DUAL J-FET INPUT OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage. They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents.

These amplifiers may be used in applicationas such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices also exhibit low noise and offsset voltage drift.

■ PACKAGE OUTLINE

NJM353D

NJM353M

■ FEATURES

Operating Voltage

 $(\pm 5V \sim \pm 18V)$

J-FET Input

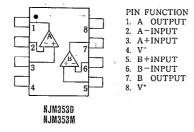
Low Input Bias Current

(50pA typ.)

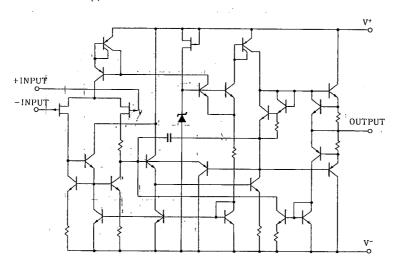
High Slew Rate

 $(13V/\mu s \text{ typ.})$

Wide Unity Gain Bandwidth


(4MHz typ.)

Package Outline


DIP8, DMP8

• Bipolar Technology

■ PIN CONFIGURATION

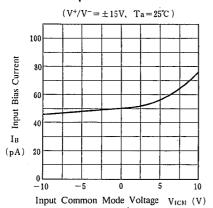
■ EQUIVALENT CIRCUIT (1/2 Shown)

■ ABSOLUTE MAXIMUM RATINGS

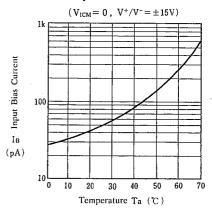
(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*/V-	±18		
Differential Input Voltage	V _{ID} ±30		V	
Input Voltage	V _{IC}	±15	V	
Power Dissipation	P _D	(DIP8) 500	mW	
		(DMP8) 300	mW	
Operating Temperature Range	Topr	-40~+85	r	
Storage Temperature Range	T _{stg}	-40~+125	°C	

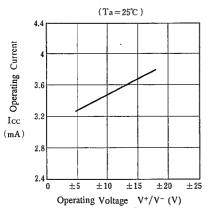
(note) For supply voltage less than ± 15 V. the absolute maximum input voltage is equal to the supply voltage.

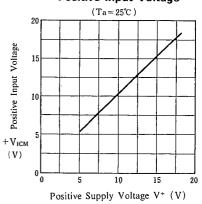

■ ELECTRICAL CHARACTERISTICS

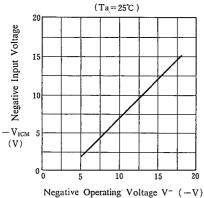
 $(Ta = 25^{\circ}C, V^{+}/V^{-} = \pm 15V)$

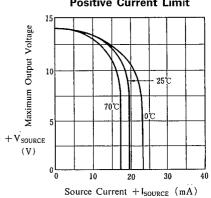

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	$R_S=10k\Omega$	_	5	10	mV
Average TC of Input Offset Voltage	Δν _{ιο} /Δτ	$R_S = 10k\Omega$	_	10		μV/°C
Input Offset Current	l _{IO}		l —	25	100	pА
Input Bias Current	IB			50	200	pA
Input Resistance	R _{IN}			1012		Ω
Large-signal Voltage Gain	Av	$R_L=2k\Omega$, $V_O=\pm 10V$	88	100		dB
Maximum Peak-to-peak Output Voltage Swing	V _{OM}	$R_{L}=10k\Omega$	±Ï2	±13.5	l —	v
Input Common Mode Voltage Range	V _{ICM}		±11	+15, -12		v
Common Mode Rejection Ratio	CMR	R _s ≦10kΩ	70	100		dB
Supply Voltage Rejection Ratio	SVR		70	100		dB
Operating Current	lcc		l —	3.6	6.5	mA
Channel Separate	CS	f=1Hz~20kHz	<u> </u>	. 120		dB
Slew Rate	SR		_	13	l —	V/μs
Unity Gain Bandwidth	f _T		—	4	·	MHz
Equivalent Input Noise Voltage	e _n	$R_S=100\Omega$, $f=1kHz$	_	16	_	nV/√H:
Equivalent Input Noise Current	in	ſ≔ lkHz	_	0.01	-	pA/√H:

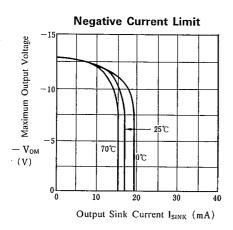
TYPICAL CHARACTERISTICS

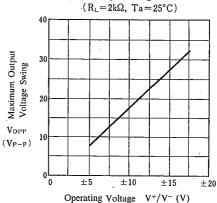

Input Bias Current

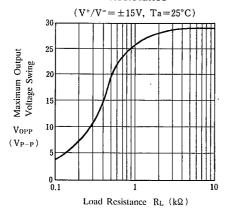

Input Bias Current

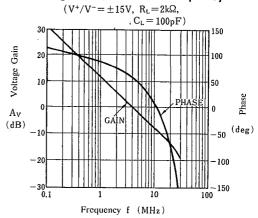

Operating Current vs. Operating Voltage

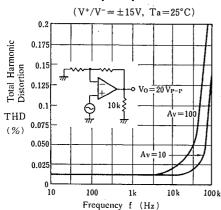

Positive Input Voltage

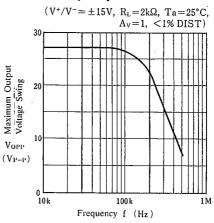

Negative Input Voltage


Positive Current Limit

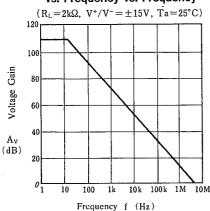

TYPICAL CHARACTERISTICS


Maximum Output Voltage Swing vs. Operating Voltage

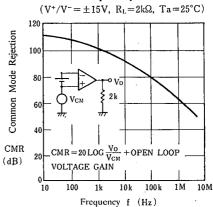

Maximum Output Voltage Swing vs. Load Resistance


Voltage Gain, Phase vs. Frequency

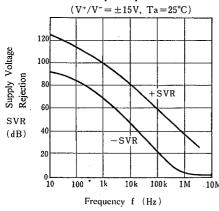
Total Harmonic Distortion vs. Frequency

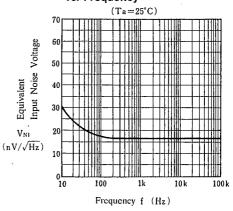


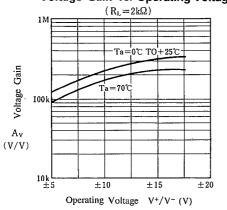
Maximum Output Voltage Swing vs. Frequency

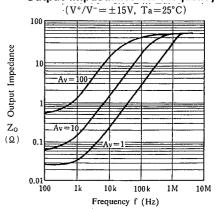


TYPICAL CHARACTERISTICS

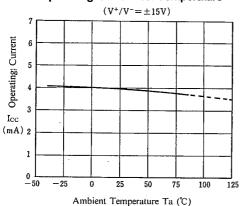

Voltage Gain vs. Frequency

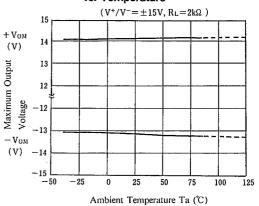

Common Mode Rejection vs. Frequency


Supply Voltage Rejection vs. Frequency

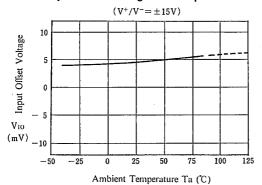

Equivalent Input Noise Voltage vs. Frequency

Voltage Gain vs. Operating Voltage


Output Impdedance vs. Frequency


4

TYPICAL CHARACTERISTICS


Operating Current vs. Temperature

Maximum Output Voltage vs. Temperature

Input Offset Voltage vs. Temperature

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.