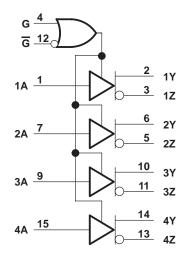
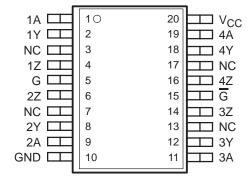
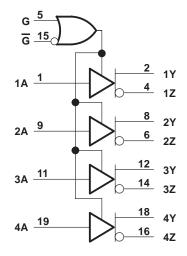

SLLS447C - OCTOBER 2000 - REVISED AUGUST 2008

- Designed for TIA/EIA-485, TIA/EIA-422, and ISO 8482 Applications
- Signaling Rates[†] up to 30 Mbps
- Propagation Delay Times <11 ns
- Low Standby Power Consumption
 1.5 mA Max
- Output ESD Protection 12 kV


- Driver Positive- and Negative-Current Limiting
- Power-Up and Power-Down Glitch-Free for Live Insertion Applications
- Thermal Shutdown Protection
- Industry Standard Pin-Out, Compatible With SN75172, AM26LS31, DS96172, LTC486, and MAX3045

description


The SN65LBC172A and SN75LBC172A are quadruple differential line drivers with 3-state outputs, designed for TIA/EIA-485 (RS-485), TIA/EIA-422 (RS-422), and ISO 8482 applications.


logic diagram (positive logic)

20-DW PACKAGE (TOP VIEW)

logic diagram (positive logic)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinBiCMOS is a trademark of Texas Instruments.

†The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

SLLS447C - OCTOBER 2000 - REVISED AUGUST 2008

description (continued)

These devices are optimized for balanced multipoint bus transmission at signalling rates up to 30 million bits per second. The transmission media may be printed-circuit board traces, backplanes, or cables. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.

Each driver features current limiting and thermal-shutdown circuitry making it suitable for high-speed mulitpoint data transmission applications in noisy environments. These devices are designed using LinBiCMOS™, facilitating low power consumption and robustness.

The G and \overline{G} inputs provide driver enable control using either positive or negative logic. When disabled or powered off, the driver outputs present a high-impedance to the bus for reduced system loading.

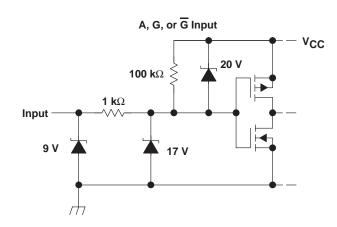
The SN75LBC172A is characterized for operation over the temperature range of 0°C to 70°C. The SN65LBC172A is characterized over the temperature range from –40°C to 85°C.

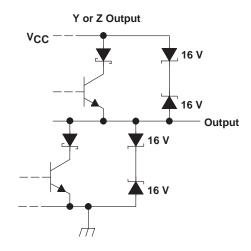
AVAILABLE OPTIONS

	PACKAGE									
TA	16-PIN PLASTIC SMALL OUTLINE [†] (JEDEC MS-013)	20-PIN PLASTIC SMALL OUTLINE [†] (JEDEC MS-013)	16-PIN PLASTIC THROUGH-HOLE (JEDEC MS-001)							
200 1- 7000	SN75LBC172A16DW	SN75LBC172ADW	SN75LBC172AN							
0°C to 70°C	Marked as 75LBC172A									
4000 1- 0500	SN65LBC172A16DW	SN65LBC172ADW	SN65LBC172AN							
-40°C to 85°C		Marked as 65LBC172A								

[†] Add R suffix for taped and reeled version.

FUNCTION TABLE (EACH DRIVER)


	· ·			
INPUT	ENAE	_	OUTF	PUTS
Α	G	G	Υ	Z
L	Н	X	L	Н
L	Х	L	L	Н
Н	Н	X	Н	L
Н	Х	L	Н	L
OPEN	Н	X	Н	L
OPEN	Х	L	Н	L
Н	OPEN	Х	Н	L
L	OPEN	Х	L	Н
Х	L	Н	Z	Z
Х	L	OPEN	Z	Z


H = high level, L = low level, X = irrelevant,

Z = high impedance (off)

equivalent input and output schematic diagrams

absolute maximum ratings†

Supply voltage range, V _{CC} (see Note 1)		
Output voltage range, V _O , at any bus (transient pulse through	100 Ω , see Figure	8) –30 V to 30 V
Input voltage range, V_I , at any A, G, or \overline{G} terminal		$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Electrostatic discharge: Human body model (see Note 2)	Y, Z, and GND	
	All pins	5 kV
Charged-device model (see Note 3)	All pins	1 kV
Storage temperature range, T _{Stq}		–65°C to 150°C
Continuous power dissipation		
Lead temperature 1,6 mm (1/16 inch) from case for 10 secon	nds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to GND.

- 2. Tested in accordance with JEDEC standard 22, Test Method A114-A.
- 3. Tested in accordance with JEDEC standard 22, Test Method C101.

DISSIPATION RATING TABLE

PACKAGE	JEDEC BOARD MODEL	T _A ≤ 25°C POWER RATING	DERATING FACTOR‡ ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
4C DIN DW	Low K	1200 mW	9.6 mW/°C	769 mW	625 mW
16-PIN DW	High K	2240 mW	17.9 mW/°C	1434 mW	1165 mW
20 DIN DW	Low K	1483 mW	11.86 mW/°C	949 mW	771 mW
20-PIN DW	High K	2753 mW	22 mW/°C	1762 mW	1432 mW
16-PIN N	Low K	1150 mW	9.2 mW/°C	736 mW	598 mW

[‡] This is the inverse of the junction-to-ambient thermal resistance when board-mounted with no air flow.

SLLS447C - OCTOBER 2000 - REVISED AUGUST 2008

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
Voltage at any bus terminal	Y, Z	-7		12	V
High-level input voltage, VIH		2		VCC	
Low-level input voltage, V _{IL}	A, G, \overline{G}	0		0.8	V
Output current		-60		60	mA
	SN75LBC172A	0		70	20
Operating free-air temperature, T _A	SN65LBC172A	-40		85	°C

electrical characteristics over recommended operating conditions

	PARAMETER	TEST CON	DITIONS	MIN	TYP†	MAX	UNIT
VIK	Input clamp voltage	I _I = -18 mA		-1.5	-0.77		V
VO	Open-circuit output voltage	Y or Z, No load		0		VCC	V
		No load (open circuit)		3		VCC	
VOD(SS)	Steady-state differential output voltage magnitude‡	R_L = 54 Ω, see Figure 1		1	1.6	2.5	V
()	magnitude+	With common-mode loa	ding, see Figure 2	1	1.6	2.5	
$\Delta V_{OD(SS)}$	Change in steady-state differential output voltage between logic states	See Figure 1	-0.1		0.1	V	
VOC(SS)	Steady-state common-mode output voltage	See Figure 3	2	2.4	2.8	V	
ΔV _{OC} (SS)	Change in steady-state common-mode output voltage between logic states	See Figure 3		-0.02		0.02	V
l _l	Input current	A, G, G		-50		50	μΑ
los	Short-circuit output current		V _I = V _C C	-200		200	mA
loz	High-impedance-state output current	$V_{TEST} = -7 \text{ V to } 12 \text{ V},$ See Figure 7	G at 0 V, G at V _{CC}	-50		50	
IO(OFF)	Output current with power off		VCC = 0 V	-10		10	μΑ
		$V_I = 0 \text{ V or } V_{CC}$			23		
ICC	Supply current	No load	All drivers disabled			1.5	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$ and 25°C .

[‡] The minimum V_{OD} may not fully comply with TIA/EIA-485-A at operating temperatures below 0°C. System designers should take the possibly of lower output signal into account in determining the maximum signal transmission distance.

SLLS447C - OCTOBER 2000 - REVISED AUGUST 2008

switching characteristics over recommended operating conditions

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high level output		5.5	8	11	ns
tPHL	Propagation delay time, high-to-low level output		5.5	8	11	ns
t _r	Differential output voltage rise time		3	7.5	11	ns
tf	Differential output voltage fall time	R_L = 54 Ω, C_L = 50 pF, see Figure 4	3	7.5	11	ns
tsk(p)	Pulse skew tpLH - tpHL	See rigule 4		0.6	2	ns
tsk(o)	Output skew [†]				2	ns
tsk(pp)	Part-to-part skew [‡]				3	ns
^t PZH	Propagation delay time, high-impedance-to-high-level output	See Figure 5			25	ns
^t PHZ	Propagation delay time, high-level-output-to-high impedance				25	ns
tPZL	Propagation delay time, high-impedance-to-low-level output	See Figure 6			30	ns
tPLZ	Propagation delay time, low-level-output-to-high impedance				20	ns

[†] Output skew (t_{sk(o)}) is the magnitude of the time delay difference between the outputs of a single device with all of the inputs connected together. ‡ Part-to-part skew (t_{sk(pp)}) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same input signals, the same supply voltages, at the same temperature, and have identical packages and test circuits.

PARAMETER MEASUREMENT INFORMATION

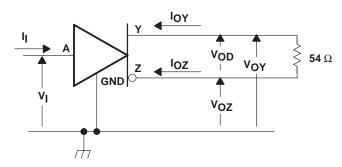
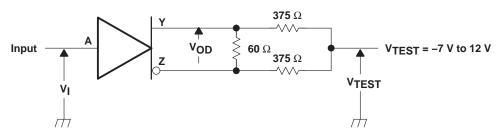
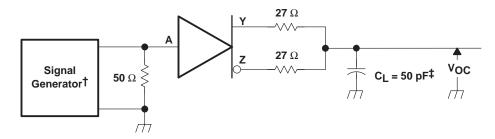
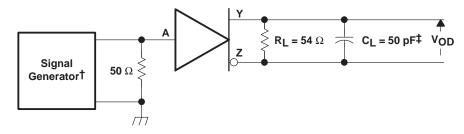


Figure 1. Test Circuit, V_{OD} Without Common-Mode Loading


Figure 2. Test Circuit, V_{OD} With Common-Mode Loading

 † PRR = 1 MHz, 50% duty cycle, t_{r} < 6 ns, t_{f} < 6 ns, Z_{O} = 50 Ω

Figure 3. V_{OC} Test Circuit

[‡] Includes probe and jig capacitance

 † PRR = 1 MHz, 50% duty cycle, t_{f} < 6 ns, t_{f} < 6 ns, Z_{O} = 50 Ω

[‡] Includes probe and jig capacitance

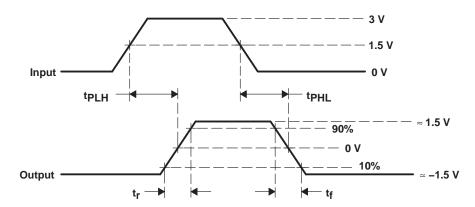
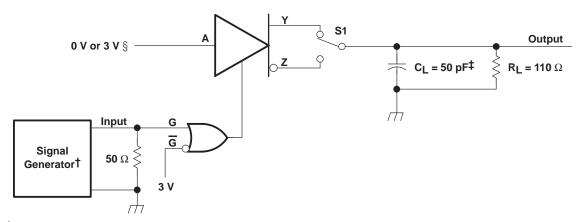



Figure 4. Output Switching Test Circuit and Waveforms

PARAMETER MEASUREMENT INFORMATION

† PRR = 1 MHz, 50% duty cycle, t_r < 6 ns, t_f < 6 ns, Z_O = 50 Ω

^{§ 3-}V if testing Y output, 0 V if testing Z output

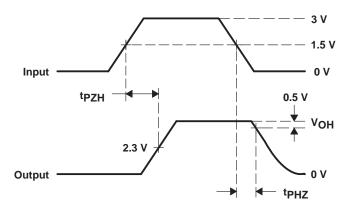
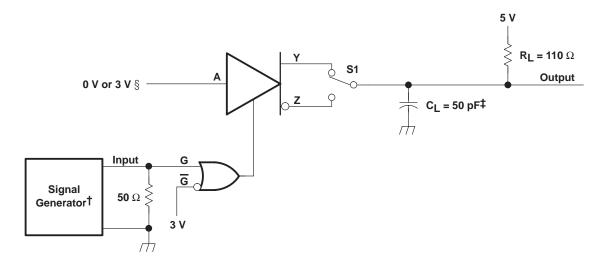



Figure 5. Enable Timing Test Circuit and Waveforms, tpzH and tpHZ

[‡] Includes probe and jig capacitance

PARAMETER MEASUREMENT INFORMATION

[†] PRR = 1 MHz, 50% duty cycle, t_r < 6 ns, t_f < 6 ns, Z_O = 50 Ω

‡ Includes probe and jig capacitance

§ 3-V if testing Y output, 0 V if testing Z output

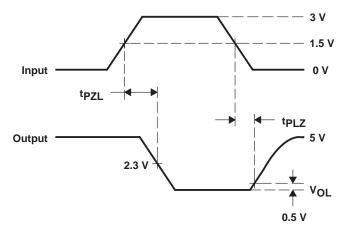


Figure 6. Enable Timing Test Circuit and Waveforms, tpzL and tpLZ

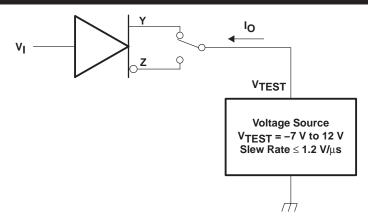
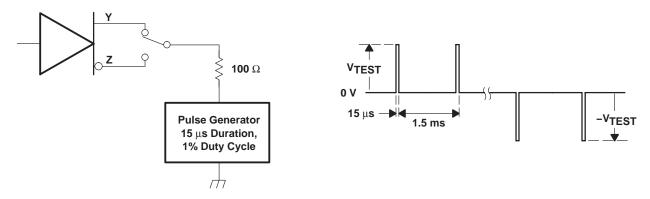
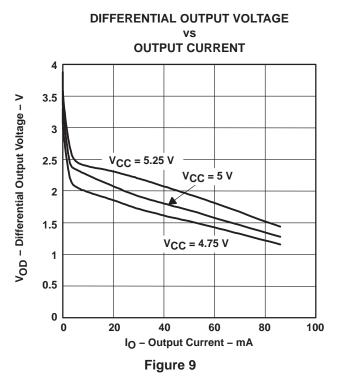
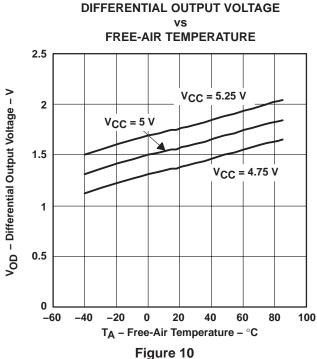
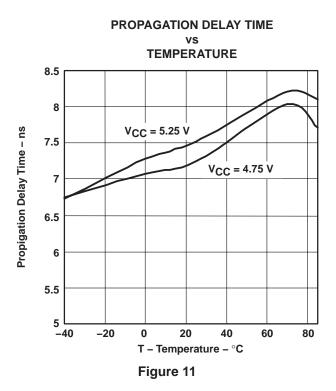
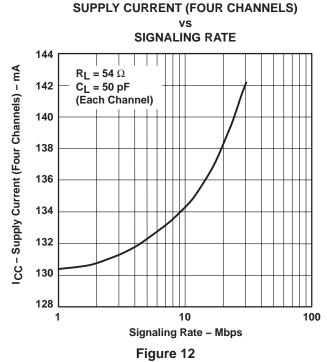


Figure 7. Test Circuit, Short-Circuit Output Current


Figure 8. Test Circuit and Waveform, Transient Over-Voltage

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

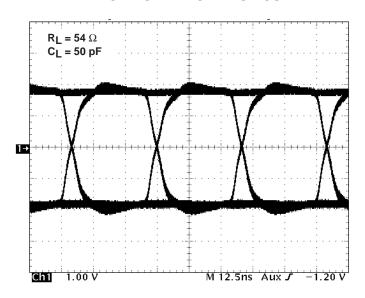


Figure 13. Eye Pattern, Pseudorandom Data at 30 Mbps

APPLICATION INFORMATION

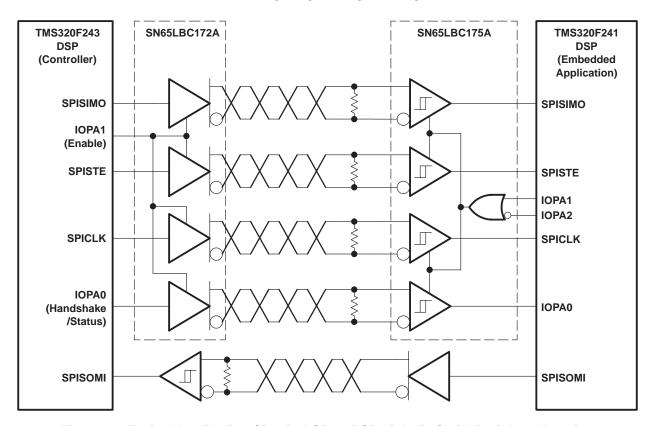


Figure 14. Typical Application Circuit, DSP-to-DSP Link via Serial Peripheral Interface

24-Apr-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins		Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN65LBC172A16DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC172A	Samples
SN65LBC172A16DWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC172A	Samples
SN65LBC172A16DWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC172A	Samples
SN65LBC172ADW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC172A	Samples
SN65LBC172ADWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC172A	Samples
SN65LBC172ADWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC172A	Samples
SN65LBC172ADWRG4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC172A	Samples
SN65LBC172AN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	65LBC172A	Samples
SN65LBC172ANE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	65LBC172A	Samples
SN75LBC172A16DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75LBC172A	Samples
SN75LBC172A16DWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75LBC172A	Samples
SN75LBC172A16DWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75LBC172A	Samples
SN75LBC172A16DWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75LBC172A	Samples
SN75LBC172ADW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75LBC172A	Samples
SN75LBC172ADWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75LBC172A	Samples
SN75LBC172ADWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75LBC172A	Samples
SN75LBC172AN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	75LBC172A	Samples

PACKAGE OPTION ADDENDUM

24-Apr-2015

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
SN75LBC172ANE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	75LBC172A	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

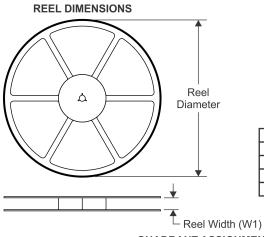
TBD: The Pb-Free/Green conversion plan has not been defined.

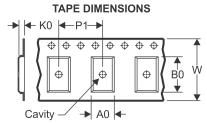
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

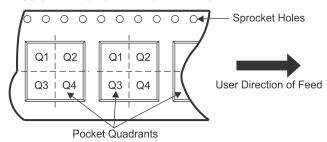
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

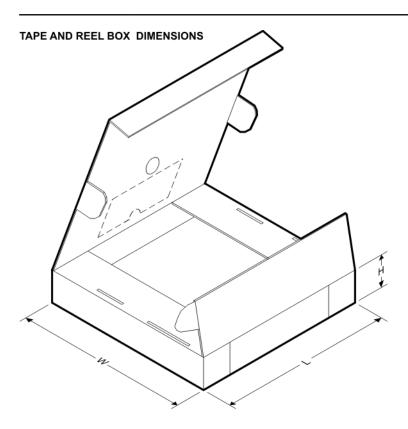

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 4-Jan-2013


TAPE AND REEL INFORMATION

Α0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LBC172A16DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
SN65LBC172ADWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
SN65LBC172ADWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN75LBC172A16DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
SN75LBC172ADWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
SN75LBC172ADWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1

www.ti.com 4-Jan-2013

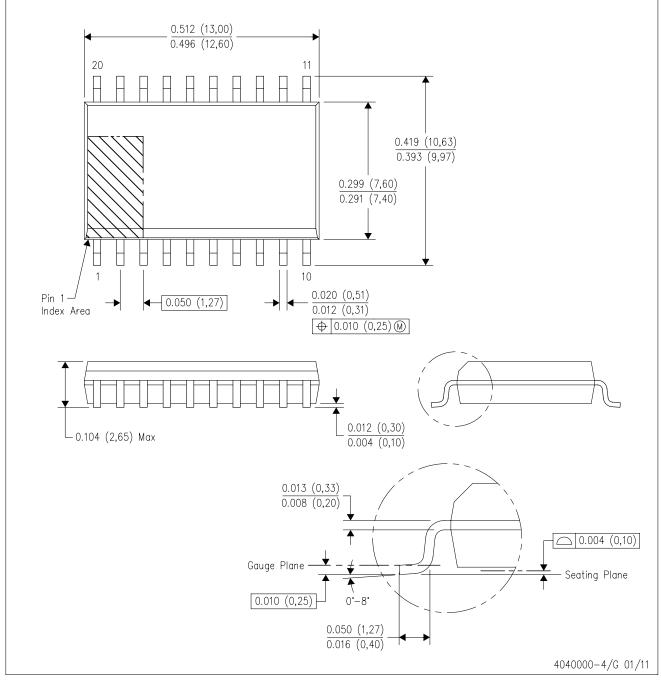
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LBC172A16DWR	SOIC	DW	16	2000	367.0	367.0	38.0
SN65LBC172ADWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN65LBC172ADWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN75LBC172A16DWR	SOIC	DW	16	2000	367.0	367.0	38.0
SN75LBC172ADWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN75LBC172ADWR	SOIC	DW	20	2000	367.0	367.0	45.0

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

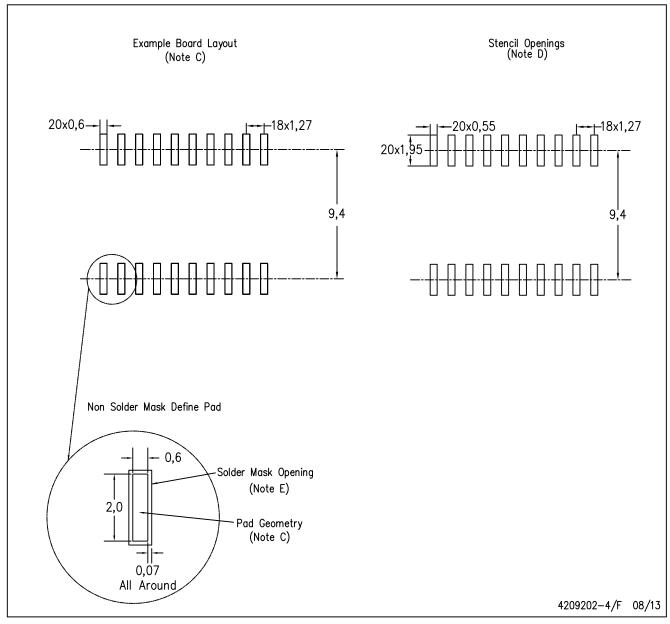
16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G20)

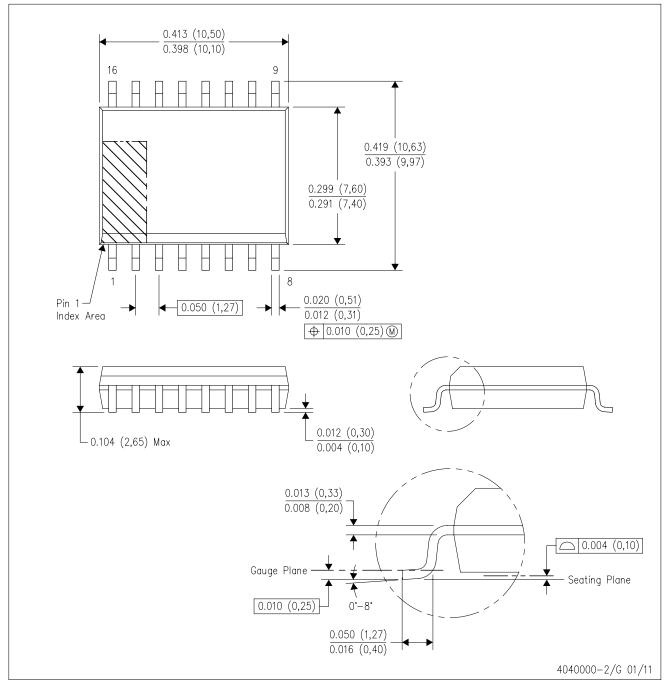
PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.

DW (R-PDSO-G20)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

logic.ti.com

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security

Power Mgmt Space, Avionics and Defense www.ti.com/space-avionics-defense power.ti.com

Microcontrollers www.ti.com/video microcontroller.ti.com Video and Imaging

www.ti-rfid.com

OMAP Applications Processors TI E2E Community www.ti.com/omap e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity