

QRE1113, QRE1113GR Minature Reflective Object Sensor

Features

- Phototransistor output
- No contact surface sensing
- Miniature package
- Lead form style: Gull Wing

- Two leadform options: Through hole (QRE1113) SMT gullwing (QRE1113GR)
- Two packaging options: Tube (QRE1113) Tape and reel (QRE1113GR)

August 2011

Notes:

- 1. Dimensions for all drawings are in millimeters.
- 2. Tolerance of ± 0.15 mm on all non-nominal dimensions

<u>4.80</u> 4.40

Notes:

- 1. Dimensions for all drawings are in millimeters.
- 2. Tolerance of ±0.15mm on all non-nominal dimensions

Schematic

Absolute Maximum Ratings (T_A = 25°C unless otherwise specified)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating	Units	
T _{OPR}	Operating Temperature	-40 to +85	°C	
T _{STG}	Storage Temperature	-40 to +90	°C	
T _{SOL-I}	Soldering Temperature (Iron) ^(2,3,4)	240 for 5 sec	°C	
T _{SOL-F}	Soldering Temperature (Flow) ^(2,3)	260 for 10 sec	°C	
EMITTER				
١ _F	Continuous Forward Current	50	mA	
V _R	Reverse Voltage	5	V	
I _{FP}	Peak Forward Current ⁽⁵⁾	1	А	
PD	Power Dissipation ⁽¹⁾	75 mW		
SENSOR				
V _{CEO}	Collector-Emitter Voltage	30	V	
V _{ECO}	Emitter-Collector Voltage	5	V	
۱ _C	Collector Current	20	mA	
PD	Power Dissipation ⁽¹⁾	50	mW	

Electrical/Optical Characteristics (T_A = 25°C unless otherwise specified)

Parameter	Test Conditions	Min.	Тур.	Max.	Units	
DE						
Forward Voltage	I _F = 20mA		1.2	1.6	V	
Reverse Leakage Current	$V_{R} = 5V$			10	μA	
Peak Emission Wavelength	I _F = 20mA		940		nm	
ANSISTOR						
Collector-Emitter Dark Current	$I_F = 0 \text{mA}, V_{CE} = 20 \text{V}$			100	nA	
On-State Collector Current	$I_F = 20 \text{mA}, V_{CE} = 5 V^{(6)}$	0.10	0.40		mA	
Cross-Talk Collector Current	$I_F = 20 \text{mA}, V_{CE} = 5 V^{(7)}$			1	μA	
Saturation Voltage				0.3	V	
Rise Time	$V_{CC} = 5V, I_{C(ON)} = 100\mu A,$		20		μs	
Fall Time	$R_{L} = 1k\Omega$		20			
	DE Forward Voltage Reverse Leakage Current Peak Emission Wavelength ANSISTOR Collector-Emitter Dark Current On-State Collector Current Cross-Talk Collector Current Saturation Voltage Rise Time	DE IF = 20mA Forward Voltage IF = 20mA Reverse Leakage Current VR = 5V Peak Emission Wavelength IF = 20mA Collector-Emitter Dark Current IF = 0mA, VCE = 20V On-State Collector Current IF = 20mA, VCE = 5V ⁽⁶⁾ Cross-Talk Collector Current IF = 20mA, VCE = 5V ⁽⁶⁾ Saturation Voltage IF = 20mA, VCE = 5V ⁽⁷⁾ Rise Time VCC = 5V, IC(ON) = 100µA,	DE IF = 20mA Forward Voltage IF = 20mA Reverse Leakage Current VR = 5V Peak Emission Wavelength IF = 20mA IF = 20mA IF = 20mA Collector-Emitter Dark Current IF = 0mA, VCE = 20V On-State Collector Current IF = 20mA, VCE = 5V ⁽⁶⁾ 0.10 Cross-Talk Collector Current IF = 20mA, VCE = 5V ⁽⁷⁾ 0.10 Saturation Voltage IF = 20mA, VCE = 5V ⁽⁷⁾ 0.10 Rise Time VCC = 5V, IC(ON) = 100µA, 0.10	DEIFForward Voltage $I_F = 20mA$ 1.2Reverse Leakage Current $V_R = 5V$ 1.2Peak Emission Wavelength $I_F = 20mA$ 940ANSISTORCollector-Emitter Dark Current $I_F = 0mA, V_{CE} = 20V$ On-State Collector Current $I_F = 0mA, V_{CE} = 5V^{(6)}$ 0.100.40Cross-Talk Collector CurrentI_F = 20mA, $V_{CE} = 5V^{(6)}$ 0.100.40Cross-Talk Collector CurrentI_F = 20mA, $V_{CE} = 5V^{(7)}$ Saturation VoltageRise TimeV_{CC} = 5V, $I_{C(ON)} = 100\muA$,20	DEIIForward Voltage $I_F = 20mA$ 1.21.6Reverse Leakage Current $V_R = 5V$ 10Peak Emission Wavelength $I_F = 20mA$ 940Collector-Emitter Dark CurrentIF = 0mA, $V_{CE} = 20V$ 100On-State Collector CurrentIF = 20mA, $V_{CE} = 5V^{(6)}$ 0.10On-State Collector Current $I_F = 20mA, V_{CE} = 5V^{(6)}$ 0.10On-State Collector Current $I_F = 20mA, V_{CE} = 5V^{(7)}$ 1Saturation Voltage0.30.3Rise Time $V_{CC} = 5V, I_{C(ON)} = 100\muA,$ 20	

Notes:

- 1. Derate power dissipation linearly 1.00mW/°C above 25°C.
- 2. RMA flux is recommended.
- 3. Methanol or isopropyl alcohols are recommended as cleaning agents.
- 4. Soldering iron 1/16" (1.6mm) from housing.
- 5. Pulse conditions: $tp = 100\mu s$; T = 10ms.
- 6. Measured using an aluminum alloy mirror at d = 1mm.
- 7. No reflective surface at close proximity.

QRE1113, QRE1113GR I Minature Reflective Object Sensor