference. $\mathrm{V}_{\text {REF }}$ functions as system reset also. When switched to V_{EE}, the system is reset to the beginning of the conversion cycle.
3	4	V_{X}	The unknown input voltage $\left(\mathrm{V}_{\mathrm{X}}\right)$ is measured as a ratio of the reference voltage ($\mathrm{V}_{\mathrm{REF}}$) in a ratiometric A / D conversion.
4	5	R_{1}	This pin is for external components used for the integration function in the dual slope conversion. Typical values are $0.1 \mu \mathrm{~F}$ (Mylar) capacitor for C_{1}.
5	6	$\mathrm{R}_{1} / \mathrm{C}_{1}$	$\mathrm{R}_{1}=470 \mathrm{k} \Omega$ (resistor) for 2 V full scale.
6	7	C_{1}	$\mathrm{R}_{1}=27 \mathrm{k} \Omega$ (resistor) for 200 mV full scale. Clock frequency of 66 kHz gives 250 msec conversion time.
7	9	CO_{1}	These pins are used for connecting the offset correction capacitor. The recommended value is $0.1 \mu \mathrm{~F}$.
8	10	CO_{2}	These pins are used for connecting the offset correction capacitor. The recommended value is $0.1 \mu \mathrm{~F}$.
9	11	DU	Display update input pin. When DU is connected to the EOC output, every conversion is displayed. New data will be strobed into the output latches during the conversion cycle if a positive edge is received on DU, prior to the ramp down cycle. When this pin is driven from an external source, the voltage should be referenced to $V_{S S}$.
10	12	CLK_{1}	Clock input pins. The TC14433 has its own oscillator system clock. Connecting a single resistor between CLK_{1} and CLK_{0} sets the clock frequency.
11	13	CLK_{0}	A crystal or OC circuit may be inserted in lieu of a resistor for improved CLK_{1}, the clock input, can be driven from an external clock source, which need only have standard CMOS output drive. This pin is referenced to V_{EE} for external clock inputs. A $300 \mathrm{k} \Omega$ resistor yields a clock frequency of about 66 kHz. See Section 3.0 "Typical Characteristics". (Also see Figure for alternate circuits.)
12	14	V_{EE}	Negative power current. Connection pin for the most negative supply. Please note the current for the output drive circuit is returned through V_{SS}. Typical supply current is 0.8 mA .
13	16	$\mathrm{V}_{\text {SS }}$	Negative power supply for output circuitry. This pin sets the low voltage level for the output pins (BCD, Digit Selects, EOC, OR). When connected to analog ground, the output voltage is from analog ground to V_{DD}. If connected to V_{EE}, the output swing is from V_{EE} to V_{DD}. The recommended operating range for V_{SS} is between the $\mathrm{V}_{\mathrm{DD}}-3$ volts and V_{EE}.
14	17	EOC	End of conversion output generates a pulse at the end of each conversion cycle. This generated pulse width is equal to one half the period of the system clock.

TABLE 2-1: PIN FUNCTION TABLE (CONTINUED)

Pin No. (24-Pin PDIP) (24-Pin CERDIP) (24-Pin SOIC)	Pin No. (28-Pin PLCC)	Symbol	Description
15	18	OR	Overrange pin. Normally this pin is set high. When V_{X} exceeds $\mathrm{V}_{\text {REF }}$ the OR is low.
16	19	DS 4	Digit select pin. The digit select output goes high when the respective digit is selected. The MSD (1/2 digit turns on immediately after an EOC pulse).
17	20	DS3	The remaining digits turn on in sequence from MSD to LSD.
18	21	DS 2	To ensure that the BCD data has settled, an inter digit blanking time of two clock periods is included.
19	23	DS 1	Clock frequency divided by 80 equals multiplex rate. For example, a system clock of 60 kHz gives a multiplex rate of 0.8 kHz .
20	24	Q_{0}	See Figure for digit select timing diagram.
21	25	Q_{1}	BCD data output pin. Multiplexed BCD outputs contain three full digits of information during digit select $\mathrm{DS}_{2}, \mathrm{DS}_{3}, \mathrm{DS}_{4}$.
22	26	Q_{2}	During DS_{1}, the $1 / 2$ digit, overrange, underrange and polarity information is available.
23	27	Q_{3}	Refer to the Truth Table 5-1.
24	28	V_{DD}	Positive power supply. This is the most positive power supply pin.
	1	NC	Not Used.
-	8	NC	Not Used.
-	15	NC	Not Used.
-	22	NC	Not Used.

3.0 TYPICAL CHARACTERISTICS

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

4.0 DETAILED DESCRIPTION

The TC14433 CMOS IC becomes a modified dualslope A / D with a minimum of external components. This IC has the customary CMOS digital logic circuitry, as well as CMOS analog circuitry. It provides the user with digital functions such as (counters, latches, multiplexers), and analog functions such as (operational amplifiers and comparators) on a single chip. Refer to the Functional Block diagram, Figure .
Features of the TC14433/A include auto-zero, high input impedances and auto-polarity. Low power consumption and a wide range of power supply voltages are also advantages of this CMOS device. The system's auto-zero function compensates for the offset voltage of the internal amplifiers and comparators. In this "ratiometric system," the output reading is the ratio of the unknown voltage to the reference voltage, where a ratio of 1 is equal to the maximum count of 1999. It takes approximately 16,000 clock periods to complete one conversion cycle. Each conversion cycle may be divided into 6 segments. Figure shows the conversion cycle in 6 segments for both positive and negative inputs.

FIGURE 4-1: Integrator Waveforms at Pin 6

Segment 1 - The offset capacitor $\left(\mathrm{C}_{\mathrm{O}}\right)$, which compensates for the input offset voltages of the buffer and integrator amplifiers, is charged during this period. However, the integrator capacitor is shorted. This segment requires 4000 clock periods.
Segment 2 - During this segment, the integrator output decreases to the comparator threshold voltage. At this time, a number of counts equivalent to the input offset voltage of the comparator is stored in the offset latches for later use in the auto-zero process. The time for this segment is variable and less than 800 clock periods.
Segment 3 - This segment of the conversion cycle is the same as Segment 1.
Segment 4 - Segment 4 is an up going ramp cycle with the unknown input voltage (V_{X} as the input to the integrator. Figure 4-2 shows the equivalent configuration of the analog section of the TC14433. The actual configuration of the analog section is dependent upon the polarity of the input voltage during the previous conversion cycle.

FIGURE 4-2: Equivalent Circuit Diagrams of the Analog Section During Segment 4 of the Timing Cycle
Segment 5 - This segment is a down-going ramp period with the reference voltage as the input to the integrator. Segment 5 of the conversion cycle has a time equal to the number of counts stored in the offset storage latches during Segment 2. As a result, the system zeros automatically.
Segment 6 - This is an extension of Segment 5. The time period for this portion is 4000 clock periods. The results of the A/D conversion cycle are determined in this portion of the conversion cycle.

FIGURE 4-3:
Functional Block Diagram

5.0 TYPICAL APPLICATIONS

The Typical Application circuit is an example of a 3-1/2 digit voltmeter using the TC14433 with Commonanode displays. This system requires a 2.5 V reference. Full scale may be adjusted to 1.999 V or 199.9 mV . Input overrange is indicated by flashing a display. This display uses LEDs with common anode digit lines. Power supply for this system is shown as a dual $\pm 5 \mathrm{~V}$ supply; however, the TC14433 will operate over a wide voltage range

The circuit in Figure shows a 3-1/2 digit LCD voltmeter. The 14024B provides the low frequency square wave signal drive to the LCD backplane. Dual power supplies are shown here; however, one supply may be used when V_{SS} is connected to V_{EE}. In this case, V_{AG} must be at least 2.8 V above V_{EE}.
When only segments b and c of the decoder are connected to the $1 / 2$ digit of the display, $4,0,7$ and 3 appear as 1.
The overrange indication $\left(Q_{3}=0\right.$ and $\left.Q_{0}=1\right)$ occurs when the count is greater than 1999; (e.g., 1.999V for a reference of 2 V) The underrange indication, useful for auto-ranging circuits, occurs when the count is less than 180; (e.g., 0.180V for a reference of 2 V).

Note: If the most significant digit is connected to a display other than a " 1 " only, such as a full digit display, segments other than b and c must be disconnected. The BCD to 7 -segment decoder must blank on BCD inputs 1010 to 1111 (see Table 5-1).

TABLE 5-1: TRUTH TABLE

Coded Condition of MSD	$\begin{gathered} \mathbf{Q} \\ 3 \end{gathered}$	$\begin{aligned} & \mathbf{Q} \\ & 2 \end{aligned}$	$\begin{gathered} \mathbf{Q} \\ 1 \end{gathered}$	$\begin{aligned} & \mathbf{Q} \\ & 0 \end{aligned}$	BDC to 7-Segment Decoding	
+0	1	1	1	0	Blank Blank Blank Blank	
-0	1	0	1	0		
+0 UR	1	1	1	1		
-o UR	1	0	1	1		
+1	0	1	0	0	$\begin{aligned} & 4-1 \\ & 0-1 \\ & 7-1 \\ & 3-1 \end{aligned}$	Hook up only segments b and c to MSD
-1	0	0	0	0		
+1 OR	0	1	1	1		
-1 OR	0	0	1	1		

Note 1: $Q_{3}-1 / 2$ digit, low for " 1 ", high for " 0 ".
Q_{2} - Polarity: " 1 " = positive, " 0 " = negative.
Q_{0} - Out of range condition exists if $Q_{0}=1$. When used in conjunction with Q_{3}, the type of out of range condition is indicated; i.e., Q_{3} $=0 \rightarrow O R$ or $Q_{3}=1 \rightarrow U R$.
Figure is an example of a $3-1 / 2$ digit LED voltmeter with a minimum of external components, (only 11 additional components). In this circuit, the 14511B provides the segment drive and the 75492 or 1413 provides sink for digit current. Display is blanked during the overrange condition.

FIGURE 5-1: $\quad 3$-1/2 Digit Voltmeter with LCD Display

Note 1: For $\mathrm{V}_{\text {REF }}=2000 \mathrm{~V}$; V: 1.999 V full scale.
2: For $\mathrm{V}_{\mathrm{REF}}=200 \mathrm{mV}$; V: 199.9 mV full scale (change 470 k to $\mathrm{R}=27 \mathrm{k}$ and decimal point position.
3: Peak digit current for an eight displayed is 7 times the segment current:
*To increase segment current capability, add two 75491 ICs between 14511B and resistor network.
The use of the 1413 as digit driver increases digit current capability over the 75492.
${ }^{* *} \mathrm{~V}$ can range between -2.8 V and -11 V .

FIGURE 5-2: 3-1/2 Digit LED Voltmeter with Low Component Count Using Common Cathode Display

FIGURE 5-3: Alternate Oscillator Circuits

FIGURE 5-4: Digit Select Timing Diagram

TC14433/A

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Package marking data not available at this time.

6.2 Taping Form

Component Taping Orientation for 24-Pin SOIC (Wide) Devices

Carrier Tape, Number of Components Per Reel and Reel Size

Package	Carrier Width (W)	Pitch (P)	Part Per Full Reel	Reel Size
24-Pin SOIC (W)	24 mm	12 mm	1000	13 in

Component Taping Orientation for 28-Pin PLCC Devices

Standard Reel Component Orientation for 713 Suffix Device

Carrier Tape, Number of Components Per Reel and Reel Size

Package	Carrier Width (W)	Pitch (P)	Part Per Full Reel	Reel Size
28-Pin PLCC	24 mm	16 mm	750	13 in

6.3 Package Dimensions

24-Pin PDIP (Wide)

Dimensions: inches (mm)

24-Pin CERDIP (Wide)

Dimensions: inches (mm)

TC14433/A

Package Dimensions (Continued)

24-Pin SOIC (Wide)

Dimensions: inches (mm)

28-Pin PLCC

Dimensions: inches (mm)

TC14433/A

SALES AND SUPPORT

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature \#) you are using.
New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

TC14433/A

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Abstract

Trademarks The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeELoQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, Real ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and Zena are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

[^0]
Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta

Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto

Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599
China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062
India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122
Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Microchip:
TC14433EJ

[^0]: Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro ${ }^{\oplus}$-bit MCUs, KEELOQ ${ }^{\oplus}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

