Fair-Rite Products Corp. Your Signal Solution_®

Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Figure 1

- Part Number: 6295370121
- Frequency Range: Dimensions
- Description: 95 RM CORE
- Application: Inductive Components
- Where Used: Closed Magnetic Circuit
- Part Type: RM Cores
- Generic Name: RM12

Mechanical Specifications

Weight: 46.000 (g) per Set

Part Type Information

RM4, RM5, RM6, RM8, RM10, RM12, RM14

RM (Rectangular Modulus) cores allow better shielding than E type geometries while also providing easier winding accessibility and better power dissipation than a pot core configuration. Fair-Rites standard RM cores all have a solid center post and standard height, low profile and alternate materials are available upon request.

- RM cores can be supplied with the center post gapped to a mechanical dimension or an AL value.

- AL value is measured at 1 kHz, B < 10 gauss.

- Weight indicated is per pair or set.

Fair-Rite Product's Catalog Part Data Sheet, 6295370121 Printed: 2013-07-03

Fair-Rite Products Corp. Your Signal Solution®

Ferrite Components for the Electronics Industry Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 6295370121 Printed: 2013-07-03

Mechanical Specifications

Dim	mm	mm	nominal	inch
		tol	inch	misc.
А	36.75	± 0.75	1.447	-
В	12.25	± 0.15	0.482	-
С	15.85	± 0.25	0.624	-
D	8.55	± 0.2	0.337	-
E	25.45	± 0.55	1.002	-
F	12.60	± 0.2	0.496	-
G	13.40	min	0.528	min
Н	-	-	-	-
J	29.20	± 0.6	1.150	-
К	-	-	-	-

Electrical Specifications

Typical Impedance (Ω)			
Electrical Properties			
A _L (nH)	6360 ±25%		
Ae(cm ²)	1.41000		
ΣI/A(cm ⁻¹)	4.30		
l _e (cm)	6.13		
V _e (cm ³) 8.67500			
A _{min} (cm ²)	1.247		

Land Patterns

\vee	W	Х	Υ	Z
	ref			
-	-	-	-	-
-	-	-	-	-

Winding Information

Turns	Wire	1st Wire	2nd Wire
Tested	Size	Length	Length
-	-	-	-

Reel Information

Tape Width	Pitch	Parts 7 "	Parts 13 "	Parts 14 "
mm	mm	Reel	Reel	Reel
-	-	-	-	-

Package Size

Pkg Size
-
(-)

Connector Plate

# Holes	# Rows
-	-

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A 1/2 turn is defined as a single pass through a hole.

_I/A - Core Constant

Ae: Effective Cross-Sectional Area

 A_{I} - Inductance Factor $\left(\frac{L}{N^{2}}\right)$

N/AWG - Number of Turns/Wire Size for Test Coil

I e: Effective Path Length

Ve: Effective Core Volume

NI - Value of dc Ampere-turns

Ferrite Material Constants

Specific Heat	0.25 cal/g/∘C		
Thermal Conductivity	3.5 - 4.5 mW/cm - °C		
Coefficient of Linear Expansion	8 - 10x10 ⁻⁶ /°C		
Tensile Strength	4.9 kgf/mm ²		
Compressive Strength	42 kgf/mm ²		
Young's Modulus	15x10 ³ kgf/mm ²		
Hardness (Knoop)	650		
Specific Gravity	\approx 4.7 g/cm ³		
The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.			

See next page for further material specifications.

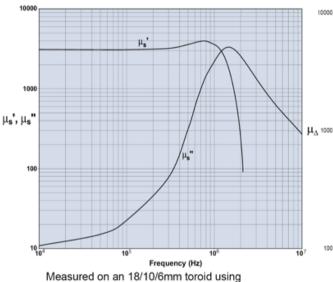
Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

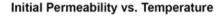
> A low loss MnZn ferrite material for power applications up to 200 kHz with low temperature variation. New type 95 Material is a low loss power material, which features less power loss variation over temperature (25-120°C) at moderate flux densities for operation below 200 kHz.

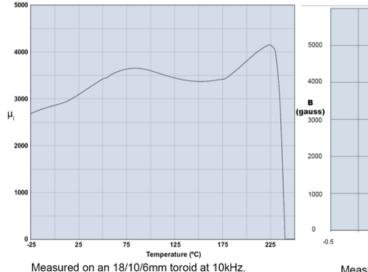
Shapes available in 95 material are Toroids, U cores, Pot Cores, RM, PQ, EFD, EP.

Fair-Rite Product's Catalog Part Data Sheet, 6295370121 Printed: 2013-07-03

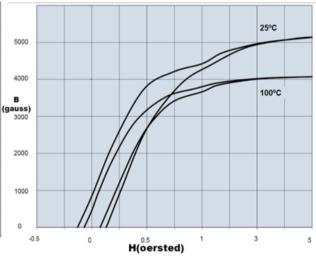


95 Material Characteristics

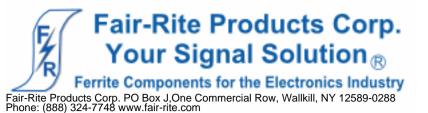

Property	Unit	Symbol	Value
Initial Permeability @ B < 10gauss		μ	3000
Flux Density @ Field Strength	gauss oersted	вт	5000 5
Residual Flux Density	gauss	Br	800
Coercive Force	oersted	Hc	0.13
Loss Factor @ Frequency	10 ⁻⁶ MHz	tanδ/μ _i	3.0 0.1
Temperature Coefficient of Initial Permeability (20 - 70°C)	%/°C		0.4
Curie Temperature	°C	Tc	> 220
Resistivity	ohm-cm	ρ	200


Incremental Permeability vs. H

Complex Permeability vs. Frequency


HP 4284A and HP4291A.

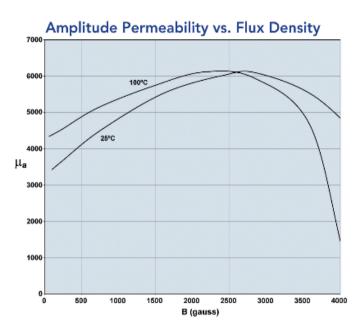
100

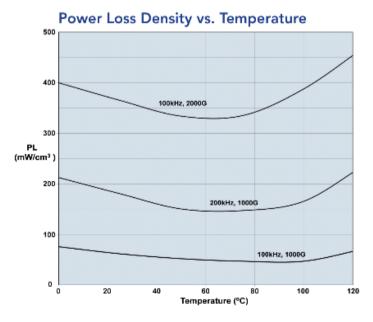


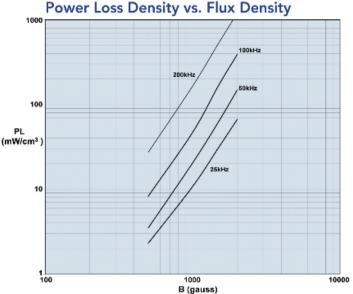
1.00

H(oersted)

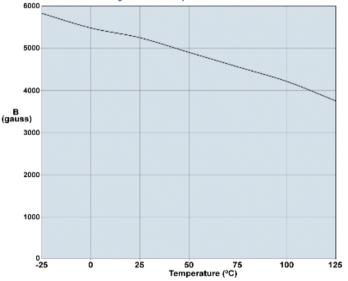
10.00


Measured on an 18/10/6mm toroid at 10kHz.


Fair-Rite Product's Catalog Part Data Sheet, 6295370121 Printed: 2013-07-03


A low loss MnZn ferrite material for power applications up to 200kHz with low temperature variation.

Measured on an 18/10/6mm toroid at 10kHz.



Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW at 100°C.

Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW at 100°C.

Flux Density vs. Temperature

Measured on an 18/10/6mm toroid at 10kHz and H=5 oersted.