

"Spansion, Inc." and "Cypress Semiconductor Corp." have merged together to deliver high-performance, high-quality solutions at the heart of today's most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. The new company "Cypress Semiconductor Corp." will continue to offer "Spansion, Inc." products to new and existing customers.

Continuity of Specifications

There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.

Continuity of Ordering Part Numbers

Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

ADVANCE

S34MS08G2

8 Gb, 4-Bit ECC, x8 I/O and 1.8 V $V_{\rm CC}$ NAND Flash Memory for Embedded

Distinctive Characteristics

- Density
- 8 Gb (4 Gb x 2)
- Architecture (For each 4 Gb device)
 - Input / Output Bus Width: 8-bits
 - Page Size: (2048 + 128) bytes; 128-byte spare area
 - Block Size: 64 Pages or (128k + 8k) bytes
 - Plane Size
 - 2048 Blocks per Plane or (256M + 16M) bytes
 - Device Size
 - 2 Planes per Device or 512 Mbyte
- NAND Flash Interface
 - Open NAND Flash Interface (ONFI) 1.0 compliant
 - Address, Data and Commands multiplexed
- Supply Voltage
 - 1.8V device: V_{CC} = 1.7V ~ 1.95V

Performance

- Page Read / Program
 - Random access: 30 µs (Max)
 - Sequential access: 45 ns (Min)
 - Program time / Multiplane Program time: 300 µs (Typ)
- Block Erase / Multiplane Erase
 - Block Erase time: 3.5 ms (Typ)

- Security
 - One Time Programmable (OTP) area
 - Serial number (unique ID)
 - Hardware program/erase disabled during power transition
- Additional Features
 - Supports Multiplane Program and Erase commands
 - Supports Copy Back Program
 - Supports Multiplane Copy Back Program
 - Supports Read Cache
- Electronic Signature
- Manufacturer ID: 01h
- Operating Temperature
 - Industrial: -40 °C to 85 °C
 - Industrial Plus: -40 °C to 105 °C
- Reliability
 - 100,000 Program / Erase cycles (Typ)
 - (with 4-bit ECC per 528 bytes)
 - 10 Year Data retention (Typ)
 - Blocks zero and one are valid and will be valid for at least 1000 program-erase cycles with ECC
- Package Options
 - Lead Free and Low Halogen
 - 63-Ball BGA 9 x 11 x 1 mm

198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600 Revised January 12, 2016

Contents

Disti	nctive Characteristics	2
Perfe	ormance	2
1.	General Description	4
2.	Connection Diagram	4
3.	Pin Description	4
4.	Block Diagrams	5
5.	Addressing	6
6.	Read Status Enhanced	7
	Read ID Read Parameter Page	

8.	Electrical Characteristics	11
8.1	Valid Blocks	11
8.2	DC Characteristics	11
8.3	Pin Capacitance	11
8.4	Power Consumptions and Pin Capacitance	
	for Allowed Stacking Configurations	12
9.	Physical Interface	
	Physical Interface Physical Diagram	13
9.1		13 13
9.1 10.	Physical Diagram	13 13 14

1. General Description

The Cypress[®] S34MS08G2 8-Gb NAND is offered in 1.8V_{CC} with x8 I/O interface. This document contains information for the S34MS08G2 device, which is a dual-die stack of two S34MS04G2 die. For detailed specifications, please refer to the discrete die data sheet: S34MS01G2_04G2.

2. Connection Diagram

(A1) NC	(A2) NC							(A9) NC	A10) NC
(B1) NC								NC B9	(B10) NC
		(C3) WP#	(C4) ALE	(C5) VSS	(C6) CE#	(C7) WE#	(C8) RB#		
		(D3) VCC	(D4) RE#	(D5) CLE		(D7) NC	(D8) NC		
		(E3) NC	NC	(E5) NC	(E6) NC	(E7) NC	(E8) NC		
		(F3) NC	(F4) NC	(F5) NC	(F6) NC	(F7) VSS	(F8) NC		
		(G3) NC	(G4) VCC	(G5) NC	(G6) NC	(G7) NC	(G8) NC		
		(H3) NC	(H4) 1/00	(H5) NC	(H6) NC	(H7) NC	H8 V _{cc}		
		(J3) NC	(J4) I/01	(J5) NC	V _{CC}	(J7) 1/05	(J8) I/07		
		V _{SS}	(K4) I/O2	(K5) I/O3	K6	(K7) I/O6	(K8) Vss		
(L1) NC	(L2) NC							(19) NC	(L10) NC
(M1) NC	NC NC							M9) NC	M10 NC

Figure 2.1 63-BGA Contact, x8 Device, Single CE (Top View)

Note:

1. These pins should be connected to power supply or ground (as designated) following the ONFI specification, however they might not be bonded internally.

3. Pin Description

Table 3.1 Pin Description

Pin Name	Description
I/O0 - I/O7	Inputs/Outputs . The I/O pins are used for command input, address input, data input, and data output. The I/O pins float to High-Z when the device is deselected or the outputs are disabled.
CLE	Command Latch Enable. This input activates the latching of the I/O inputs inside the Command Register on the rising edge of Write Enable (WE#).
ALE	Address Latch Enable. This input activates the latching of the I/O inputs inside the Address Register on the rising edge of Write Enable (WE#).
CE#	Chip Enable. This input controls the selection of the device. When the device is not busy CE# low selects the memory.
WE#	Write Enable. This input latches Command, Address and Data. The I/O inputs are latched on the rising edge of WE#.
RE#	Read Enable. The RE# input is the serial data-out control, and when active drives the data onto the I/O bus. Data is valid t_{REA} after the falling edge of RE# which also increments the internal column address counter by one.
WP#	Write Protect. The WP# pin, when low, provides hardware protection against undesired data modification (program / erase).
R/B#	Ready Busy. The Ready/Busy output is an Open Drain pin that signals the state of the memory.

ADVANCE

Table 3.1 Pin Description

Pin Name	Description
VCC	Supply Voltage . The V _{CC} supplies the power for all the operations (Read, Program, Erase). An internal lock circuit prevents the insertion of Commands when V _{CC} is less than V _{LKO} .
VSS	Ground.
NC	Not Connected.

Notes:

1. A 0.1 µF capacitor should be connected between the V_{CC} Supply Voltage pin and the V_{SS} Ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during program and erase operations.

2. An internal voltage detector disables all functions whenever V_{CC} is below 1.1V to protect the device from any involuntary program/erase during power transitions.

4. Block Diagrams

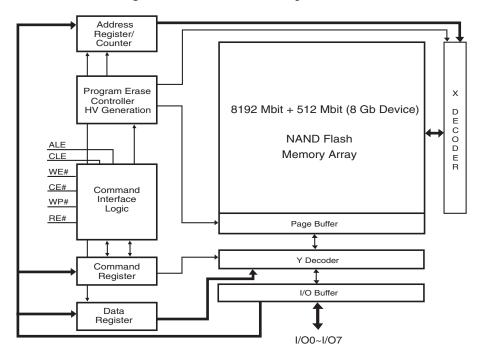
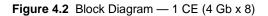
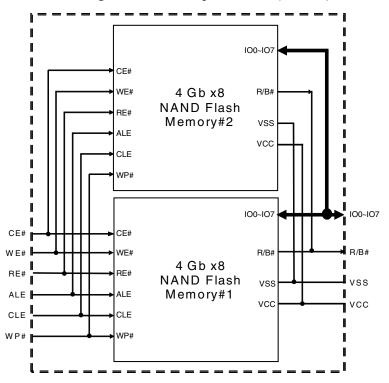




Figure 4.1 Functional Block Diagram — 8 Gb

ADVANCE

5. Addressing

Table 5.1 Address Cycle Map

Bus Cycle	I/O0	I/O1	I/O2	I/O3	I/O4	I/O5	I/O6	1/07
1st / Col. Add. 1	A0 (CA0)	A1 (CA1)	A2 (CA2)	A3 (CA3)	A4 (CA4)	A5 (CA5)	A6 (CA6)	A7 (CA7)
2nd / Col. Add. 2	A8 (CA8)	A9 (CA9)	A10 (CA10)	A11 (CA11)	Low	Low	Low	Low
3rd / Row Add. 1	A12 (PA0)	A13 (PA1)	A14 (PA2)	A15 (PA3)	A16 (PA4)	A17 (PA5)	A18 (PLA0)	A19 (BA0)
4th / Row Add. 2	A20 (BA1)	A21 (BA2)	A22 (BA3)	A23 (BA4)	A24 (BA5)	A25 (BA6)	A26 (BA7)	A27 (BA8)
5th / Row Add. 3 (6)	A28 (BA9)	A29 (BA10)	A30 (BA11)	Low	Low	Low	Low	Low

Notes:

1. CAx = Column Address bit.

2. PAx = Page Address bit.

3. PLA0 = Plane Address bit zero.

4. BAx = Block Address bit.

5. Block address concatenated with page address and plane address = actual page address, also known as the row address.

6. A30 for 8 Gb (4 Gb x 2 – DDP) (1CE).

For the address bits, the following rules apply:

- A0 A11: column address in the page
- A12 A17: page address in the block
- A18: plane address (for multiplane operations) / block address (for normal operations)
- A19 A30: block address

6. Read Status Enhanced

Read Status Enhanced is used to retrieve the status value for a previous operation in the following cases:

■ In the case of concurrent operations on a multi-die stack.

When two dies are stacked to form a dual-die package (DDP), it is possible to run one operation on the first die, then activate a different operation on the second die, for example: Erase while Read, Read while Program, etc.

■ In the case of multiplane operations in the same die.

7. Read ID

The device contains a product identification mode, initiated by writing 90h to the command register, followed by an address input of 00h.

Note: If you want to execute Read Status command (0x70) after Read ID sequence, you should input dummy command (0x00) before Read Status command (0x70).

For the S34MS08G2 device, five read cycles sequentially output the manufacturer code (01h), and the device code and 3rd, 4th, and 5th cycle ID, respectively. The command register remains in Read ID mode until further commands are issued to it.

Table 7.1 Read ID for Supported Configurations

CLE

CE#

WE#

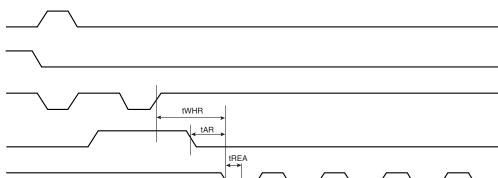
ALE

RE#

I/Ox

90h

Read ID


Command

00h

Address 1

Cycle

Density	Org	V _{cc}	1st	2nd	3rd	4th	5th
4 Gb	x8	1.8V	01h	ACh	90h	15h	56h
8 Gb (4 Gb x 2 – DDP with one CE#)	x8	1.8V	01h	A3h	D1h	15h	5Ah

01h

Maker

Code

D3h

Device

Code

D1h

3rd Cycle

95h

4th Cycle

5Ah

5th Cycle

Figure 7.1 Read ID Operation Timing — 8 Gb

5th ID Data

Table 7.2 Read ID Byte 5 Description

	Description	I/07	I/O6 I/O5 I/O4	I/O3 I/O2	I/O1 I/O0
	1 bit / 512 bytes				0 0
ECC Level	2 bit / 512 bytes				0 1
ECC Level	4 bit / 512 bytes				10
	8 bit / 512 bytes				11
	1			0 0	
Plane Number	2			0 1	
Plane Number	4			10	
	8			11	
	64 Mb		000		
	128 Mb		0 0 1		
	256 Mb		010		
Plane Size (without spare area)	512 Mb		011		
(without spare area)	1 Gb		100		
	2 Gb		101		
	4 Gb		110		
Reserved		0			

7.1 Read Parameter Page

The device supports the ONFI Read Parameter Page operation, initiated by writing ECh to the command register, followed by an address input of 00h. The command register remains in Parameter Page mode until further commands are issued to it. Table 7.3 explains the parameter fields.

Table 7.3 Parameter Page Description (Sheet 1 of 2)

Byte	O/M	Description	Values
		Revision Information and Features Block	·
0-3	М	Parameter page signature Byte 0: 4Fh, "O" Byte 1: 4Eh, "N" Byte 2: 46h, "F" Byte 3: 49h, "I"	4Fh, 4Eh, 46h, 49h
4-5	М	Revision number2-15Reserved (0)11 = supports ONFI version 1.00Reserved (0)	02h, 00h
6-7	М	Features supported 5-15 Reserved (0) 4 1 = supports odd to even page Copyback 3 1 = supports interleaved operations 2 1 = supports non-sequential page programming 1 1 = supports multiple LUN operations 0 1 = supports 16-bit data bus width	1Eh, 00h
8-9	М	Optional commands supported 6-15 Reserved (0) 5 1 = supports Read Unique ID 4 1 = supports Copyback 3 1 = supports Read Status Enhanced 2 1 = supports Get Features and Set Features 1 1 = supports Read Cache commands 0 1 = supports Page Cache Program command	3Bh, 00h
10-31		Reserved (0)	00h
		Manufacturer Information Block	
32-43	М	Device manufacturer (12 ASCII characters)	53h, 50h, 41h, 4Eh, 53h, 49h, 4Fh, 4Eh, 20h, 20h, 20h, 20h
44-63	М	Device model (20 ASCII characters)	53h, 33h, 34h, 4Dh, 53h, 30h, 38h, 47h, 32h, 20h, 20h, 20h, 20h, 20h, 20h, 20h, 20h, 20h, 20h, 20h
64	М	JEDEC manufacturer ID	01h
65-66	0	Date code	00h
67-79		Reserved (0)	00h
		Memory Organization Block	
80-83	М	Number of data bytes per page	00h, 08h, 00h, 00h
84-85	М	Number of spare bytes per page	80h, 00h
86-89	М	Number of data bytes per partial page	00h, 00h, 00h, 00h
90-91	М	Number of spare bytes per partial page	00h, 00h
92-95	М	Number of pages per block	40h, 00h, 00h, 00h
96-99	М	Number of blocks per logical unit (LUN)	00h, 20h, 00h, 00h
100	М	Number of logical units (LUNs)	01h
101	М	Number of address cycles 4-7 Column address cycles 0-3 Row address cycles	23h
102	М	Number of bits per cell	01h
103-104	М	Bad blocks maximum per LUN	A3h, 00h

Table 7.3 Parameter Page Description (Sheet 2 of 2)

Byte	O/M	Description	Values
105-106	М	Block endurance	01h, 05h
107	М	Guaranteed valid blocks at beginning of target	01h
108-109	М	Block endurance for guaranteed valid blocks	01h, 03h
110	М	Number of programs per page	04h
111	М	Partial programming attributes 5-7 Reserved 4 1 = partial page layout is partial page data followed by partial page spare 1-3 Reserved 0 1 = partial page programming has constraints	00h
112	М	Number of bits ECC correctability	04h
113	М	Number of interleaved address bits 4-7 Reserved (0) 0-3 Number of interleaved address bits	01h
114	0	Interleaved operation attributes 4-7 Reserved (0) 3 Address restrictions for program cache 2 1 = program cache supported 1 1 = no block address restrictions 0 Overlapped / concurrent interleaving support	04h
115-127		Reserved (0)	00h
		Electrical Parameters Block	
128	М	I/O pin capacitance	0Ah
129-130	М	Timing mode support 6-15 Reserved (0) 5 1 = supports timing mode 5 4 1 = supports timing mode 4 3 1 = supports timing mode 3 2 1 = supports timing mode 2 1 1 = supports timing mode 1 0 1 = supports timing mode 0, shall be 1	03h, 00h
131-132	0	Program cache timing mode support 6-15 Reserved (0) 5 1 = supports timing mode 5 4 1 = supports timing mode 4 3 1 = supports timing mode 3 2 1 = supports timing mode 2 1 1 = supports timing mode 1 0 1 = supports timing mode 0	03h, 00h
133-134	М	t _{PROG} Maximum page program time (μs)	BCh, 02h
135-136	М	t _{BERS} Maximum block erase time (μs)	10h, 27h
137-138	М	t _R Maximum page read time (μs)	1Eh, 00h
139-140	М	t _{CCS} Minimum Change Column setup time (ns)	C8h, 00h
141-163		Reserved (0)	00h
		Vendor Block	
164-165	М	Vendor specific Revision number	00h
166-253		Vendor specific	00h
254-255	М	Integrity CRC	18h, C2h
		Redundant Parameter Pages	-
256-511	М	Value of bytes 0-255	Repeat Value of bytes 0-255
512-767	М	Value of bytes 0-255	Repeat Value of bytes 0-255
768+	0	Additional redundant parameter pages	FFh

Note:

1. "O" Stands for Optional, "M" for Mandatory.

8. Electrical Characteristics

8.1 Valid Blocks

Table 8.1 Valid Blocks

Device	Symbol	Min	Тур	Max	Unit
S34MS04G2	N _{VB}	4016	—	4096	Blocks
S34MS08G2	N _{VB}	8032 (1)	_	8192	Blocks

Note:

1. Each 4 Gb has maximum 80 bad blocks.

8.2 DC Characteristics

Table 8.2 DC Characteristics and Operating Conditions

Parameter		Symbol	Test Conditions	Min	Тур	Max	Units
Power On Current	Power On Current		FFh command input after power on	—	_	50 per device	mA
	Sequential Read	I _{CC1}	$t_{RC} = t_{RC} (min)$ CE# = V _{IL} , I _{OUT} = 0 mA	_	15	30	mA
Operating Current	Program		Normal	_	15	30	mA
	Flogram	I _{CC2}	Cache	_	15	30	mA
	Erase	I _{CC3}	—	—	15	30	mA
Standby Current, (TTL)	Standby Current, (TTL)		CE# = V _{IH} , WP# = 0V/Vcc		_	1	mA
Standby Current, (CMOS)		I _{CC5}	$CE\# = V_{CC}-0.2,$ $WP\# = 0/V_{CC}$	_	10	50	μA
Input Leakage Current		ILI	$V_{IN} = 0$ to $V_{CC}(max)$	—	_	±10	μA
Output Leakage Current		I _{LO}	$V_{OUT} = 0$ to $V_{CC}(max)$	—	_	±10	μA
Input High Voltage		V _{IH}	-	V _{CC} x 0.8	_	V _{CC} + 0.3	V
Input Low Voltage		V _{IL}	-	-0.3	_	V _{CC} x 0.2	V
Output High Voltage		V _{OH}	I _{OH} = -400 μA	2.4	_	_	V
Output Low Voltage		V _{OL}	I _{OL} = 2.1 mA	_	_	0.4	V
Output Low Current (R/B#)		I _{OL(R/B#)}	V _{OL} = 0.4V	8	10	—	mA
V _{CC} Supply Voltage (erase and program locko	put)	V _{LKO}	—	—	1.8	—	V

Notes:

1. All V_{CCQ} and V_{CC} pins, and V_{SS} and V_{SSQ} pins respectively are shorted together.

2. Values listed in this table refer to the complete voltage range for V_{CC} and V_{CCQ} and to a single device in case of device stacking.

3. All current measurements are performed with a 0.1 µF capacitor connected between the V_{CC} Supply Voltage pin and the V_{SS} Ground pin.

4. Standby current measurement can be performed after the device has completed the initialization process at power up.

8.3 Pin Capacitance

Table 8.3 Pin Capacitance (TA = 25°C, f=1.0 MHz)

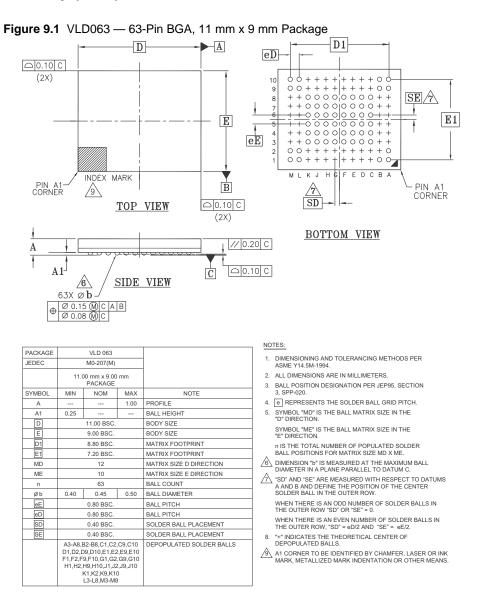
Parameter	Symbol	Test Condition	Min	Max	Unit
Input	C _{IN}	$V_{IN} = 0V$	-	10	pF
Input / Output	C _{IO}	$V_{IL} = 0V$	—	10	pF

Note:

1. For the stacked devices version the Input is 10 pF x [number of stacked chips] and the Input/Output is 10 pF x [number of stacked chips].

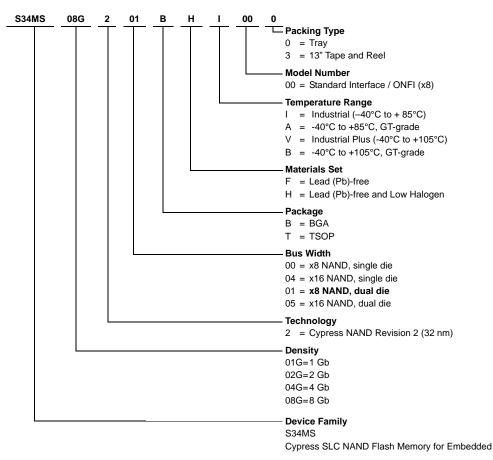
8.4 Power Consumptions and Pin Capacitance for Allowed Stacking Configurations

When multiple dies are stacked in the same package, the power consumption of the stack will increase according to the number of chips. As an example, the standby current is the sum of the standby currents of all the chips, while the active power consumption depends on the number of chips concurrently executing different operations.


When multiple dies are stacked in the same package the pin/ball capacitance for the single input and the single input/output of the combo package must be calculated based on the number of chips sharing that input or that pin/ball.

9. Physical Interface

9.1 Physical Diagram


9.1.1 63-Pin Ball Grid Array (BGA)

10. Ordering Information

The ordering part number is formed by a valid combination of the following:

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult your local sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Valid Combinations								
Device Family	Density	Technology	Bus Width	Package Type	Temperature Range	Additional Ordering Options	Packing Type	Package Description
S34MS	08G	2	01	BH	I, A, V, B	00	0, 3	BGA

11. Revision History

Spansion Publication Number: S34MS08G2

Section	Description			
Revision 01 (August 4, 2014)				
	Initial release			
Revision 02 (September 25, 2014)				
Read Parameter Page	Parameter Page Description table: updated values for bytes 96-99, 100, 103-104, 254-255			

Document History Page

Document Title: S34MS08G2 8 Gb, 4-Bit ECC, x8 I/O and 1.8 V V_{CC} NAND Flash Memory for Embedded Document Number: 002-00515

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	-	XILA	08/04/2014	Initial release
*A	-	XILA		Read Parameter Page: Parameter Page Description table - updated values for bytes 96-99, 100, 103-104, 254-255
*В	4955761	XILA	10/15/2015	Updated to Cypress template
*C	5080707	XILA	01/12/2016	Added "Industrial Plus" Temperature Range related information in all instances across the document.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2014-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 002-00515 Rev. *C

Revised January 12, 2016

Page 16 of 16

Cypress[®], Spansion[®], MirrorBit[®], Eclipse[™], ORNAND[™], HyperBus[™], HyperFlash[™], and combinations thereof, are trademarks and registered trademarks of Cypress Semiconductor Corp. All products and company names mentioned in this document may be the trademarks of their respective holders.