

FMC-HDMI™ Reference Manual

Revised September 3, 2014 This manual applies to the FMC-HDMI rev. D

Overview

The FPGA Mezzanine Card High-Definition Multimedia Interface (FMC-HDMI) peripheral board enables developers to add HDMI input ports to field-programmable gate array (FPGA) based systems. The FMC-HDMI provides a development platform for customers to utilize high-definition image capturing for use with image processing applications.

The FMC-HDMI.

Features include:

- (2x) HDMI Type A Receptacles
- **HDMI Receiver (ADV7611)**
- HDMI Buffer (AD8195)
- On-board EDID EEPROM
- Male FMC LPC connector for digital signals
- Compatible with a wide range of VADJ voltages (1.8V 3.3V)

Functional Description

The FMC-HDMI card contains two HDMI input ports. The first port, HDMI1, contains an ADI ADV7611 Receiver and outputs a decoded, level translated digital video signal to the FMC connector. The second port, HDMI2, contains an ADI AD8195 Buffer and outputs an HDMI-encoded signal to the FMC connector, leaving the system board to decode the signal (either in the FPGA or an external receiver).

The appropriateness of the HDMI port depends entirely on the application. For instance, although HDMI2 does not decode the signal, it outputs to a smaller number of pins (14 instead of 36), which is useful in designs with limited input availability. Since the decoding must be done on the connected system board, the circuitry must support HDMI-type signaling that is TMDS. For example, Xilinx® FPGA families support the TMDS_33 input standard in 3.3Vpowered I/O banks.

1.1 HDMI1: Analog Devices ADV7611 Receiver

An Analog Devices ADV7611 Receiver decodes the signal on HDMI1. This low power, 165 MHz receiver supports formats up to UXGA 60Hz at 8 bit at 161 MHz. It has been tested at WUXGA (1080p) 60Hz at 148.5 MHz. The receiver provides an audio output port for audio extracted from the HDMI signal in the following formats: I²S, S/PDIF, and Direct Stream Transfer (DST). It also features an advanced mute controller.

The ADV7611 Receiver contains several other features, such as a CEC 1.4-compatible controller for consumer device remote control and discovery and EDID (Extended Display Identification Data) RAM.

Note: For more information on the ADV7611, see ADI datasheets and User Guide available online at: http://www.analog.com/ADV7611

Below are the pin-outs from the ADV7611 Receiver and other HDMI1 port signals to the FMC connector:

FMC Pin	HDMI1 Function	FMC Pin	HDMI1 Function
LA19_P	HDMI1_P0	LA04_P	HDMI1_P18
LA20_N	HDMI1_P1	LA03_N	HDMI1_P19
LA20_P	HDMI1_P2	LA03_P	HDMI1_P20
LA15_N	HDMI1_P3	LA02_N	HDMI1_P21
LA14_N	HDMI1_P4	LA02_P	HDMI1_P22
LA15_P	HDMI1_P5	LA00_N_CC	HDMI1_P23
LA16_N	HDMI1_P6	LA18_P_CC	HDMI1_SCLK
LA16_P	HDMI1_P7	LA21_P	HDMI1_LRCLK
LA11_N	HDMI1_P8	LA17_P_CC	HDMI1_MCLK
LA14_P	HDMI1_P9	LA23_N	HDMI1_AP
LA11_P	HDMI1_P10	LA22_P	HDMI1_VS
LA12_N	HDMI1_P11	LA19_N	HDMI1_HS
LA12_P	HDMI1_P12	LA22_N	HDMI1_DE
LA07_N	HDMI1_P13	LA00_P_CC	HDMI1_LLC
LA08_N	HDMI1_P14	LA25_P	HDMI1_SDA
LA07_P	HDMI1_P15	LA21_N	HDMI1_SCL
LA08_P	HDMI1_P16	LA23_P	HDMI1_RESETN
LA04_N	HDMI1_P17	LA25_N	HDMI1_INT1

Table 1. HDMI1-FMC pin mapping.

The ADV7611 is configured and controlled via an I²C interface, which is accessible through the HDMI1SDA and HDMI1SCL pins on the FMC connector. The ADV7611 User Guide specifically describes the different registers and commands necessary to control the Receiver.

There are level translators present on all audio and video signals, which can level shift to 1.8V, 2.5V, and 3.3V. The desired level is set by the VADJ voltage level.

1.2 HDMl2: Analog Devices AD8195 Buffer

The AD8195 is an HDMI buffer with equalized TMDS inputs and optionally pre-emphasized TMDS outputs. The AD8195 includes bidirectional buffering for the DDC bus and bidirectional buffering with integrated pull-up resistors for the CEC bus. The DDC and CEC buffers are powered independently of the TMDS buffers so that DDC/CEC functionality can be maintained when the system is powered off.

An on-board pre-programmed EEPROM is connected to the DDC (Display Data Channel) bus of the HDMI2 port. The following EDID (Extended Display Identification Data) is programmed in the factory:

	00	01	02	03	04	05	06	07	08	09	0A	ОВ	0C	0D	0E	OF
0	0x0 0	0xFF	0xFF	0xFF	0xF F	0xF F	0xFF	0x00	0x10	0xE C	0x0 0	0x01	0x0 0	0x0 0	0x0 0	0x0 0
1 0	0xFF	0x1 6	0x0 1	0x03	0x8 1	0x3 3	0x1 D	0x78	0x02	0x0 1	0xF 1	0xA 2	0x5 7	0x5 2	0x9 F	0x2 7
2	0x0 A	0x5 0	0x5 4	0xBF	0xE F	0x8 0	0x01	0x01	0x01	0x0 1	0x0 1	0x01	0x0 1	0x0 1	0x0 1	0x0 1
3	0x0 1	0x0 1	0x0 1	0x01	0x0 1	0x0 1	0x01	0x1 D	0x00	0x7 2	0x5 1	0xD 0	0x1 E	0x2 0	0x6 E	0x2 8
4 0	0x5 5	0x0 0	0x0 0	0xD 0	0x5 2	0x0 0	0x00	0x1E	0x00	0x0 0	0x0 0	0xFC	0x0 0	0x4 4	0x6 9	0x6 7
5 0	0x6 9	0x6 C	0x6 5	0x6E	0x7 4	0x2 0	0x48	0x44	0x4 D	0x4 9	0x0 0	0x00	0x0 0	0x1 0	0x0 0	0x0 0
6 0	0x0 0	0x0 0	0x0 0	0x00	0x0 0	0x0 0	0x00	0x00	0x00	0x0 0	0x0 0	0x00	0x0 0	0x0 0	0x0 0	0x1 0
7 0	0x0 0	0x0 0	0x0 0	0x00	0x0 0	0x0 0	0x00	0x00	0x00	0x0 0	0x0 0	0x00	0x0 0	0x0 0	0x0 0	0x0 E

Table 2. EEPROM pre-programmed content.

The EEPROM can be freely re-written through the J4 header holes and 6-pin Pmod cable. During EEPROM programming, power to the EEPROM is provided by pin 6 of J4, so make sure there is no HDMI cable plugged in at the same time.

Below are the pin-outs from the AD8195 Buffer and other HDMI2 port signals to the FMC connector:

FMC Pin	HDMI2 Function	FMC Pin	HDMI2 Function
LA06_P	HDMI2_D0_P	LA01_N_CC	HDMI2_CLK_N
LA06_N	HDMI2_D0_N	LA13_P	HDMI2_SCL
LA05_P	HDMI2_D1_P	LA13_N	HDMI2_SDA
LA05_N	HDMI2_D1_N	LA09_P	HDMI2_PE_EN
LA10_P	HDMI2_D2_P	LA09_N	HDMI2_TX_EN
LA10_N	HDMI2_D2_N	LA17_N_CC	HDMI2_HPA
LA01_P_CC	HDMI2_CLK_P	LA18_N_CC	HDMI2_CEC_OUT

Table 3. HDMI2-FMC pin mapping.

WARNING: VADJ must be 3.3V to properly use the buffer on HDMI2. The TX_EN pin is held low by default, so the buffer is disabled on power-up. With the buffer disabled, VADJ can be in the range of (1.8V-3.3V).

Note: For more information on the AD8195, see ADI datasheets available online at http://www.analog.com/AD8195

1.3 FMC Support

The FMC-HDMI uses a Samtec ASP-134604-01 low pin-count male connector as the main connector for digital signals. The board fully conforms to the VITA 57.1 specs. The connector supports the full range of 1.8V-3.3V bank supply voltages (VADJ).

The EEPROM with designator IC2 (see board schematic) serves as the IPMI EEPROM, providing hardware definition information. For more information, consult the VITA 57.1 specs.