Series

Characteristics

The Series 70 consists of special short stroke pushbuttons for use with membrane keyboards. It is particularly suited for:

- PCBs

The use of single LEDs ensures that the entire control panel is very well illuminated. The module is offered in six colours and in a round or square design.

Functions

The Series 70 incorporates the following functions:

- Indicator
- Pushbutton
- Illuminated pushbutton

Market segments

The EAO Series 70 is especially suited for applications in the segments:

- Machinery and Automation
- Medicinal technology
- Laboratory and measuring equipment

Please refer to the EAO website to obtain detailed information regarding this series www.products.eao.com Configure a product to your exact needs and request a quotation.

PCB pushbuttons
Illumination element 680
Switching element without illumination 681
Switching element with illumination 682
Accessories 683
Drawings 687
Technical data 688
Application guidelines 690

70 PCB pushbuttons

Illumination element

Dimensions

Equipment consisting of (schematic overview)
Lens page 684

Each Part Number listed below includes all the black components shown in the 3D-drawing.

To obtain a complete unit, please select the red components from the pages shown.

LED colour	Forward voltage typ.	Lumi. intensity	Dom. wavelength	Terminal	Part No.		Weight

Illumination element

Single-LED red	2.1 VDC @ 20 mA	200 mcd	625 nm	PCB	70-820.2	3	2	0.001 kg
Single-LED orange	2.1 VDC @ 20 mA	220 mcd	590 nm	PCB	70-820.3	3	2	0.001 kg
Single-LED yellow	3.3 VDC @ 30 mA	500 mcd	570 nm	PCB	70-820.4	3	2	0.001 kg
Single-LED green	3.5 VDC @ 20 mA	250 mcd	525 nm	PCB	70-820.5	3	2	0.001 kg
Single-LED blue	3.5 VDC @ 20 mA	450 mcd	470 nm	PCB	70-820.6	3	2	0.001 kg
Single-LED white	3.3 VDC @ 20 mA	600 mcd	$x=0.29 / y=0.31 \mathrm{~nm}$	PCB	70-820.9	3	2	0.001 kg

Illumination element

Bi-colour red/green	2.0/3.2 VDC @ 20 mA	310/800 mcd	625/528 nm	PCB	70-820.25	3	1	0.001 kg
Bi-colour yellow/green	2.0/3.2 VDC @ 20 mA	350/750 mcd	591/528 nm	PCB	70-820.45	3	1	0.001 kg

The component layouts you will find from page 687

Switching element without illumination
Equipment consisting of (schematic overview)

Each Part Number listed below includes all the black components shown in the 3D-drawing.

To obtain a complete unit, please select the red components from the pages shown.

The component layouts you will find from page 687

70 PCB pushbuttons

Switching element with illumination

Product can differ from the current configuration.

Additional Information

- Contact normally open
- Switching action momentary
- The customer has to decide what series resistor shall be used to the LED
- Luminosity and wave length variations caused by LED manufacturing processes may cause slight differences regarding the illumination
- Dimensions with fitted lens see details «Lens»

Dimensions

Equipment consisting of (schematic overview)

Lens
page 684

LED

Switching element

Each Part Number listed below includes all the black components shown in the 3D-drawing.

To obtain a complete unit, please select the red components from the pages shown.

| LED colour | Forward voltage typ. | | Lumi. intensity | Dom. wavelength | Terminal | Part No. | | | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Forward voltage typ. Dom. wavelength Part No. Weight

Switching element with illumination

Single-LED red	2.1 VDC @ 20 mA	Gold	200 mcd	625 nm	PCB	70-220.2	4	3	0.001 kg
Single-LED orange	2.1 VDC @ 20 mA	Gold	220 mcd	590 nm	PCB	70-220.3	4	3	0.001 kg
Single-LED yellow	3.3 VDC @ 20 mA	Gold	500 mcd	570 nm	PCB	70-220.4	4	3	0.001 kg
Single-LED green	3.5 VDC @ 20 mA	Gold	250 mcd	525 nm	PCB	70-220.5	4	3	0.001 kg
Single-LED blue	3.5 VDC @ 20 mA	Gold	450 mcd	470 nm	PCB	70-220.6	4	3	0.001 kg
Single-LED white	3.3 VDC @ 20 mA	Gold	600 mcd	$x=0.29 / y=0.31 \mathrm{~nm}$	PCB	70-220.9	4	3	0.001 kg

Switching element with illumination

Bi-colour LED red/green	2.0/3.2 VDC @ 20 mA	Gold	$310 / 800 \mathrm{mcd}$	625/528 nm	PCB	70-220.25	4	2	0.001 kg
Bi-colour LED yellow/green	2.0/3.2 VDC @ 20 mA	Gold	350/750 mcd	591/528 nm	PCB	70-220.45	4	2	0.001 kg

Switching element with illumination

The component layouts you will find from page 687

Front

Lens

Dimensions

Lens, Front dimension $19.05 \times 19.05 \mathrm{~mm}$

Plastic white translucent	$\mathbf{7 0 - 9 2 0 . 9}$	0.001 kg

Lens, Front dimension 15.4×15.4 mm

Plastic red translucent	$\mathbf{7 0 - 9 2 1 . 2}$	0.001 kg
Plastic orange translucent	$\mathbf{7 0 - 9 2 1 . 3}$	0.001 kg
Plastic yellow translucent	$\mathbf{7 0 - 9 2 1 . 4}$	
Plastic green translucent	$\mathbf{0 . 0 0 1} \mathrm{kg}$	
Plastic blue translucent	$\mathbf{7 0 - 9 2 1 . 5}$	0.001 kg
Plastic white translucent	$\mathbf{7 0 - 9 2 1 . 6}$	0.001 kg
	$\mathbf{7 0 - 9 2 1 . 9}$	0.001 kg

Lens, Front dimension $12.4 \times 12.4 \mathrm{~mm}$

Plastic red translucent	$\mathbf{7 0 - 9 2 2 . 2}$	0.001 kg
Plastic orange translucent	$\mathbf{7 0 - 9 2 2 . 3}$	0.001 kg
Plastic yellow translucent	$\mathbf{7 0 - 9 2 2 . 4}$	
Plastic green translucent	$\mathbf{0 . 0 0 1} \mathrm{kg}$	
Plastic blue translucent	$\mathbf{7 0 - 9 2 2 . 5}$	
Plastic white translucent	$\mathbf{7 0 - 9 2 2 . 6}$	0.001 kg
	$\mathbf{0 . 0 0 1} \mathrm{~kg}$	

Lens, Front dimension Ø $\mathbf{1 5 . 4 \text { mm }}$

| Plastic red translucent | $\mathbf{7 0 - 9 1 1 . 2}$ | 0.001 kg |
| :--- | :--- | :--- | :--- |
| Plastic orange translucent | $\mathbf{7 0 - 9 1 1 . 3}$ | |
| Plastic yellow translucent | $\mathbf{0 . 0 0 1} \mathrm{kg}$ | |
| Plastic green translucent | $\mathbf{7 0 - 9 1 1 . 4}$ | |
| Kunststoff weiss transluzent | $\mathbf{0 . 0 0 1} \mathrm{kg}$ | |

Lens	Part No.	Weight
Lens, Front dimension $\varnothing 12.4$ mm		
Plastic red translucent	70-912.2	0.001 kg
Plastic orange translucent	70-912.3	0.001 kg
Plastic yellow translucent	70-912.4	0.001 kg
Plastic green translucent	70-912.5	0.001 kg
Plastic white translucent	70-912.9	0.001 kg

Spacing cap

Dimensions

Product attribute			
	Part No.		
	Weight		
without recesses for LED, H = 18.9 mm			
2 recesses for LED, $\mathrm{H}=9 \mathrm{~mm}$	$\mathbf{7 0 - 9 0 1 . 0}$		
2 recesses for LED, $\mathrm{H}=13 \mathrm{~mm}$	$\mathbf{7 0 - 9 1 0 . 0}$		
2 recesses for LED, $\mathrm{H}=22.5 \mathrm{~mm}$	$\mathbf{0 . 0 0 1} \mathrm{~kg}$		

70
 Accessories

Illumination

Single-LED, T1 Bi-Pin

Additional Information

- The customer has to decide what series resistor shall be used to the LED
- Luminosity and wave length variations caused by LED manufacturing processes may cause slight differences regarding the illumination

LED colour	Forward voltage typ.	Lumi. intensity	Dom. wavelength	Part No.	Weight
Single-LED					
Single-LED red	2.1 VDC @ 20 mA	200 mcd	625 nm	10-2602.3202L	0.001 kg
Single-LED orange	2.1 VDC @ 20 mA	220 mcd	590 nm	10-2602.3203L	0.001 kg
Single-LED yellow	3.3 VDC @ 20 mA	500 mcd	570 nm	10-2602.3204L	0.001 kg
Single-LED green	3.5 VDC @ 20 mA	250 mcd	525 nm	10-2602.3205L	0.001 kg
Single-LED blue	3.5 VDC @ 20 mA	450 mcd	470 nm	10-2602.3206L	0.001 kg
Single-LED white	3.3 VDC @ 20 mA	600 mcd	$x=0.29 / y=0.31 \mathrm{~nm}$	10-2602.3209L	0.001 kg

Bi-colour-LED, T1 Bi-Pin

Additional Information

- The customer has to decide what series resistor shall be used to the LED
- Luminosity and wave length variations caused by LED manufacturing processes may cause slight differences regarding the illumination

Bi-colour-LED

Bi-colour LED red/green	$2.0 / 3.2$ VDC @ 20 mA	$310 / 800 \mathrm{mcd}$	$625 / 528 \mathrm{~nm}$	$\mathbf{1 0 - 2 6 0 3 . 3 0 8 A L}$	0.001 kg
Bi-colour LED yellow/green	$2.0 / 3.2 \mathrm{VDC} @ 20 \mathrm{~mA}$	$350 / 750 \mathrm{mcd}$	$591 / 528 \mathrm{~nm}$	$\mathbf{1 0 - 2 6 0 3 . 3 0 8 C L}$	0.001 kg

Drawings
Component layout 1 Component layout 2

Single-LED

Drilling plan (element side)
B Holes for LED
C Holes for centering pins

Bi-colour-LED

Drilling plan (element side)
B Holes for Bi-colour LED
BA1 (green) + BA2 (yellow or red) $=$ Anodes, BC = Cathode C Holes for centering pins

Bi-colour-LED

Drilling plan (element side)
B Holes for Bi-colour-LED:
BA1 (green) + BA2 (yellow or red) = Anodes, BK = Cathode
C Holes for contact pins
Pad max. Ø 2.5 mm
Through-connection recommended

Component layout 4

70
 Technical data

Switching element illuminated

Switching system

Short-travel switching system with two independent contact points and tactile operation. Guarantees reliable switching even of very light loads.
1 normally open contact

Material

Material of contact

Gold (Au)

Switching element

Thermoplastic Polyester (PET, PBT) and Polyacetale (POM)

Mechanical characteristics

Actuating force

with overlay foil $4 \mathrm{~N} \pm 1,5 \mathrm{~N}$
Max. actuating force $>50 \mathrm{~N}$, as per DIN 42115

Actuating travel

0.4 mm

Rebound time

$\leq 1 \mathrm{~ms}$

Resistance to heat of soldering

$260^{\circ} \mathrm{C}, 5 \mathrm{~s}$, as per IEC 60068-2-20
Mechanical lifetime
> 5 million operations

Electrical characteristics

Contact resistance

Starting value (initial) $\leq 100 \mathrm{~m} \Omega$, as per IEC 60512-2-2b
Isolation resistance
$\geq 1000 \mathrm{M} \Omega$

Contact resistance

$\leq 100 \mathrm{~m} \Omega$
as per 500000 cycles of operation at $12 \mathrm{VDC}, 5 \mathrm{~mA}$ resistive
load $\leq 200 \mathrm{~m} \Omega$

Electrical life

≥ 500000 operations at $42 \mathrm{VDC}, 50 \mathrm{~mA}$, as per IEC 60512-5-9c When attention is paid to the direction of current flow from terminal $3 / 4$ to $1 / 2$ the electrical life can be prolonged.

Switch rating

max. 2 VA (resistive load)

Switch rating

Switching voltage VDC/NAC min. 50 mV max. 42 V
Switching current VDC/VAC min. $10 \mu \mathrm{~A} \quad \max .100 \mathrm{~mA}$
Power rating

Electric strength

500 VAC, 50 Hz , 1 min, as per IEC 60512-2-4a

Environmental conditions
Storage temperature
$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$

Operating temperature

$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

Switching element non-illuminated Part No. 70-100.0 and 70-101.0

Switching system
Short-travel switching system with two independent contact points and tactile operation. Guarantees reliable switching even of very light loads.
1 normally open contact

Material

Material of contact

Silver (Ag)

Mechanical characteristics

Actuating force

with overlay foil $5 \mathrm{~N} \pm 2 \mathrm{~N}$
Max. actuating force $>50 \mathrm{~N}$, as per DIN 42115
Actuating travel
0.3 mm

Rebound time
$\leq 5 \mathrm{~ms}$
Mechanical lifetime
> 1 million operations

Electrical characteristics

Isolation resistance

$\geq 50 \mathrm{M} \Omega$

Contact resistance

$\leq 100 \mathrm{~m} \Omega$
as per 500000 cycles of operation at $12 \mathrm{VDC}, 5 \mathrm{~mA}$ resistive load $\leq 200 \mathrm{~m} \Omega$

Electrical life

at $5 \mathrm{VDC}, 1 \mathrm{~mA}>1$ million operations
at $24 \mathrm{VDC}, 1 \mathrm{~mA}>100000$ operations

Switch rating

$\leq 1 \mathrm{VA}$ (resistive load)

Switch rating

$\leq 24 \mathrm{VDC}, \leq 50 \mathrm{~mA}$
Electric strength
250 VAC for 1 min.

Environmental conditions

Storage temperature

$-30^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$

Operating temperature

$-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

Switching element non-illuminated Part No. 70-201.0

Switching system

Short-travel switching system with two independent contact points and tactile operation. Guarantees reliable switching even of very light loads.
1 normally open contact

Material

Material of contact

Gold (Au)

Switching element

Thermoplastic Polyester (PET, PBT) and Polyacetale (POM)

Mechanical characteristics

Actuating force

with overlay foil $2.1 \mathrm{~N} \pm 0.2 \mathrm{~N}$
Max. actuating force $>50 \mathrm{~N}$, as per DIN 42115

Actuating travel

max. 0.5 mm

Rebound time

$\leq 1 \mathrm{~ms}$

Resistance to heat of soldering

$260^{\circ} \mathrm{C}$, 5 s, as per IEC 60068-2-20

Mechanical lifetime

>5 million operations

Front protection

front with overlay foil IP 65

Electrical characteristics

Contact resistance

Starting value (initial) $\leq 100 \mathrm{~m} \Omega$, as per IEC 60512-2-2b

Isolation resistance

$\geq 1000 \mathrm{M} \Omega$

Contact resistance

$\leq 100 \mathrm{~m} \Omega$
as per 500000 cycles of operation at $12 \mathrm{VDC}, 5 \mathrm{~mA}$ resistive load $\leq 200 \mathrm{~m} \Omega$

Electrical life

≥ 500000 operations at $42 \mathrm{VDC}, 50 \mathrm{~mA}$, as per IEC 60512-5-9c
When attention is paid to the direction of current flow from terminal $3 / 4$ to $1 / 2$ the electrical life can be prolonged.

Switch rating

max. $42 \mathrm{~V}, 50 \mathrm{~mA}$
min. $50 \mathrm{mV}, 10 \mu \mathrm{~A}$

Switch rating

Switching voltage VDC/NAC min. 50 mV max. 42 V
Switching current VDCNAC min. 10 mA max. 100 mA
Switch rating
max. 2 W
Electric strength
500 VAC, 50 Hz , 1 min, as per IEC 60512-2-4a

Environmental conditions
Storage temperature
$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Operating temperature
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

EAO reserves the right to alter specifications without further notice.

70
 Application guidelines

Suppressor circuits

When switching inductive loads such as relays, DC motors, and DC solenoids, it is always important to absorb surges (e.g. with a diode) to protect the contacts. When these inductive loads are switched off, a counter emf can severely damage switch contacts and greatly shorten lifetime.

Fig. 1 shows an inductive load with a free-wheeling diode connected in parallel. This free-wheeling diode provides a path for the inductor current to flow when the current is interrupted by the switch. Without this free-wheeling diode, the voltage across the coil will be limited only by dielectric breakdown voltages of the circuit or parasitic elements of the coil. This voltage can be kilovolts in amplitude even when nominal circuit voltages are low (e.g. 12VDC) see Fig. 2.

The free-wheeling diode should be chosen so that the reverse breakdown voltage is greater than the voltage driving the inductive load. The DC blocking voltage (VR) of the free-wheeling diode can be found in the datasheet of a diode. The forward current should be equal or greater than the maximum current flowing through the load.

To get an efficient protection, the free-wheeling diode must be connected as close as possible to the inductive load!

Switching with inductive load

Fig. 1

Counter EMF over load without free-wheeling diode

Fig. 2

