

User's Guide SBAU188–February 2012

AMC1210MB-EVM

AMC1210MB-EVM

This user's guide describes the characteristics, operation, and use of the <u>AMC1210MB-EVM</u> as part of an evaluation system when used with Texas Instruments delta-sigma ($\Delta\Sigma$) modulator evaluation modules (EVMs) in resolver or current-shunt applications. A schematic diagram and bill of materials are included in this document.

The following related documents are available for download through the Texas Instruments web site at http://www.ti.com.

Device	Literature Number	Device	Literature Number
AMC1210	SBAS372D	LM3S3748	SPMS085F
ADS1205	SBAS312B	<u>REG104</u>	SBVS025G
TPD2E001	SLLS684E	OPA1632	SBOS286B
<u>OPA353</u>	SBOS103	AMC1203EVM	SBAU170
AMC1204EVM	SBAU178	ADS1209EVM	SBAU167

EVM-Related Device Data Sheets

Stellaris is a registered trademark of Texas Instruments. ARM is a registered trademark of ARM Limited. Microsoft, Windows are registered trademarks of Microsoft Corporation. NI-VISA, LabVIEW are trademarks of National Instruments. All other trademarks are the property of their respective owners.

Contents

1	EVM Overview	3
2	Hardware Interfaces	3
3	Software	6
4	Schematics and Layout	13

List of Figures

1	AMC1210EVM Software Installation	6
2	NI-VISA AMC1210MB-EVM Driver Installation	7
3	NI-VISA AMC1210MB-EVM Automatic Installation	7
4	NI-VISA AMC1210MB-EVM Driver Installing	8
5	NI-VISA AMC1210MB-EVM Driver Installation Complete	8
6	NI-VISA AMC1210MB-EVM Driver Verification	9
7	AMC1210MB-EVM Software Current Shunt Mode GUI	9
8	AMC1210MB-EVM Software Toolbar	10
9	Save Data Interface	10
10	AMC1210MB-EVM Software Current Shunt Data GUI	10
11	AMC1210MB-EVM Software Resolver Settings GUI	11
12	AMC1210MB-EVM Software Resolver Demo GUI: Position Data	12
13	AMC1210MB-EVM Software Resolver Demo GUI: Raw Data	12
14	AMC1210MB-EVM PCB Silkscreen (Top Image)	14
15	AMC1210MB-EVM PCB Silkscreen (Bottom Image)	14
16	Assembly Configuration	15
17	Schematic Page 1	16
18	Schematic Page 2	17

List of Tables

1	AMC1210MB-EVM Modulator Interface Pinout	3
2	AMC1210MB-EVM Resolver Interface Pinout	4
3	AMC1210MB-EVM Test Point Interface	4
4	AMC1210MB-EVM JP1 and JP2 Interface	5
5	Terminal Block J6 Pinout	5
6	LM3S3748 JTAG Connector	5
7	Bill of Materials	13

1 EVM Overview

1.1 Features

AMC1210MB-EVM:

- Full-featured evaluation board for the <u>AMC1210</u> quad digital filter for second-order delta-sigma modulators
- Contains all support circuitry needed for the AMC1210
- Onboard clocking for built-in <u>ADS1205</u>
- Stellaris® LM3S3748 ARM® processor and parallel interface to AMC1210
- JTAG header for reprogramming the <u>LM3S3748</u> and experimentation
- D-connectors for connecting ΔΣ modulator EVMs
- Easy-to-use evaluation software for computers with Microsoft® Windows® XP operating systems
- Data collection and register access to AMC1210
- · Open source firmware and software to customize evaluation

The AMC1210MB-EVM can be connected to a personal or lab computer using an available USB port. This manual shows how to use the AMC1210MB-EVM with the PC software available for download from the product folder at <u>www.ti.com</u>.

This manual covers the operation of the AMC1210MB-EVM. Throughout this document, the abbreviation *EVM* and the term *evaluation module* are synonymous with the AMC1210MB-EVM.

2 Hardware Interfaces

2.1 Modulator Interface Pinout

The AMC1210MB-EVM has two, male-type, nine-pin DSUB connectors at J3 and J4 for connecting TI $\Delta\Sigma$ modulator EVMs. Each connector supports single-channel and dual-channel $\Delta\Sigma$ modulator evaluation fixtures. The AMC1210MB-EVM supports using one dual-channel modulator or two single-channel modulator EVMs configured to use different channels of the DB9 connectors. Table 1 summarizes the AMC1210MB-EVM modulator interface pinout.

Pin	Signal	
1	GND	
2	Floating	
3	3.3 V	
4	5 V	
5	GND	
6	AMC1210 CLK1	
7	AMC1210 CLK2	
8	AMC1210 IN2	
9	AMC1210 IN1	

Table 1. AMC1210MB-EVM Modulator Interface Pinout

2.2 Resolver Interface Pinout

The AMC1210MB-EVM is designed for easy interfacing to resolver applications. Connector J5 is a nine-pin, female-type DSUB connector for connection to a standard resolver. To hold the floating resolver inputs to a predefined common-mode level, a 2.5-V offset is added to the resolver inputs. The AMC1210MB-EVM resolver interface pinout is detailed in Table 2.

Pin	Signal	
1	Positive sine-wave input	
2	Negative sine-wave input	
3	Positive cosine-wave input	
4	Negative cosine-wave input	
5	Floating	
6	Positive carrier-wave output	
7	Negative carrier-wave output	
8	Floating	
9	GND	

Table 2. AMC1210MB-EVM Resolver Interface Pinout

2.3 Test Points

The AMC1210MB-EVM provides test points for easy access to onboard supplies for extended evaluation or experimentation. Table 3 describes each test point.

Test Point	Signal
TP1	3.3 V
TP2	GND
TP3	GND
TP4	5 V
TP5	GND
TP6	+VA
TP7	GND
TP8	–VA

Table 3. AMC1210MB-EVM Test Point Interface

2.4 Jumpers

JP1 and JP2 are available to configure the resolver carrier signal driver. The carrier signal may either be driven directly by the AMC1210 or through the <u>OPA1632</u> operational amplifier. The purpose of the OPA1632 is to provide the ability to filter the carrier signal and continue to be capable of sourcing 85 mA on the carrier. This interface is shown in Table 4.

Jumper		
JP1	JP2	Description
1-2 closed	1-2 closed	PWM carrier signal is driven by the OPA1632
2-3 closed	2-3 closed	PWM carrier signal is driven directly from the AMC1210

Table 4. AMC1210MB-EVM JP1 and JP2 Interface

2.5 Power Supplies

If the OPA1632 is in use (JP1 and JP2 in the 2-3 position; refer to Table 4), positive and negative supply rails must be provided at terminal block J6 or TP6 and TP8. Terminal block J6 connections are described in Table 5. All other power is supplied through barrel jack J2 with a 5-V to 7-V wall adapter included in the EVM kit.

Table 5. Terminal Block J6 Pinout

Pin	Description	
1	OPA1632 positive supply	
2	GND	
3	OPA1632 negative supply	

2.6 LM3S3748 JTAG Connector

For embedded software investigations with the AMC1210MB-EVM, a 20-pin JTAG connector is provided at J1. The <u>Stellaris LM3S811 Evaluation Board</u> is a low-cost Stellaris evaluation board that can function as an in-circuit debugger for the LM3S3748 on the AMC1210MB-EVM. The JTAG connector key should face the inside of the board, or the pins should align as described in Table 6.

Pin	Signal	
2, 4, 6, 8, 10, 12, 14, 16, 18, 20	GND	
3, 11, 15, 17, 19	Floating	
1	3.3 V or XVCC	
5	TDI	
7	TMS	
9	ТСК	
13	TDO	

Table 6. LM3S3748 JTAG Connector

Hardware Interfaces

Software

3 Software

The program for evaluating the AMC1210MB-EVM is the AMC1210EVM software. This program uses the NI-VISA[™] client to communicate with the hardware through a USB port. The program currently runs only on PCs with the Microsoft Windows XP operating system. Windows Vista and Windows 7 are **not** supported.

3.1 Installation

Follow these procedures to install the AMC1210MB-EVM software.

Step 1. Install the AMC1210MB-EVM software and LabVIEW[™] RunTime Engine software. The screen shown in Figure 1 appears as you start this process.

Figure 1. AMC1210EVM Software Installation

- Step 2. After the AMC1210EVM software is installed, apply power to the EVM and connect the EVM to an available PC USB port. The computer should recognize new hardware and begin installing the driver. Accept the default settings.
- Figure 2 through Figure 5 show the driver installation sequence.

Figure 2. NI-VISA AMC1210MB-EVM Driver Installation

Figure 3. NI-VISA AMC1210MB-EVM Automatic Installation

Figure 4. NI-VISA AMC1210MB-EVM Driver Installing

Figure 5. NI-VISA AMC1210MB-EVM Driver Installation Complete

Software

Step 3. Verify that installation is completed correctly by opening the Windows Device Manager and locating the driver, as shown in Figure 6.

Figure 6. NI-VISA AMC1210MB-EVM Driver Verification

3.2 Using the AMC1210MB-EVM Evaluation Software

The AMC1210MB-EVM evaluation software provides two modes of operation: Resolver Demo and Current Shunt. Each mode of operation provides a separate GUI and features for evaluating the AMC1210. By default, the software launches in Current Shunt Mode. Figure 7 shows the Current Shunt Mode GUI.

NOTE: Neither mode of operation allows for the AMC1210 Control Register or Clock Divider Register to be modified. These registers contain functionally critical features of the device that must remain in control of the AMC1210MB-EVM software.

	_				
ent Shunt Settings Current Shunt Data	Mode:	Current Shunt EVM	View AMC1210 Product Folder	Visit the TI E2E Comm	
tab allows for modification of the filter module settings for fil ields related to the control register, sinc filter, and integrato is EVM.	ter modul Ir register	es 1 & 2 on the AMC12 . Because real-time stre	10 for current-shunt applications, aming data is not supported, aları	The only fields made ava m functionality is not incl	
Filter Module 1 Module 1 Control Registers		Filter Module Module 2 Cor	2		
Clock Direction Sample-and-Hold		Clock Direc	tion Sample-and-Hold		
Input 🦯 Signal SH1 🤜	7	Inp	ut 🤝 Signal SH1	∇	
Time Measure Mode	Time Mea:	Time Measure Mode			
Last Update to Last Rising Edge Modulator Mode OO: Clock at data rate from Modulator		Last Update to Last Rising Edge 💎			
		Modulator	Modulator Mode		
		00: 0	00: Clock at data rate from Modulator		
Module 1 Sinc Filter Registers		Module 2 Sin	c Filter Registers		
Filter Structure ACK Enable Filter Enable SOS 00; Sincfast Disable Disable 0	R	Filter Struct 00: Sincfa	sure ACK Enable Filter Enable st ▽ Disable ▽ Disable ▽	sosr 0	
Module 1 Integrator Filter Registers		Module 2 Int	egrator Filter Registers		
Shift Data Format Integrator Mode		Shift Data	a Format Integrator Mode		
0 16-bit 🤍 Oversampling Mode	∇	0 1	6-bit 🤝 🗌 Oversampling Mo	ode 🤝	
Integrator Enable Demodulation Enable IOSR		Integrator	Enable Demodulation Enable	IOSR	
	_	Disabled	Disabled V	0	
Module Status: D	isabled		Module Sta	tus: Disabled	

Figure 7. AMC1210MB-EVM Software Current Shunt Mode GUI

Software

The toolbar shown in Figure 8 is present, regardless of the mode of operation of the AMC1210MB-EVM software. The left-most button is used to switch between Current-Shunt Mode and Resolver Demo Mode. The remaining buttons are provided for convenience to quickly access information about the device or visit the TI E2E community for support or device queries.

Mode:	Current Shunt EVM	View AMC1210 Product Folder	Visit the TI E2E Community
-------	-------------------	-----------------------------	----------------------------

Figure 8. AMC1210MB-EVM Software Toolbar

The AMC1210MB-EVM software includes a feature that saves any collected data from either the Resolver or Current Shunt Data tabs to export collected data to another analysis tool. Figure 9 shows the save data interface. To save collected data, click the folder icon to browse the file system, or type a path where the exported data will be saved to a text file. Once the data is collected, click the *Save Data* button to export the data.

Figure 9. Save Data Interface

With the software in Current Shunt Mode, there are two tabs available: *Current Shunt Settings* (refer to Figure 7), and *Current Shunt Data*, as shown in Figure 10. The *Current Shunt Settings* tab makes the control, sinc filter, and integrator filter register settings available for filter modules 1 and 2 on the AMC1210. Alarm registers and interrupts are not supported by the AMC1210MB-EVM evaluation software.

Each filter module also has an enable or disable control located below the register configuration indicators. Only enabled filter modules data are displayed in the *Current Shunt Data* tab. Figure 10 shows an sample set of collected data in the *Current Shunt Data* tab, with module 1 enabled and module 2 disabled.

The *Current Shunt Data* tab displays collected data in terms of raw codes instead of voltage because a variety of delta-sigma modulators may be connected to the AMC1210. A basic toolbar is provided in the lower left corner of this tab (in Figure 10) to examine the collected data.

With software in Resolver Demo Mode, there are two tabs available: *Resolver Settings* (shown in Figure 11), and *Resolver Demo* (see Figure 12). None of the AMC1210 registers are made available for modification in Resolver Demo Mode. This mode of operation is only intended to serve as a demonstration. The *Resolver Settings* tab displays all of the relevant device register configurations used in this demo and provides a convenient link to a TI application report concerning using the AMC1210 in Resolver Motor Control applications.

The *Resolver Demo* tab displays the collected resolver data. The software provides two methods of examining the data: post-processing resolver position data, or pre-processing raw sine and cosine data. Refer to Figure 12 for a sample set of position data and Figure 13 for the same data in raw data format.

AMC1210EVM		
TEXAS INSTRUMENTS	AMC1210 Evaluation Tool	
Resolver Demo Resolver Settings Mode:	Resolver Demo	
This tab displays the register settings used for the "Resolver Demo" functiona intended to be a demonstration, none of the fields displayed may be modified complete reference. For a complete explaination of these fields review "Using	lity of the AMC1210MB-EVM evaluation tool. Since this portion of the EVM is only . The register settings are offered for viewing in an effort to provide a more the AMC1210 in Resolver Motor Control Systems" TI lit, number SBAA144	
Control Register Settings (0x19)	Resolver Control Registers	
ACK Polarity Interrupt Polarity	Clock Direction Sample-and-Hold	
New Data When '1' 💎 Positive Transition 🤝	Input 🤝 Signal SH1 🤝	
Master Interrupt Enable Pattern Count	Time Measure Mode	
Enabled 📉 999	Between Rising Edges 💎	
	Modulator Mode	
Clock Divider Register (0x18)	00: Clock at data rate from Modulator 🤍	
SigGen High-Current Output Master Filter Enable SigGen Enable	e Resolver Sinc Filter Registers	
Enabled 📉 Enabled 🧮 Enabled 🗸	Filter Structure ACK Enable Filter Enable SOSD	
Start of Phase Correction Signal Generator Control Select	11: Sinc3 T Enable T Enable T 124	
No Phase Calibration 😽 10: Filter Module 3 💎		
Modulator Clock Divider Signal Generator Clock Divider	Resolver Integrator Filter Registers	
000): Clock / 1	Shift Data Format Integrator Mode	
	9 16-bit 🗸 Oversampling Mode 🔨	
NOTES: Though the graphics above show "No Phase Calibration,"	, Integrator Enable Demodulation Enable 105R	
selected, phase calibration is performed. On start-up the phase calibration bit should not be set. Each filter module is enabled and		
configured individually, then the master filter enable bit must be	Resolver Comparator Filter Registers	
performed on the appropriate modules, rinally phase calibration is	Mod. Failure INT Enable Filter Structure	
once calibration is complete. Resolver mode utilizes filter modules	3 Disabled 00: Sincfast	
and as shown in the graphics to the right. For further questions	Low-Level INT Enable High-level INT Enable COSR	
visit the E2E community using the link at the top of this window.	Disabled 🤍 Disabled 🧮 🛛	

Figure 11. AMC1210MB-EVM Software Resolver Settings GUI

Figure 13. AMC1210MB-EVM Software Resolver Demo GUI: Raw Data

4 Schematics and Layout

Schematics for the AMC1210MB-EVM are appended to this user's guide. The bill of materials for the evaluation board is provided in Table 7.

NOTE: All components should be compliant with the European Union Restriction on Use of Hazardous Substances (RoHS) Directive. Some part numbers may be either leaded or RoHS. Verify that purchased components are RoHS-compliant. (For more information about TI's position on RoHS compliance, see the <u>Quality and Eco-Info information on the TI web</u> site.)

Item	Quantity	Designator	Description	Manufacturer	Part Number
1	1	NA	Printed wiring baord	ТІ	6526789
2	21	C1, C3, C4, C10, C11, C13, C16-C20, C21, C22, C23, C26-C31, C34	CAP CER 0.1UF 25V 10% X7R 0603	Murata	GRM188R71E104KA01D
3	2	C2, C5	CAP CER 10UF 10V X5R 10% 1206	TDK	C3216X5R1A106K
4	2	C6, C7	CAP CER 10PF 50V 5% C0G 0603	Murata	GRM1885C1H100JA01D
5	3	C8, C9, C15	CAP CER 10000PF 50V 10% X7R 0603	Murata	GRM188R71H103KA01D
6	4	C12, C14, C33, C36	CAP CER 1.0UF 10V 10% X5R 0603	Murata	GRM188R61A105KA61D
7	2	C24, C25	CAP CER 22PF 50V 5% C0G 0603	Murata	GRM1885C1H220JA01D
8	2	C32, C35	CAP CER 1000PF 50V 10% X7R 0603	Murata	GRM188R71H102KA01D
9	1	D1	DIODE TVS 6.5V 400W UNI 5% SMD	Bourns	SMAJ6.5A
10	3	D2, D3, D4	LED 565NM GRN DIFF 0603 SMD	Lumex	SML-LX0603GW-TR
11	1	J1	CONN HEADER 20POS .100" DL GOLD	Samtec	TSW-110-07-L-D
12	1	J2	CONN POWER JACK 2.1MM PCB CIRC	CUI	PJ-102A
13	2	J3, J4	CONN DB9 MALE SOLDER CUP TIN	Norcomp	172-E09-102R011
14	1	J5	CONN DB9 FEMALE SOLDER CUP TIN	Norcomp	172-E09-202R001
15	1	J6	TERMINAL BLOCK 3.5MM 3POS PCB	On Shore	ED555/3DS
16	1	J7	USB RCPT B-TYPE R/A FULL BACK	FCI	61729-0011BLF
17	2	JP1, JP2	CONN HEADER 3POS .100" SNGL TIN	Samtec	TSW-103-07-T-S
18	4	R1, R2, R3, R4	RES 27.4 OHM 1/10W 1% 0603 SMD	Yageo	RC0603FR-0727R4L
19	1	R5	RES 4.70K OHM 1/10W 1% 0603 SMD	Yageo	RC0603FR-074K7L
20	1	R6	RES 9.10K OHM 1/10W 1% 0603 SMD	Yageo	RC0603FR-079K1L
21	2	R7, R9	RES 330 OHM 1/10W 1% 0603 SMD	Yageo	RC0603FR-07330RL
22	1	R8	RES 499 OHM 1/10W 1% 0603 SMD	Yageo	RC0603FR-07499RL
23	6	R10, R11, R12, R13, R19, R21	RES 2.00K OHM 1/10W 1% 0603 SMD	Yageo	RC0603FR-072KL
24	4	R14, R15, R16, R17	RES 20.0 OHM 1/10W 1% 0603 SMD	Yageo	RC0603FR-0720RL
25	2	R18, R20	RES 5.10K OHM 1/10W 1% 0603 SMD	Yageo	RC0603FR-075K1L
26	1	R22	RES 10.0K OHM 1/10W 1% 0603 SMD	Yageo	RC0603FR-0710KL
27	1	S1	SWITCH LT 4.7MMX3.5MM 100GF SMD	Panasonic	EVQ-P2002M
28	4	TP1, TP4, TP6, TP8	TEST POINT PC MINI .040"D RED	Keystone	5000
29	4	TP2, TP3, TP5, TP7	TEST POINT PC MINI .040"D BLACK	Keystone	5001
30	1	U1	IC ARM CORTEX MCU 128K 100-LQFP	TI	LM3S3748-IQC50-A0
31	1	U2	IC LDO REG 3.3V 1A SOT223-6	TI	REG104GA-3.3
32	1	U3	IC LDO REG 5.0V 1A SOT223-6	ТІ	REG104GA-5
33	1	U4	IC ESD-PROT ARRAY 2CH SOT-5	ТІ	TPD2E001DRLR
34	1	U5	IC QUAD FILTER FOR D-S MOD 40QFN	ТІ	AMC1210IRHA
35	1	U6	IC OPAMP GP R-R 44MHZ SOT23-5	ТІ	OPA353NA/250
36	1	U7	IC MODULATOR D-S 2CH 16BIT 24QFN	ТІ	ADS1205IRGET
37	1	U8	IC AMP AUDIO MONO AB DIFF 8SOIC	ТІ	OPA1632D
38	1	Y1	CRYSTAL 8.000000 MHZ 8PF SMD	NDK	NX8045GB-8.000000MHZ
39	1	Y2	OSC 32.0000MHZ 3.3V +-50PPM SMD	Connor-Winfield	CWX823-032.0M

Table 7. Bill of Materials

Table 7. Bill of Materials (continued)

Item	Quantity	Designator	Description	Manufacturer	Part Number
40	2	N/A	0.100 Shunt - Black Shunts	3M	969102-0000-DA
41	4	N/A	BUMPON HEMISPHERE .44X.20 BLACK	3M	SJ-5003 (BLACK)

4.1 PCB Layout

Figure 14 and Figure 15 illustrate the silkscreen images for the AMC1210MB-EVM.

Figure 14. AMC1210MB-EVM PCB Silkscreen (Top Image)

Figure 15. AMC1210MB-EVM PCB Silkscreen (Bottom Image)

4.2 Assembly and Schematics

Figure 16 shows an assembly configuration. Figure 17 and Figure 18 provide two schematics for the AMC1210MB-EVM.

Figure 16. Assembly Configuration

Schematics and Layout

www.ti.com

Figure 17. Schematic Page 1

Schematics and Layout

Figure 18. Schematic Page 2

Evaluation Board/Kit Important Notice

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM Warnings and Restrictions

It is important to operate this EVM within the input voltage range of 0 V to 5 V and the output voltage range of 0 V to 5 V. Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are

questions concerning the input range, please contact a TI field representative prior to connecting the input power. Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the

EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than +30°C. The EVM is designed to operate properly with certain components above +85°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS

Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

REGULATORY COMPLIANCE INFORMATION

As noted in the EVM User's Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules.

For EVMs **not** subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user's sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization.

For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

For EVMs annotated as IC – INDUSTRY CANADA Compliant

This Class A or B digital apparatus complies with Canadian ICES-003.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Concerning EVMs including radio transmitters

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concerning EVMs including detachable antennas

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.

Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l'autorité de l'utilisateur pour actionner l'équipement.

Concernant les EVMs avec appareils radio

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

[Important Notice for Users of this Product in Japan]

This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan

If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:

- Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or
- 3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.

Texas Instruments Japan Limited (address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan

http://www.tij.co.jp

【ご使用にあたっての注】

本開発キットは技術基準適合証明を受けておりません。

本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

日本テキサス・インスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル http://www.tij.co.jp

EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMERS

For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

- 1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.
- 2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.
- 3. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.
- 4. You will take care of proper disposal and recycling of the EVM's electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI's recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconn	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated