° SAM3S8 /| SAM3SDS8
Altmel

Atmel | SMART ARM-based Flash MCU

DATASHEET

Description

The Atmel® | SMART SAM3S8/SD8 series is a member of a family of Flash
microcontrollers based on the high performance 32-bit ARM® Cortex®-M3 RISC
processor. It operates at a maximum speed of 64 MHz and features 512 Khytes of
Flash (dual plane on SAM3SD8) and 64 Kbytes of SRAM. The peripheral set
includes a Full Speed USB Device port with embedded transceiver, a High Speed
MCI for SDIO/SD/MMC, an External Bus Interface featuring a Static Memory
Controller providing connection to SRAM, PSRAM, NOR Flash, LCD Module and
NAND Flash, 2(3) USARTSs (3 on SAM3SD8C), 2 UARTS, 2 TWIs, 3 SPlIs, an 12S,
as well as a PWM timer, two 3-channel general-purpose 16-bit timers (with
stepper motor and quadrature decoder logic support), an RTC, a 12-bit ADC, a
12-bit DAC and an analog comparator.

The SAM3S8/SD8 series is ready for capacitive touch thanks to the QTouch®
library, offering an easy way to implement buttons, wheels and sliders.

The SAM3S8/SD8 device is a medium range general purpose microcontroller with
the best ratio in terms of reduced power consumption, processing power and
peripheral set. This enables the SAM3S8/SD8 to sustain a wide range of
applications including consumer, industrial control, and PC peripherals.

It operates from 1.62V to 3.6V and is available in 64- and 100-pin QFP, 64-pin
QFN, and 100-pin BGA packages.

The SAM3S8/SD8 series is the ideal migration path from the SAM7S series for

applications that require more performance. The SAM3S8/SD8 series is pin-to-pin
compatible with the SAM7S series.

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel SHART

Features

e Core
— ARM Cortex-M3 revision 2.0 running at up to 64 MHz
— Memory Protection Unit (MPU)
— Thumb®-2 instruction set
Pin-to-pin compatible with AT91SAM7S legacy products (64-pin versions), SAM3S4/2/1 products
Memories
— 512 Kbytes Single Plane (SAM3S8) embedded Flash, 128-bit wide access, memory accelerator
— 512 Kbytes Dual Plane (SAM3SD8) embedded Flash, 128-bit wide access, memory accelerator
— 64 Kbytes embedded SRAM
— 16 Kbytes ROM with embedded boot loader routines (UART, USB) and IAP routines
— 8-bit Static Memory Controller (SMC): SRAM, PSRAM, NOR and NAND Flash support
e System
— Embedded voltage regulator for single supply operation
— Power-on-Reset (POR), Brown-out Detector (BOD) and Watchdog for safe operation
— Quartz or ceramic resonator oscillators: 3 to 20 MHz main power with Failure Detection and optional low-power
32.768 kHz for RTC or device clock
— RTC with Gregorian and Persian Calendar mode, waveform generation in low-power modes
— RTC clock calibration circuitry for 32.768 kHz crystal frequency compensation
— High precision 8/12 MHz factory trimmed internal RC oscillator with 4 MHz default frequency for device startup.
In-application trimming access for frequency adjustment
— Slow Clock Internal RC oscillator as permanent low-power mode device clock
— Two PLLs up to 130 MHz for device clock and for USB
— Temperature Sensor
— Up to 24 peripheral DMA (PDC) channels
e Low Power Modes
— Sleep and Backup modes, down to < 2 pA in Backup mode
— Ultra low-power RTC

e Peripherals

— USB 2.0 Device: 12 Mbps, 2668 byte FIFO, up to 8 bidirectional Endpoints. On-Chip Transceiver

— Upto 3 USARTSs with 1ISO7816, IrDA®, RS-485, SPI, Manchester and Modem Mode

— Two 2-wire UARTs

— Up to 2 Two Wire Interface (12C compatible), 1 SPI, 1 Serial Synchronous Controller (12S), 1 High Speed
Multimedia Card Interface (SDIO/SD Card/MMC)

— Two 3-channel 16-bit Timer Counters with capture, waveform, compare and PWM mode, Quadrature Decoder
Logic and 2-bit Gray Up/Down Counter for Stepper Motor

— 4-channel 16-bit PWM with Complementary Output, Fault Input, 12-bit Dead Time Generator Counter for Motor
Control

— 32-bit Real-time Timer and RTC with calendar and alarm features

— Up to 15-channel, 1Msps ADC with differential input mode and programmable gain stage and auto calibration

— One 2-channel 12-bit 1Msps DAC

— One Analog Comparator with flexible input selection, Selectable input hysteresis

— 32-bit Cyclic Redundancy Check Calculation Unit (CRCCU)

— Register Write Protection

2 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

e |/O
— Upto 79 I/O lines with external interrupt capability (edge or level sensitivity), debouncing, glitch filtering and on-
die Series Resistor Termination
— Three 32-bit Parallel Input/Output Controllers, Peripheral DMA assisted Parallel Capture Mode
e Packages
— 100-lead LQFP (14 x 14 mm, pitch 0.5 mm)
— 100-ball TFBGA (9 x 9 mm, pitch 0.8 mm)
— 64-lead LQFP (10 x 10 mm, pitch 0.5 mm)
— 64-lead QFN (9 x 9 mm, pitch 0.5 mm)

SAM3S8 /| SAM3SDS8 [DATASHEET 3
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

4

Configuration Summary

The SAM3S8/SD8 series devices differ in memory size, package and features. Table 1-1

configurations of the device family.

summarizes the

Table 1-1. Configuration Summary
Feature SAM3S8B SAM3S8C SAM3SD8B SAM3SD8C
Flash 512 Kbytes 512 Kbytes 512 Kbytes 512 Kbytes
SRAM 64 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes
Package LQFP64 LQFP100 LQFP64 LQFP100
QFN64 TFBGA100 QFN64 TFBGA100
Number of PIOs 47 79 47 79
12-bit ADC 11 channels® 16 channels® 11 channels® 16 channels®
12-bit DAC 2 channels 2 channels 2 channels 2 channels
Timer Counter 62 6 6 6
Channels
PDC Channels 22 22 24 24
USART/UART 2124 212 2124 324
HSMCI 1 port/4 bits 1 port/4 bits 1 port/4 bits 1 port/4 bits
8-bit data, 8-bit data,

External Bus Interface -

4 chip selects,
24-bit address

4 chip selects,
24-bit address

Notes: 1. Full Modem support on USARTL1.

2. One channel is reserved for internal temperature sensor.
3. Three TC channels are reserved for internal use.

SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

2. Block Diagram

Figure 2-1. SAM3S8/SD8 100-pin version Block Diagram

QY v $

0S¥ & 2 <>°o0
QQE & S
L A A4 l T

TST —| System Controller ry YVYV Voltage

PCKO-PCK2 <> |€— Regulator
PLLA ¢ \ 4

>
—PLLE |l PMC | JTAG & Serial Wire | Traoh

ES&S&CH;_) * * + A f Unique

In-Circuit Emulator Identifier

24-bit ¢
XIN <> [SysTick Counter]
SC

(]
XOUT <> Cortex M-3 Processor ; 512 Kbytes Flash

f_, 64 MHz) SRAM ROM
WKUPx <> SAM3S8 Single Bank| g4 Kbytes|[16 Kbytes
~ MPU SAM3SD8 Dual Bank
XIN32 <€>|
XOUT32 €] lI/D ls 1 I 1
ERASE €| > [RC32kHz
N ———
VDDIO —» 8 GPBR
VDDCORE — RTT |
VDDPLL —»} [POR__]
RTCOUT! <
COUTO <> [rrc |
RTCOUT1 €| |«
st <—f—>] rere | 5
eripheral 2668 |USB 2.0| 2 — bop
WDT SM : bytes | Full | 3|3 d B >
Bridge FIFO | Speed | £ [»| |<«{— DDM
IPIOA/PIOB/PIOC | =
V) .
TWCKQ <> > TWI0 [FBel<—> External Bus - »| |« DI7:0]

CD < > > Interface > |e—> Al0:23]
TWCK1 > > > »| |<}—> A21/NANDALE
TWD1 > |=< < W [F5C »| |<«l—> A22/NANDCLE
URXDO ~<—}—> > NAND Flash »| [« Nneso
UTXDO <——>| [« UARTO [PoC*> Logic >| |<«— NCs1
URXD1 < > > - »| |<t— NCS2
UTXD1 <—] [« UART! 55T+ »| [« NCs3
$§Bg < <> > Static Memory > |<f—> NRD

< << > <> Controller | |«—> NWE

i e — USARTO »| |[«}— NANDOE
CTSO < > > | PDC - <«|—> NANDWE
%B% < < > - <> NWAIT
SCK1 < > < >
5%1 2 < USART1 FRC = <[> Ploperrol
DSR1 < > | g <« PIO < I ?ISBSEN%
DTR1 < = | > ~ T

RI1 > < - <}—> PIODCCLK
DCD1 < > > |PDC
RXD2 < > >

< USART2

TXD2 < > > < »| |<l— NPCsO
SR%é% > »| | »| (SAM3SDS8 only) <> PDC > |<— Nggg;
CTS2 <+——> > [FoC PR SPI > |t NPCS3

TCLK[0:2] <—1— »| Timer Counter 0 < > <> mOS]
TIOA[0:2] ol < > oo <> === iECK
TIOB[0:2] ¢ > |« ,: E I > <l i
-~ ssc > Dim i}
TCLK[3:5] - »| Timer Counter 1 < > RK
< » |+—> RF
TIOA[3:5] > |« > - ToC
) TC[3.5] < < > |< MCCK
TIOB[3:5] > | > High Speed MCI | »| [«]— MCCDA
PWMH0:3] | < >\« McDap.3]
PWML[0:3] <«—1—| |« PWM > _ Analog < ADVREF
PWMFI0 < > = PDC - Comparator ADC Ch.
ADTRG | » . <
AD[0..14] <1 » - freme. Sensor > > CRC Unit
ADVREF L |:: 12-bitADC [PBG
DACO <—t—»[T)

DAGT = <> 12-bit DAC >

DATRG <+—1—| | > 1PDC
/ItmeL SAM3S8 / SAM3SD8 [DATASHEET] 5

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 2-2.

SAM3S8/SD8 64-pin version Block Diagram

&
8 >
£

L1

TST —>
PCKO-PCK2 <€

System Controller y YYVY

i

XIN <€
XOUT <€

WKUPx <€>
xiN32 <€>]]

XOUT32 <€

ERASE <>
~

VDDIO —
VDDCORE —
VDDPLL —

RTCOUTO <> N

RTCOUT1 <>

<

NRST

PLLA

PLLB

RC Osc
2/8/4 MHz]

vVYy

[

\ 4
| JTAG & Serial Wire |

vhvy

——>|3-20 MHz
Osc

In-Circuit Emulator

24-bit
SysTick Counterf

Cortex M-3 Processor

{

:

>| supc

<
[|osc 32 kHz

|

RC 32 kHz

8 GPBR

f,,, 64 MHz

NVIC

Voltage
Regulator

Flash
Unique
Identifier

v

MPU

512 Kbytes Flash

SAM3S8 Single Bank
SAM3SD8 Dual Bank

SRAM
64 Kbytes

ROM
16 Kbytes|

ll/D ls

(

<

eripherall
Bridge

YY

4
=
S
Al

\A

c
5
x
v}
S}
Al

\A/

c
S
<
Q
AA

PDC

PDC

PDC

PDC

YYY

AAA

1]
Q
P
o
AAAA)

YYVYVYY

Y

A
A

USARTO
PDC

LA A
YV

Y

AAA A

o
=
@
AAhAAAAAAA

TCLK[0:2]

YYYYVYVYYYY
Y

USART1

A
Y

PDC

A

A\

Timer Counter 0

TIOA[0:2]
TIOB[0:2]

A

>

i| TC[0..2] |

PWMH[0:3]

A

PWML[0:3]

YV Y

PWMFI0 <

ADTRG

PWM

A
Y

PDC

A

AD[0..14]

12-bit ADC

|Temp. Sensory

A
Y

PDC

ADVREF
DACO -

r_lm

\

A A

DAC1
DATRG -

12-bit DAC <

Y

PDC

! !

2668 | USB 2.0

!

bytes Full

A

FIFO | Speed

Transceiver

PDC

YY

PIO

A
Y

A A A A

AAAA

YYVYY

PDC <

SPI

YYYYYY

\

PDC

|

AAAAAAA

YYYYYYY

A

\

A

SSC

Y

YYVYY

AL

AAAAAA

Yy

PDC

y

Y

A
Y

High Speed MCI

A A)

~

Analog <
Comparator

<—>| CRC Unit |

ADC Ch.

-«

SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

o]}
o)}
<70

PIODCI[7:0]
PIODCEN1
PIODCEN2
PIODCCLK

MCCK
MCCDA
MCDAJ0..3]

ADVREF

Atmel

3. Signal Description

Table 3-1 gives details on signal names classified by peripheral.

Table 3-1. Signal Description List
Active | Voltage
Signal Name Function Type Level | reference | Comments
Power Supplies
VDDIO Perlphe_rals I/O Lines and USB Power 1.62V 10 3.6V
transceiver Power Supply
VDDIN Voltage Regulator Input, ADC, DAC Power 1.8V t0 3.6V
and Analog Comparator Power Supply
VDDOUT Voltage Regulator Output Power 1.8V Output
VDDPLL Oscillator and PLL Power Supply Power 1.62 Vto 1.95V
VDDCORE Power the core, the embedded Power 1.62V to 1.95V
memories and the peripherals
GND Ground Ground
Supply Controller - SUPC
Reset State:
. . - P10 Input
WKUPXx Wake Up input pins Input VDDIO)
- Internal Pull-up disabled
- Schmitt Trigger enabled™
Clocks, Oscillators and PLLs
XIN Main Oscillator Input Input Reset State:
XOUT Main Oscillator Output Output - PIO Input
XIN32 Slow Clock Oscillator Input Input - Internal Pull-up disabled
XOUT32 Slow Clock Oscillator Output Output vbblo L Schmitt Trigger enabled"
Reset State:
- PIO Input
PCKO-PCK2 Programmable Clock Output Output
- Internal Pull-up enabled
- Schmitt Trigger enabled®
Real Time Clock - RTC
RTCOUTO Programmable RTC waveform output Output Reset State:
- PIO Input
VDDIO)
RTCOUT1 Programmable RTC waveform output Output - Internal Pull-up disabled
- Schmitt Trigger enabled®

SAM3S8 / SAM3SDS8 [DATASHEET 7
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Table 3-1. Signal Description List (Continued)
Active | Voltage
Signal Name Function Type Level | reference | Comments
Serial Wire/JTAG Debug Port - SWJ-DP
TCK/SWCLK Test Clock/Serial Wire Clock Input
TDI Test Data In Input Reset State:
TDO/TRACESWO Ezst;%alf Out Trace Asynchronous Output vobio | - iﬁfnzppmijz disabled®
TMS/SWDIO Lessygiﬁjeled /Serial Wire Input / 10 - Schmitt Trigger enabled®
ITAGSEL JTAG Selection Input High Permanent Internal pull
Flash Memory
Reset State:
) . . - Erase Input
ERASE Elrzzr;?:mNrglxé:onﬂguratlon Bits Input High VDDIO | - Internal pull-down
enabled
- Schmitt Trigger enabled®
Reset/Test
NRST Synchronous Microcontroller Reset 110 Low Permanent Internal pull-up
TST Test Select Input Vbpio gg\:vmna”em Internal pull-
Universal Asynchronous Receiver Transceiver - UARTX
URXDx UART Receive Data Input
UTXDx UART Transmit Data Output
PIO Controller - PIOA - PIOB - PIOC
PAO-PA31 Parallel 10 Controller A I} Reset State:
PBO-PB14 Parallel 10 Controller B o vbplo | ~ PO or System 10s®
- Internal pull-up enabled
PC0O-PC31 Parallel 10 Controller C Ife] - Schmitt Trigger enabled®
PIO Controller - Parallel Capture Mode
PIODCO-PIODC7 | Parallel Capture Mode Data Input
PIODCCLK Parallel Capture Mode Clock Input VDDIO
PIODCEN1-2 Parallel Capture Mode Enable Input
External Bus Interface
DO-D7 Data Bus I/0
A0-A23 Address Bus Output
NWAIT External Wait Signal Input Low
Static Memory Controller - SMC
NCSO0-NCS3 Chip Select Lines Output Low
NRD Read Signal Output Low
NWE Write Enable Output Low

8 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Table 3-1. Signal Description List (Continued)

Active Voltage
Signhal Name Function Type Level | reference | Comments

NAND Flash Logic

NANDOE NAND Flash Output Enable Output Low

NANDWE NAND Flash Write Enable Output Low
High Speed Multimedia Card Interface - HSMCI

MCCK Multimedia Card Clock I/0

MCCDA Multimedia Card Slot A Command I/0

MCDAO-MCDA3 Multimedia Card Slot A Data I/10

Universal Synchronous Asynchronous Receiver Transmitter - USARTX

SCKx USARTX Serial Clock I/0
TXDx USARTX Transmit Data /0
RXDx USARTX Receive Data Input
RTSx USARTx Request To Send Output
CTSx USARTX Clear To Send Input
DTR1 USART1 Data Terminal Ready 1/0
DSR1 USART1 Data Set Ready Input
DCD1 USART1 Data Carrier Detect Output
RI1 USART1 Ring Indicator Input
Synchronous Serial Controller - SSC

TD SSC Transmit Data Output
RD SSC Receive Data Input
TK SSC Transmit Clock 1/0
RK SSC Receive Clock 110

TF SSC Transmit Frame Sync 110

RF SSC Receive Frame Sync /0

Timer/Counter - TC

TCLKXx TC Channel x External Clock Input Input
TIOAX TC Channel x I/O Line A I/O
TIOBx TC Channel x I/O Line B I/0

Pulse Width Modulation Controller - PWMC

PWM Waveform Output High for

PWMHXx Output
channel x
Only output in
PWMLx PWM Waveform Output Low for Output complement.ary r.node. .
channel x when dead time insertion is
enabled.
PWMFIO PWM Fault Input Input

SAM3S8 /| SAM3SDS8 [DATASHEET 9
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Table 3-1. Signal Description List (Continued)
Active | Voltage
Signal Name Function Type Level | reference | Comments
Serial Peripheral Interface - SPI
MISO Master In Slave Out 1/0
MOSI Master Out Slave In I/0
SPCK SPI Serial Clock I/0
SPI_NPCSO SPI Peripheral Chip Select 0 110 Low
gg:zsiggé_ SPI Peripheral Chip Select Output Low
Two-Wire Interface - TWI
TWDx TWIx Two-wire Serial Data /10
TWCKXx TWIx Two-wire Serial Clock /10
Analog
ADVREF ADC, DAC and Analog Comparator Analog
Reference
12-bit Analog-to-Digital Converter - ADC
ADO-AD14 Analog Inputs Analog, Digital
ADTRG ADC Trigger Input VDDIO
12-bit Digital-to-Analog Converter - DAC
DACO-DAC1 Analog output Analog, Digital
DACTRG DAC Trigger Input VDDIO
Fast Flash Programming Interface - FFPI
Egmgmg_ Programming Enabling Input VvDDIO
PGMMO-PGMM3 | Programming Mode Input
PGMDO0-PGMD15 | Programming Data I/O
PGMRDY Programming Ready Output High
PGMNVALID Data Direction Output Low VDDIO
PGMNOE Programming Read Input Low
PGMCK Programming Clock Input
PGMNCMD Programming Command Input Low
USB Full Speed Device
DDM USB Full Speed Data - Reset State:
DOP USB Full Speed Data + Analog, Digital VDDIO - USB Mode
- Internal Pull-down®
Note: 1. Schmitt Triggers can be disabled through PIO registers.
2. Some PIO lines are shared with System 1/Os.
3. Refer to USB Section of the product Electrical Characteristics for information on Pull-down value in USB Mode.
4. See “Typical Powering Schematics” Section for restrictions on voltage range of Analog Cells.
5. TDO pinis set in input mode when the Cortex-M3 Core is not in debug mode. Thus the internal pull-up corresponding to this

PIO line must be enabled to avoid current consumption due to floating input.

10 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

4. Package and Pinout

SAM3S8/SD8 devices are pin-to-pin compatible with AT91SAM7S legacy products for 64-pin version.
Furthermore, SAM3S8/SD8 products have new functionalities referenced in italic in Table 4-1, Table 4-3.

41 SAM3S8C/8DC Package and Pinout
4.1.1 100-Lead LQFP Package Outline

Figure 4-1. Orientation of the 100-lead LQFP Package

75 51

1 1
76 — 50

100 —
26
\ —
1] 1
1 25

4.1.2 100-ball TFBGA Package Outline

The 100-ball TFBGA package has a 0.8 mm ball pitch and respects Green Standards. The package dimensions
are 9 x 9 x 1.1 mm. Figure 4-2 shows the orientation of the 100-ball TFBGA package.

Figure 4-2. Orientation of the 100-ball TFBGA Package
TOP VIEW

=
o

F N W R OO N ®© ©

0O 0O 00 000 00O
O 0O 0 0 0 0 0 0 0o
O 00 0 0 0 0 0 0o
© 0000 0 00 0O
© 0 000 0 0000
0O 0 0 00 0 0 0 0 ©°
0O 0 0o 00 o0 0 0 0 o
O o0 o 00 0 00 OO0
O 0 0O 0O 0 0 0 0 0 0o
0O 0 0 000 O0O0O0O0

©

BALL A1 _/ A

@
[e)
o
m
ul
[2)
T
[
=

SAM3S8 / SAM3SDS8 [DATASHEET 11
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

4.1.3 100-Lead LQFP Pinout

Table 4-1. SAM3S8C/SD8C 100-lead LQFP pinout
1 ADVREF 26 GND 51 TDI/PB4 76 | TDO/TRACESWO/PB5
2 GND 27 VDDIO 52 PA6/PGMNOE 77 JTAGSEL
3 PBO/AD4 28 PA16/PGMD4 53 PA5/PGMRDY 78 PC18
4 PC29/AD13 29 PC7 54 PC28 79 TMS/SWDIO/PB6
5 PB1/AD5 30 PA15/PGMD3 55 PA4/PGMNCMD 80 PC19
6 PC30/AD14 31 PA14/PGMD2 56 VDDCORE 81 PA31
7 PB2/AD6 32 PC6 57 PA27/PGMD15 82 PC20
8 PC31 33 PA13/PGMD1 58 PC8 83 TCK/SWCLK/PB7
9 PB3/AD7 34 PA24/PGMD12 59 PA28 84 PC21
10 VDDIN 35 PC5 60 NRST 85 VDDCORE
11 VDDOUT 36 VDDCORE 61 TST 86 PC22
12 PA17/PGMD5/AD0O 37 PC4 62 PC9 87 ERASE/PB12
13 PC26 38 PA25/PGMD13 63 PA29 88 DDM/PB10
14 PA18/PGMD6/AD1 39 PA26/PGMD14 64 PA30 89 DDP/PB11
15 PA21/PGMD9/AD8 40 PC3 65 PC10 90 PC23
16 VDDCORE 41 PA12/PGMDO 66 PA3 91 VDDIO
17 PC27 42 PA11/PGMM3 67 PA2/PGMEN2 92 PC24
18 PA19/PGMD7/AD2 43 PC2 68 PC11 93 PB13/DACO
19 PC15/AD11 44 PA10/PGMM2 69 VDDIO 94 PC25
20 PA22/PGMD10/AD9 45 GND 70 GND 95 GND
21 PC13/AD10 46 PA9/PGMM1 71 PC14 96 PB8/XOUT
22 PA23/PGMD11 47 PC1 72 PA1/PGMEN1 97 PB9/PGMCK/XIN
23 PC12/AD12 48 | PA8/XOUT32/PGMMO 73 PC16 98 VDDIO
24 PA20/PGMD8/AD3 49 | PA7/XIN32/PGMNVALID 74 PAO/PGMENO 99 PB14/DAC1
25 PCO 50 VDDIO 75 PC17 100 VDDPLL

12 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

4.1.4 100-Ball TFBGA Pinout

Table 4-2. SAM3S8C/SD8C 100-ball TFBGA pinout

Al PB1/AD5 C6 TCK/SWCLK/PB7 F1 PA18/PGMD6/AD1 H6 PC4

A2 PC29 c7 PC16 F2 PC26 H7 PA11/PGMM3
A3 VDDIO Cc8 PA1/PGMEN1 F3 VDDOUT H8 PC1

A4 PB9/PGMCK/XIN C9 PC17 F4 GND H9 PA6/PGMNOE
A5 PB8/XOUT C10 PAO/PGMENO F5 VDDIO H10 TDI/PB4

A6 PB13/DACO D1 PB3/AD7 F6 PA27/PGMD15 J1 PC15/AD11

A7 DDP/PB11 D2 PBO/AD4 F7 PC8 J2 PCO

A8 DDM/PB10 D3 PC24 F8 PA28 J3 PA16/PGMD4
A9 TMS/SWDIO/PB6 D4 pPC22 F9 TST J4 PC6

Al10 JTAGSEL D5 GND F10 PC9 J5 PA24/PGMD12
Bl PC30 D6 GND Gl PA21/PGMD9/AD8 J6 PA25/PGMD13
B2 ADVREF D7 VDDCORE G2 PC27 J7 PA10/PGMM2
B3 GNDANA D8 PA2/PGMEN2 G3 PA15/PGMD3 J8 GND

B4 PB14/DAC1 D9 PC11 G4 VDDCORE J9 VDDCORE

B5 PC21 D10 PC14 G5 VDDCORE J10 VDDIO

B6 PC20 El PA17/PGMD5/AD0O G6 PA26/PGMD14 K1 PA22/PGMD10/AD9
B7 PA31 E2 PC31 G7 PA12/PGMDO K2 PC13/AD10

B8 PC19 E3 VDDIN G8 PC28 K3 PC12/AD12

B9 PC18 E4 GND G9 PA4/PGMNCMD K4 PA20/PGMDS8/AD3
B10 | TDO/TRACESWO/PB5 E5 GND G10 PA5/PGMRDY K5 PC5

C1 PB2/AD6 E6 NRST H1 PA19/PGMD7/AD2 K6 PC3

C2 VDDPLL E7 PA29/AD13 H2 PA23/PGMD11 K7 PC2

C3 PC25 ES8 PA30/AD14 H3 PC7 K8 PA9/PGMM1

C4 PC23 E9 PC10 H4 PA14/PGMD2 K9 | PA8/XOUT32/PGMMO
C5 ERASE/PB12 E10 PA3 H5 PA13/PGMD1 K10 | PA7/XIN32/PGMNVALID

SAM3S8 / SAM3SDS8 [DATASHEET 13
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

4.2 SAM3S8B/D8B Package and Pinout
4.2.1 64-Lead LQFP Package Outline

Figure 4-3. Orientation of the 64-lead LQFP Package

48 33
] 0
49 9 P32
64 o P 17
U T
1 16

4.2.2 64-lead QFN Package Outline

Figure 4-4. Orientation of the 64-lead QFN Package

64 49
vuuuuuuuuuuuuuuu

(0]

48

uuuuuuuuuuuuuuuyu
nANANNANNNNNANANN

16 33

NNNNANNNANNANNNAN
TOP VIEW

14 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

4.2.3 64-Lead LQFP and QFN Pinout

Table 4-3. 64-pin SAM3S8B/D8B pinout

1 ADVREF 17 GND 33 TDI/PB4 49 | TDO/TRACESWO/PB5
2 GND 18 VDDIO 34 PA6/PGMNOE 50 JTAGSEL

3 PBO/AD4 19 PA16/PGMD4 35 PA5/PGMRDY 51 TMS/SWDIO/PB6
4 PB1/AD5 20 PA15/PGMD3 36 PA4/PGMNCMD 52 PA31

5 PB2/AD6 21 PA14/PGMD2 37 PA27/PGMD15 53 TCK/SWCLK/PB7
6 PB3/AD7 22 PA13/PGMD1 38 PA28 54 VDDCORE

7 VDDIN 23 PA24/PGMD12 39 NRST 55 ERASE/PB12
8 VDDOUT 24 VDDCORE 40 TST 56 DDM/PB10

9 PA17/PGMD5/AD0O 25 PA25/PGMD13 41 PA29 57 DDP/PB11
10 PA18/PGMD6/AD1 26 PA26/PGMD14 42 PA30 58 VDDIO

11 PA21/PGMD9/AD8 27 PA12/PGMDO 43 PA3 59 PB13/DACO
12 VDDCORE 28 PA11/PGMM3 44 PA2/PGMEN2 60 GND

13 PA19/PGMD7/AD2 29 PA10/PGMM2 45 VDDIO 61 XOuT/PB8

14 PA22/PGMD10/AD9 30 PA9/PGMM1 46 GND 62 XIN/PGMCK/PB9
15 PA23/PGMD11 31| PA8/XOUT32/PGMMO 47 PA1/PGMEN1 63 PB14/DAC1

16 PA20/PGMD8/AD3 32 | PA7/XIN32/PGMNVALID 48 PAO/PGMENO 64 VDDPLL

Note: The bottom pad of the QFN package must be connected to ground.

SAM3S8 / SAM3SDS8 [DATASHEET 15
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

5. Power Considerations

5.1 Power Supplies

The SAM3S8/SD8 has several types of power supply pins:

e VDDCORE pins: Power the core, the embedded memories and the peripherals. Voltage ranges from 1.62V
to 1.95V.

e VDDIO pins: Power the Peripherals I/O lines (Input/Output Buffers), USB transceiver, Backup part, 32 kHz
crystal oscillator and oscillator pads. Voltage ranges from 1.62V to 3.6V.

e VDDIN pin: Voltage Regulator Input, ADC, DAC and Analog Comparator Power Supply. Voltage ranges from
1.8V to 3.6V.

e VDDPLL pin: Powers the PLLA, PLLB, the Fast RC and the 3 to 20 MHz oscillator. Voltage ranges from
1.62V to 1.95V.

5.2 Power-up Considerations

5.2.1 VDDIO Versus VDDCORE
VDDIO must always be higher than or equal to VDDCORE.

VDDIO must reach its minimum operating voltage (1.62 V) before VDDCORE has reached the following
thresholds:

e the minimum V4, of the core power supply brownout detector (1.36 V)
e the minimum value of tzgr (100 ps)

If VDDCORE rises at the same time as VDDIO, the VDDIO rising slope must be higher than or equal to 5 V/ms.
If VDDCORE is powered by the internal regulator, all power-up considerations are met.

Figure 5-1. VDDCORE and VDDIO Constraints at Startup

Supply (V) 4
VDDIO
VDDIO(rmn) VDDCORE
VDDCORE(min)
A
Time (t)

Core supply POR output

stex [AR

16 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14 /I t I I I eL

522

5.3

5.4

Atmel

VDDIO Versus VDDIN
At power-up, VDDIO needs to reach 0.6 V before VDDIN reaches 1.0 V.
VDDIO voltage needs to be equal to or below (VDDIN voltage + 0.5 V).

Voltage Regulator

The SAM3S8/SD8 embeds a voltage regulator that is managed by the Supply Controller.

This internal regulator is designed to supply the internal core of SAM3S8/SD8. It features two operating modes:

In Normal mode, the voltage regulator consumes less than 700 pA static current and draws 80 mA of output
current. Internal adaptive biasing adjusts the regulator quiescent current depending on the required load
current. In Wait Mode quiescent current is only 7 pA.

In Backup mode, the voltage regulator consumes less than 1 pA while its output (VDDOUT) is driven
internally to GND. The default output voltage is 1.80 V and the start-up time to reach Normal mode is less
than 100 ps.

For adequate input and output power supply decoupling/bypassing, refer to Table 41-3 "1.8V Voltage Regulator
Characteristics” in Section 41. “SAM3S8/SD8 Electrical Characteristics”.

Typical Powering Schematics

The SAM3S8/SD8 supports a 1.62-3.6 V single supply mode. The internal regulator input is connected to the
source and its output feeds VDDCORE. Figure 5-2 shows the power schematics.

As VDDIN powers the voltage regulator, the ADC, DAC and the analog comparator, when the user does not want
to use the embedded voltage regulator, it can be disabled by software via the SUPC (note that this is different from
Backup mode).

Figure 5-2. Single Supply

Note:

_ ‘VDDIO [ﬂ_ USE
) -l ' Transceivers
Main Supply ‘I' T
(1.8-3.6V) ! ADC, DAC,
. Analog Comp.
VDDIN i
L
VDDOUT
E‘ Voltage
' Regulator
VDDCORE —
ot []

VDDPLL I:Ej

Sl

Restrictions

For USB, VDDIO needs to be greater than 3.0 V.

For ADC, VDDIN needs to be greater than 2.0 V.

For DAC, VDDIN needs to be greater than 2.4 V.

For Analog Comparator, VDDIN needs to be greater than 2.0 V.

SAM3S8 / SAM3SD8 [DATASHEET] 17

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 5-3. Core Externally Supplied

Main Supply VDDIO]
(1.62-3.6 V) - T USE
H L [ﬂ_ Transceivers
Can be the : II' E
same supply : H ADC, DAC,
1 | Analog Comp.
ADC, DAC, Analog __y _ VDDIN 1™
Comparator Supply -’ '
(2.0-3.6 V) ‘I' I—E—I
VDDOUT | |<— Voltage
! Regulator
VDDCORE Supply VDDCORE —
(1.62-1.95 V) '

VDDPLL

Note: Restrictions
For USB, VDDIO needs to be greater than 3.0 V.
For ADC, VDDIN needs to be greater than 2.0 V.
For DAC, VDDIN needs to be greater than 2.4 V.
For Analog Comparator, VDDIN needs to be greater than 2.0 V.

Figure 5-4 provides an example of the powering scheme when using a backup battery. Since the PIO state is
preserved when in Backup mode, any free PIO line can be used to switch off the external regulator by driving the
PIO line at low level (PIO is input, pull-up enabled after backup reset). External wake-up of the system can be from
a push button or any signal. See Section 5.7 “Wake-up Sources” for further details.

Figure 5-4. Backup Battery

VDDIO
\ 4

' UsSB
Backup I I ! | Transceivers
Battery | + ‘I' .
i ADC, DAC,
- E Analog Comp.
l_ VDDIN

Main Supply N ouT VDDOUT
Voltage
3.3V

LDO Regulator

VDDCORE —

VDDPLL El

PIOx (Output)

WKUPx

L

External wakeup signal

Note: The two diodes provide a “switchover circuit” (for illustration purpose) between the backup battery and the
main supply when the system is put inbackup mode.

Note: Restrictions
For ADC, VDDIN needs to be greater than 2.0 V.
For DAC, VDDIN needs to be greater than 2.4 V.
For Analog Comparator, VDDIN needs to be greater than 2.0 V.

18 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

55 Active Mode

Active mode is the normal running mode with the core clock running from the fast RC oscillator, the main crystal
oscillator or the PLLA. The power management controller can be used to adapt the frequency and to disable the
peripheral clocks.

5.6 Low-power Modes

The various low-power modes of the SAM3S8/SD8 are described below.

5.6.1 Backup Mode

The purpose of Backup mode is to achieve the lowest power consumption possible in a system which is
performing periodic wake-ups to perform tasks but not requiring fast startup time (< 0.1 ms). Total current
consumption is 1.5 pA typical.

The Supply Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz oscillator (RC or
crystal oscillator selected by software in the Supply Controller) are running. The regulator and the core supply are
off.

Backup mode is based on the Cortex-M3 deep sleep mode with the voltage regulator disabled.

The SAM3S8/SD8 can be awakened from this mode through pins WKUPO0-15, the supply monitor (SM), the RTT
or RTC wake-up event.

Backup mode is entered by using WFE instructions with the SLEEPDEEP bit in the Cortex-M3 System Control
Register set to 1. (See the power management description in Section 10. “ARM Cortex-M3 Processor”.)
Exit from Backup mode happens if one of the following enable wake up events occurs:

e Level transition, configurable debouncing on pins WKUPENO-15

e Supply Monitor alarm

e RTCalarm

e RTT alarm

5.6.2 Wait Mode

The purpose of the wait mode is to achieve very low power consumption while maintaining the whole device in a
powered state for a startup time of less than 10 ps. Current Consumption in Wait mode is typically 20 pA (total
current consumption) if the internal voltage regulator is used or 12 pA if an external regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and
memories power supplies are still powered. From this mode, a fast start up is available.

This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in PMC Fast
Startup Mode Register (PMC_FSMR)). The Cortex-M3 is able to handle external events or internal events in order
to wake-up the core (WFE). This is done by configuring the external lines WKUPO-15 as fast startup wake-up pins
(refer to Section 5.8 “Fast Startup”). RTC or RTT Alarm and USB wake-up events can be used to wake up the CPU
(exit from WFE).
Entering Wait Mode:

e Select the 4/8/12 MHz fast RC oscillator as Main Clock

e Setthe LPM bit in the PMC_FSMR

e Execute the Wait-For-Event (WFE) instruction of the processor

Note: Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN bit and the effective
entry in Wait mode. Depending on the user application, waiting for MOSCRCEN bit to be cleared is recommended to
ensure that the core will not execute undesired instructions.

SAM3S8 / SAM3SDS8 [DATASHEET 19
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

5.6.3 Sleep Mode

The purpose of sleep mode is to optimize power consumption of the device versus response time. In this mode,
only the core clock is stopped. The peripheral clocks can be enabled. The current consumption in this mode is
application dependent.

This mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with LPM = 0 in
PMC_FSMR.

The processor can be awakened from an interrupt if WFI instruction of the Cortex M3 is used, or from an event if
the WFE instruction is used to enter this mode.

5.6.4 Low Power Mode Summary Table

The modes detailed above are the main low-power modes. Each part can be set to on or off separately and wake
up sources can be individually configured. Table 5-1 shows a summary of the configurations of the low-power
modes.

20 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

"PaY20]9 3q ued sjelayduad awos INg Payd0]d 10U pue palddns S| 8109 ay) spow SIy1 U L
‘Aouanbaly MO uo spuadag 9
‘(1o1eInBal abeyjon [eulalul Buisn) uondwnsuod ualind [elo] / (Jorejnbas abeyjo reusaur Buisn Jnoyum) uondwinsuod Jualind 10l 'S
‘uondwnsuod uaun)d [elol ¥
‘papnjoul Jou sI uondwnsuod ua.ng Joiuo Alddns ‘g
‘uole|Nded ayl Ul JUN0JJ®. 0luUl UdXe] 10U aJe SO|d U0 Speo| [eusaixa ayl 2
‘payolay SI uononasul
141} 9yl [aun dn axem 10} uax el awin syl Se paulap SI awn dn-ayem ayl "WalSAS ayl ul papaau Si 1l JI awn dn-ueis 11d 8yl ppe 01 sey Jasn ay] "101e||19So
DY 1Se} ZHIN ZT/8/¥ dU) UM SHIOM 3DIASP Y} ‘paliels aduQ JUn0odIe OJUl UdXE] J0U SI T1d dyl Wels 0] palinbal awn ay) ‘awn dn-axem BulapisSuod Usym\ ‘T :S8I0N
dn-axem gsn
wiee 11y
wuele 91y
suid GT-0dNMM _
6 panes oeq ybnouyy dn-uels |o =HG NG+ Auov_owu_o q
© © pabueLUN | o o cnomaiy N, 1se4 :woy ueng Auy | 0=%dd33ad3a1s 10N NO NO EEII
J0/pue 1dnueiu| pajgeus +14M 10 3IM (nP3Iamod
Auy 34M = apow Anu3
AluQ 1dnuisu)
14M = apow Anu3
dn-axem gsn
wiere 11y _
s m il abueyou panes . WIEE D1y |H_| P Gmh_ owu_o e,
0T> | gvriogwver | p UUN | orers snomey peya0ID suid gT—odnym | 0= 19d330d3TTS mﬂ_oﬂ . NO NO wem
ybnouy: dnuels +3d4M P d
1Se4 :Wolj Juang Auy
sdn |ind wele
i sindul panes _Em__m wwm T =19 d33ad3371S (pasamod
sw 10> w»dhvyrz> ’ MM_M__ o181 SNoWalg 1959y WIBE NS o 29 M_OH__/MW 440 NO dnyoeg
suid GT—
% vOId 10 GT-0dNMM
(PWIL © @ dn aem1e | apon Jamod dn axem $921JN0S Anu3 spoN sjesayduad | Joenbay | (uoibay dnyoegq) 9pPON
dn-axepm | uondwnsuod | 81€ISOId | MOTUISIYM | ITealod dn-axem [enusiod Kiowap HOd ‘sdgado
a1els Old 2109 L1d ‘014 "9s0
ZHX ¢€ '0dNS
Arewwins uoneinbiyuo) spoy Jlamod-mo] "T-G 9|qelL

21

SAM3S8 / SAM3SD8 [DATASHEET]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

5.7 Wake-up Sources

The wake-up events allow the device to exit the Backup mode. When a wake-up event is detected, the Supply
Controller performs a sequence which automatically reenables the core power supply and the SRAM power
supply, if they are not already enabled.

Figure 5-5. Wake-up Sources

sm_out

RTCEN

rtc_alarm

RTTEN

rtt_alarm

Falling/Rising

i

SMEN

[wkuPENO| [WKUPISO

WKUPO D— Edge
Detector

WKUPT1
|

[wkupena| [wkupist |

Falling/Rising

WKUP1 Edge

Detector

[wkuPEN1s| [wKuPIS15|

Falling/Rising

WKUP15 D— Edge
Detector

WKUPDBC
SLCK

L,

>

Debouncer

Core

Supply
Restart

Note: Before instructing the system to enter Backup mode, if the field WKUPDBC > 0, ensure that none of the
WKUPX pins that are enabled for a wake-up (exit from Backup mode) hold an active polarity. This is
checked by reading the pin status in the PIO Controller. If WKUPENx = 1 and the pin WKUPx holds an
active polarity, the system must not be instructed to enter Backup mode.

22 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

5.8 Fast Startup

The SAM3S8/SD8 allows the processor to restart in a few microseconds while the processor is in wait mode or in
sleep mode. A fast start up can occur upon detection of a low level on one of the 19 wake-up inputs (WKUPO to 15
+SM + RTC + RTT).

The fast restart circuitry, as shown in Figure 5-6, is fully asynchronous and provides a fast start-up signal to the
Power Management Controller. As soon as the fast start-up signal is asserted, the PMC automatically restarts the
embedded 4 MHz Fast RC oscillator, switches the master clock on this 4 MHz clock and reenables the processor
clock.

Figure 5-6. Fast Start-Up Sources

ush_wakeup

rtc_alarm

E
rtt_alarm

Falling/Rising
WKUPO |:|— Edge
Detector

[

> fast_restart

[

Falling/Rising
WKUP1 Di Edge

Detector

Falling/Rising
WKUP15 Di Edge

Detector

SAM3S8 / SAM3SDS8 [DATASHEET 23
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

6.

6.1

6.2

24

Input/Output Lines

The SAM3S8/SD8 has several kinds of input/output (I/O) lines such as general purpose 1/0Os (GPIO) and system
I/0Os. GPIOs can have alternate functionality due to multiplexing capabilities of the PIO controllers. The same PIO
line can be used whether in I/O mode or by the multiplexed peripheral. System 1/Os include pins such as test pins,
oscillators, erase or analog inputs.

General Purpose I/O Lines

GPIO Lines are managed by PIO Controllers. All I/Os have several input or output modes such as pull-up or pull-
down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input change interrupt.
Programming of these modes is performed independently for each 1/O line through the PIO controller user
interface. For more details, refer to Section 28. “Parallel Input/Output Controller (PI1O)”.

The input/output buffers of the PIO lines are supplied through VDDIO power supply rail.

The SAM3S8/SD8 embeds high-speed pads able to handle up to 32 MHz for HSMCI (MCK/2), 45 MHz for SPI
clock lines and 35 MHz on other lines. See Section 41.11 “AC Characteristics” for more details. Typical pull-up and
pull-down value is 100 k< for all I/Os.

Each 1/O line also embeds an ODT (On-Die Termination), (see Figure 6-1). It consists of an internal series resistor
termination scheme for impedance matching between the driver output (SAM3S8/SD8) and the PCB trace
impedance preventing signal reflection. The series resistor helps to reduce 10s switching current (di/dt) thereby
reducing in turn, EMI. It also decreases overshoot and undershoot (ringing) due to inductance of interconnect
between devices or between boards. In conclusion ODT helps diminish signal integrity issues.

Figure 6-1. On-Die Termination

Receiver
SAMS Driver with

Z,~10 ohms

PCB Trace
Z0 ~ 50 ohms

;--------------"""“""'“‘E Z0~Z,+ Ry,
1

1 1

| oDT |

i 36 ohms Typ. !

- |

:

[D N ¥V VS i B g i _____
1

1

1 RODT

! L 1

1

1

1

1

1

1

Lo

System /O Lines

System 1/O lines are pins used by oscillators, test mode, reset and JTAG to name but a few. The SAM3S8/SD8
system 1/O lines shared with PIO lines are described in Table 6-1.

These pins are software configurable as general purpose I/O or system pins. At startup the default function of
these pins is always used.

SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Table 6-1. System I/O Configuration Pin List
SYSTEM_IO Default Function Constraints for
Bit Number After Reset Other Function Normal Start Configuration
12 ERASE PB12 Low Level at
startup
10 DDM PB10 -
11 DDP PB11 — In Matrix User Interface Registers
7 TCK/SWCLK PB7 _ (Refer to the System 1/O Configuration Register
in Section 22. “Bus Matrix (MATRIX)".)
6 TMS/SWDIO PB6 -
5 TDO/TRACESWO PB5 -
4 TDI PB4 -
- PA7 XIN32 -
@)
- PA8 XOUT32 -
- PB9 XIN -
®)
- PB8 XOuT -

Notes: 1. If PB12 is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the
user application sets PB12 into PIO mode.

2. Refer to “Slow Clock Generator” of Section 16. “SAM3 Supply Controller (SUPC)”.
3. Refer to the 3 to 20 MHz Crystal Oscillator information in Section 26. “Power Management Controller (PMC)".

6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on a standard 20-pin
JTAG connector defined by ARM. For more details about voltage reference and reset state, refer to Table 3-1 on
page 7.

At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Please refer
to Section 11. “Debug and Test Features”.

SWJ-DP pins can be used as standard I/Os to provide users more general input/output pins when the debug port
is not needed in the end application. Mode selection between SWJ-DP mode (System IO mode) and general 10
mode is performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad
for pull-up, triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a
permanent pull-down resistor of about 15 kQ to GND, so that it can be left unconnected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it
must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and
enables the SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be
used with SW-DP, not JTAG-DP. For more information about SW-DP and JTAG-DP switching, please refer to
Section 11. “Debug and Test Features”.

SAM3S8 / SAM3SDS8 [DATASHEET 25
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

6.3 Test Pin

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the
SAM3S8/SD8 series. The TST pin integrates a permanent pull-down resistor of about 15 kQ to GND, so that it can
be left unconnected for normal operations. To enter fast programming mode, see the Fast Flash Programming
Interface (FFPI) section. For more on the manufacturing and test mode, refer to Section 11. “Debug and Test
Features”.

6.4 NRST Pin

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset
signal to the external components or asserted low externally to reset the microcontroller. It will reset the Core and
the peripherals except the Backup region (RTC, RTT and Supply Controller). There is no constraint on the length
of the reset pulse and the reset controller can guarantee a minimum pulse length. The NRST pin integrates a
permanent pull-up resistor to VDDIO of about 100 kQ. By default, the NRST pin is configured as an input.

6.5 ERASE Pin

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read
as logic level 1). It integrates a pull-down resistor of about 100 kQ to GND, so that it can be left unconnected for
normal operations.

This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high during less than
100 ms, it is not taken into account. The pin must be tied high during more than 220 ms to perform a Flash erase
operation.

The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE pin is not configured
as a PIO pin. If the ERASE pin is used as a standard I/O, startup level of this pin must be low to prevent unwanted
erasing. Refer to Section 9.3 “Peripheral Signal Multiplexing on 1/O Lines” on page 33. Also, if the ERASE pin is
used as a standard I/O output, asserting the pin to low does not erase the Flash.

26 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

7.

Memories

Figure 7-1.
0x00000000
0x00400000

0x00800000

0x00C00000

Ox1FFFFFFF

0x60000000

0x61000000

0x62000000

0x63000000

0x64000000

OX9FFFFFFF

offset

Atmel

Code

Boot Memory

Internal Flash

Internal ROM

Reserved

External RAM

SMC Chip Select 0

SMC Chip Select 1

SMC Chip Select 2

SMC Chip Select 3

Reserved

bloc

3
eripheral
perip D

SAM3S8/SD8 Product Mapping

Address memory space

[y
[y
[y

--------- 0x00000000-
Code
1 Mbyte .*0x20000000,
bit band < .
region * OXZ_QMOOO SRAM
o*" 0x22000000 oo
. Undefined
0x24000000
32 Mbytes
0x40000000 bit band alias
Peripherals
......... Ox60000000
External SRAM
0xA0000000 1
Lot - Reserved
- 0xE0000000
ot -’ System
’ OXFFFFFFFF
System Controller
0x400E0000
SMC
0X400E0200 10
MATRIX
0x400E0400
PMC
0x400E0600 5
UARTO
0x400E0740 8
CHIPID
0x400E0800
UART1
0x400E0AQ0 S
EFC
0x400E0C00 6
Reserved
0x400EOEO00
PIOA
0x400E1000 i
PIOB
0x400E1200 12
PIOC
0x400E1400 13
RSTC
+0x10 !
SUPC
+0x30
RTT
+0x50 3
WDT
+0x60 4
RTC
+0x90 2
GPBR
0x400E1600
Reserved
0x4007FFFF

[
[

0x40000000 Peripherals
HSMCI .
0x40004060 81
J ssC \
0x40008000 221
SPI H
,0x4000C000 il
;. Reserved Y
L 0x40010000 \
K T 1o
+0X40 23 |
TCO TC1 B
+0x80 24
TC0 e B
040014000 2%
TCl s '
+0x40 26 \
TCU 1oy]
. +0x80 2 H
T 1es H
H 0x40018000 28
5 TWIO 5
L 0x4001C000 19
\ TWI1 |
' 0x40020000 20 1 Mbyte
Y PWM bit band
" 0x40024000 31 region
' USARTO :
\ ', 040028000 14 !
Voo USART1 /
| '0x4002C000 15 :
P USART2 N
" 0x40030000 16
Yo Reserved N
', 040034000 /
N uDP
0x40038000 33 !
s ADC H
om‘ofqacooo 29 ,"
N DACC !
\] 30 [
0x4oo‘goooo !
1y ACC :
0x40044000 Eall B
CRCCU
0x400480000 S
‘-‘ “‘ Reserved ‘
0x400E0000 "
\ System Controller H
0x400E2600, :
S Reserved N
0x40100060
':' Reserved
0x40200000
S 32 Mbytes
0x,46400000 bit band alias
,'I Reserved
':'OXSOOOOOOO

SAM3S8 / SAM3SD8 [DATASHEET]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

27

7.1 Embedded Memories

7.1.1 Internal SRAM
The SAM3S8 device (512-Kbytes, single bank flash) embeds a total of 64-Kbytes high-speed SRAM.
The SAM3SD8 device (512-Kbytes, dual bank flash) embeds a total of 64-Kbytes high-speed SRAM.
The SRAM is accessible over System Cortex-M3 bus at address 0x2000 0000.
The SRAM is in the bit band region. The bit band alias region is from 0x2200 0000 and 0x23FF FFFF.

7.1.2 Internal ROM

The SAM3S8/SD8 embeds an Internal ROM, which contains the SAM Boot Assistant (SAM-BA®), In Application
Programming (IAP) routines and Fast Flash Programming Interface (FFPI).

At any time, the ROM is mapped at address 0x0080 0000.

7.1.3 Embedded Flash

7.1.3.1 Flash Overview
The Flash of the SAM3S8 (512-Kbytes single bank flash) is organized in one bank of 2048 pages of 256 bytes.

The Flash of the SAM3SD8 (512-Kbytes, dual bank flash) is organized in two banks of 1024 pages of 256 bytes
each.

The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.

7.1.3.2 Flash Power Supply
The Flash is supplied by VDDCORE.

7.1.3.3 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the masters of the system. It
enables reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block with the 32-bit internal bus. Its
128-bit wide memory interface increases performance.

The user can choose between high performance or lower current consumption by selecting either 128-bit or 64-bit
access. It also manages the programming, erasing, locking and unlocking sequences of the Flash using a full set
of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash
organization, thus making the software generic.
7.1.3.4 Flash Speed
The user needs to set the number of wait states depending on the frequency used:
For more details, refer to the “AC Characteristics” sub-section of the product “Electrical Characteristics”.

7.1.3.5 Lock Regions

Several lock bits are used to protect write and erase operations on lock regions. A lock region is composed of
several consecutive pages, and each lock region has its associated lock bit.

Table 7-1. Lock bit number
Product Number of Lock Bits Lock Region Size
SAM3S8/SD8 16 32 kbytes (128 pages)

28 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

If a locked-region’s erase or program command occurs, the command is aborted and the EEFC triggers an
interrupt.

The lock bits are software programmable through the EEFC User Interface. The command “Set Lock Bit” enables
the protection. The command “Clear Lock Bit” unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

7.1.3.6 Security Bit Feature

The SAM3S8/SD8 features a security bit, based on a specific General Purpose NVM bit (GPNVM bit 0). When the
security is enabled, any access to the Flash, SRAM, Core Registers and Internal Peripherals either through the
ICE interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of the
code programmed in the Flash.

This security bit can only be enabled, through the command “Set General Purpose NVM Bit 0” of the EEFC User
Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash
erase is performed. When the security bit is deactivated, all accesses to the Flash, SRAM, Core registers, Internal
Peripherals are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation.
However, it is safer to connect it directly to GND for the final application.

7.1.3.7 Calibration Bits
NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured
and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

7.1.3.8 Unique Identifier
Each device integrates its own 128-bit unique identifier. These bits are factory configured and cannot be changed
by the user. The ERASE pin has no effect on the unique identifier.

7.1.3.9 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through either a serial JTAG interface or
through a multiplexed fully-handshaked parallel port. It allows gang programming with market-standard industrial
programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

7.1.3.10 SAM-BA Boot

The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the on-chip Flash
memory.

The SAM-BA Boot Assistant supports serial communication via the UART and USB.
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).
The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to 0.

7.1.3.11 GPNVM Bits

The SAM3S8 features two GPNVM bits, whereas SAM3SD8 features three GPNVM bits. These bits can be
cleared or set respectively through the commands “Clear GPNVM Bit” and “Set GPNVM Bit” of the EEFC User
Interface.

The Flash of the SAM3S8 is composed of 512 Kbytes in a single bank, while the SAM3SD8 Flash is composed of
dual banks, each containing 256 Kbytes. The dual-bank function enables programming one bank while the other
one is read (typically while the application code is running). Only one EEFC (Flash controller) controls the two
banks. Note that it is not possible to program simultaneously, or read simultaneously, the dual banks of the Flash.

The first bank of 256 Kbytes is called Bank 0 and the second bank of 256 Kbytes, Bank 1.

SAM3S8 / SAM3SDS8 [DATASHEET 29
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

The SAM3SD8 embeds an additional GPNVM bit: GPNVM2.

Table 7-2. General-purpose Non volatile Memory Bits
GPNVMBIt[#] Function
0 Security bit
1 Boot mode selection
2 Bank selection (Bank 0 or Bank 1) Only on SAM3SD8

7.1.4 Boot Strategies

The system always boots at address 0x0. To ensure maximum boot possibilities, the memory layout can be
changed via GPNVM.

A general purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the Flash.

The GPNVM bit can be cleared or set respectively through the commands “Clear General-purpose NVM Bit” and
“Set General-purpose NVM Bit” of the EEFC User Interface.

Setting GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the ROM. Asserting ERASE
clears the GPNVM Bit 1 and thus selects the boot from the ROM by default.

Setting the GPNVM Bit 2 selects bank 1, clearing it selects the boot from bank 0. Asserting ERASE clears the
GPNVM Bit 2 and thus selects the boot from bank 0 by default.

7.2 External Memories

The SAM3S8/SD8 features one External Bus Interface to provide an interface to a wide range of external
memories and to any parallel peripheral.

30 SAM3S8 / SAM3SD8 [DATASHEET)] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

8. System Controller

The System Controller is a set of peripherals, which allow handling of key elements of the system, such as power,
resets, clocks, time, interrupts, watchdog, etc.

8.1 System Controller and Peripherals Mapping
Please refer to Section 7-1 “SAM3S8/SD8 Product Mapping” on page 27.
All the peripherals are in the bit band region and are mapped in the bit band alias region.

8.2 Power-on-Reset, Brownout and Supply Monitor

The SAM3S8/SD8 embeds three features to monitor, warn and/or reset the chip:
e Power-on-Reset on VDDIO
e Brownout Detector on VDDCORE
e Supply Monitor on VDDIO

8.2.1 Power-on-Reset

The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start up but also during power
down. If VDDIO goes below the threshold voltage, the entire chip is reset. For more information, refer to Section
41. “SAM3S8/SD8 Electrical Characteristics”.

8.2.2 Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the
Supply Controller (SUPC_MR). It is especially recommended to disable it during low-power modes such as wait or
sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more information, refer to
Section 16. “SAM3 Supply Controller (SUPC)” and Section 41. “SAM3S8/SD8 Electrical Characteristics”.

8.2.3 Supply Monitor on VDDIO

The Supply Monitor monitors VDDIO. It is not active by default. It can be activated by software and is fully
programmable with 16 steps for the threshold (between 1.9V to 3.4V). It is controlled by the SUPC. A sample
mode is possible. It allows to divide the supply monitor power consumption by a factor of up to 2048. For more
information, refer to Section 16. “SAM3 Supply Controller (SUPC)” and Section 41. “SAM3S8/SD8 Electrical
Characteristics”.

SAM3S8 / SAM3SDS8 [DATASHEET 31
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

9. Peripherals

9.1 Peripheral Identifiers

Table 9-1 defines the Peripheral Identifiers of the SAM3S8/SD8. A peripheral identifier is required for the control of
the peripheral interrupt with the Nested Vectored Interrupt Controller and control of the peripheral clock with the
Power Management Controller.

Table 9-1. Peripheral Identifiers
Instance ID Instance Name NVIC Interrupt PMC Clock Control Instance Description

0 SUPC X Supply Controller
1 RSTC X Reset Controller
2 RTC X Real Time Clock
3 RTT X Real Time Timer
4 WDT X Watchdog Timer
5 PMC X Power Management Controller
6 EEFC X Enhanced Embedded Flash Controller
7 - - - Reserved
8 UARTO X X UART O
9 UART1 X X UART 1
10 SMC X X Static Memory Controller
11 PIOA X X Parallel I/O Controller A
12 PIOB X X Parallel 1/0O Controller B
13 PIOC X X Parallel 1/0O Controller C
14 USARTO X X USART O
15 USART1 X X USART 1
16 USART2 X X USART 2 (SAM3SD8 100 pins only)
17 - - - Reserved
18 HSMCI X X Multimedia Card Interface
19 TWIO X X Two Wire Interface 0
20 TWI1 X X Two Wire Interface 1
21 SPI X X Serial Peripheral Interface
22 SSC X X Synchronous Serial Controller
23 TCO X X Timer/Counter 0
24 TC1 X X Timer/Counter 1
25 TC2 X X Timer/Counter 2
26 TC3 X X Timer/Counter 3
27 TC4 X X Timer/Counter 4
28 TC5 X X Timer/Counter 5
29 ADC X X Analog To Digital Converter
30 DACC X X Digital To Analog Converter

32 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Table 9-1. Peripheral Identifiers (Continued)
Instance ID Instance Name NVIC Interrupt PMC Clock Control Instance Description
31 PWM X X Pulse Width Modulation
32 CRCCU X X CRC Calculation Unit
33 ACC X X Analog Comparator
34 UDP X X USB Device Port

9.2 APB/AHB Bridge
The SAM3S8/SD8 embeds One Peripheral Bridge. The peripherals of the bridge are clocked by MCK.

9.3 Peripheral Signal Multiplexing on I/O Lines

The SAM3S8/SD8 features two PIO controllers on 64-pin versions (PIOA and PIOB) or three PIO controllers on
the 100-pin version (PIOA, PIOB and PIOC), that multiplex the I/O lines of the peripheral set.

The SAM3S8/SD8 64-pin and 100-pin PIO Controllers control up to 32 lines. Each line can be assigned to one of
three peripheral functions: A, B or C. The multiplexing tables in the following tables define how the I/O lines of the
peripherals A, B and C are multiplexed on the PIO Controllers.

Note that some peripheral functions which are output only, might be duplicated within the tables.

SAM3S8 /| SAM3SDS8 [DATASHEET 33
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

9.3.1 PIO Controller A Multiplexing
Table 9-2. Multiplexing on PIO Controller A (PIOA)
Peripheral Peripheral Peripheral Peripheral Extra System
1/O Line A B C D Function Function Comments

PAO PWMHO TIOAO Al7 WKUPO

PA1 PWMH1 TIOBO A18 WKUP1

PA2 PWMH2 SCKO DATRG WKUP2

PA3 TWDO NPCS3

PA4 TWCKO TCLKO WKUP3

PA5 RXDO NPCS3 WKUP4

PA6 TXDO PCKO

PA7 RTSO PWMH3 XIN32

PA8 CTSO ADTRG WKUP5 XOUT32

PA9 URXDO NPCS1 PWMFIO WKUP6

PA10 UTXDO NPCS2

PA11 NPCSO PWMHO WKUP7

PA12 MISO PWMH1

PA13 MOSI PWMH2

PA14 SPCK PWMH3 WKUP8

PA15 TF TIOA1 PWML3 PIODCEN1 WKUP14

PA16 TK TIOB1 PWML2 PIODCEN2 WKUP15

PA17 TD PCK1 PWMH3 ADO

PA18 RD PCK2 Al4 AD1

PA19 RK PWMLO Al5 AD2/WKUP9

PA20 RF PWML1 Al6 AD3/WKUP10

PA21 RXD1 PCK1 AD8 64/100-pin versions
PA22 TXD1 NPCS3 NCS2 AD9 64/100-pin versions
PA23 SCK1 PWMHO Al19 PIODCCLK 64/100-pin versions
PA24 RTS1 PWMH1 A20 PIODCO 64/100-pin versions
PA25 CTSs1 PWMH2 A23 PIODC1 64/100-pin versions
PA26 DCD1 TIOA2 MCDA2 PIODC2 64/100-pin versions
PA27 DTR1 TIOB2 MCDA3 PIODC3 64/100-pin versions
PA28 DSR1 TCLK1 MCCDA PIODC4 64/100-pin versions
PA29 RI1 TCLK2 MCCK PIODC5 64/100-pin versions
PA30 PWML2 NPCS2 MCDAO PIODC6 WKUP11 64/100-pin versions
PA31 NPCS1 PCK2 MCDA1 PIODC7 64/100-pin versions

34 SAM3S8 / SAM3SD8 [DATASHEET]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

9.3.2 PIO Controller B Multiplexing
Table 9-3. Multiplexing on PIO Controller B (PIOB)
I/0O Line Peripheral A Peripheral B Peripheral C Extra Function System Function Comments

PBO PWMHO AD4/RTCOUTO
PB1 PWMH1 AD5/RTCOUT1
PB2 URXD1 NPCS2 AD6/WKUP12
PB3 UTXD1 PCK2 AD7
PB4 TWD1 PWMH2 TDI
PB5 TWCK1 PWMLO WKUP13 TDO/TFg\CESW
PB6 TMS/SWDIO
PB7 TCK/SWCLK
PB8 XOUT
PB9 XIN
PB10 DDM
PB11 DDP
PB12 PWML1 ERASE
PB13 PWML2 PCKO DACO 64/100-pin versions
PB14 NPCS1 PWMH3 DAC1 64/100-pin versions

Atmel

SAM3S8 / SAM3SD8 [DATASHEET]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

35

9.3.3 PIO Controller C Multiplexing
Table 9-4. Multiplexing on PIO Controller C (PIOC)

I/0O Line Peripheral A Peripheral B Peripheral C Extra Function System Function Comments
PCO DO PWMLO 100-pin version
PC1 D1 PWML1 100-pin version
PC2 D2 PWML2 100-pin version
PC3 D3 PWML3 100-pin version
PC4 D4 NPCS1 100-pin version
PC5 D5 100-pin version
PC6 D6 100-pin version
PC7 D7 100-pin version
PC8 NWE 100-pin version
PC9 NANDOE RXD2® 100-pin version
PC10 NANDWE TXD2W 100-pin version
PC11 NRD 100-pin version
PC12 NCS3 AD12 100-pin version
PC13 NWAIT PWMLO AD10 100-pin version
PC14 NCSO0 sck2® 100-pin version
PC15 NCS1 PWML1 AD11 100-pin version
PC16 A21/NANDALE RTS2M 100-pin version
PC17 A22/NANDCLE cTS2M 100-pin version
PC18 A0 PWMHO 100-pin version
PC19 Al PWMH1 100-pin version
PC20 A2 PWMH2 100-pin version
PC21 A3 PWMH3 100-pin version
PC22 A4 PWML3 100-pin version
PC23 A5 TIOAS 100-pin version
PC24 A6 TIOB3 100-pin version
PC25 A7 TCLK3 100-pin version
PC26 A8 TIOA4 100-pin version
PC27 A9 TIOB4 100-pin version
PC28 A10 TCLK4 100-pin version
PC29 All TIOAS AD13 100-pin version
PC30 Al12 TIOB5 AD14 100-pin version
PC31 A13 TCLK5 100-pin version

Note: 1. USART2 only on SAM3SD8 in 100-pin package.

36 SAM3S8 / SAM3SD8 [DATASHEET]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

10. ARM Cortex-M3 Processor

10.1 About this section

This section provides the information required for application and system-level software development. It does not
provide information on debug components, features, or operation.

This material is for microcontroller software and hardware engineers, including those who have no experience of
ARM products.

Note: The information in this section is reproduced from source material provided to Atmel by ARM Ltd. in terms of
Atmel’s license for the ARM Cortex-M3 processor core. This information is copyright ARM Ltd., 2008 - 2009.

10.2 About the Cortex-M3 processor and core peripherals

e The Cortex-M3 processor is a high performance 32-bit processor designed for the microcontroller market. It
offers significant benefits to developers, including:

outstanding processing performance combined with fast interrupt handling
enhanced system debug with extensive breakpoint and trace capabilities
efficient processor core, system and memories

ultra-low power consumption with integrated sleep modes

platform security, with integrated memory protection unit (MPU).

Figure 10-1. Typical Cortex-M3 implementation

Cortex-M3
Processor

NVIC | Processor
3 Core

Debug Memory Serial
%» . . i
<« Access Protection Unit \(Vwe >
Port . N Viewer
Flash Data
Pagch Watct]point
Bus Matrix
Code SRAM and
Interface Peripheral Interface
A A
\ \/

The Cortex-M3 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard
architecture, making it ideal for demanding embedded applications. The processor delivers exceptional power
efficiency through an efficient instruction set and extensively optimized design, providing high-end processing
hardware including single-cycle 32x32 multiplication and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M3 processor implements tightly-coupled system
components that reduce processor area while significantly improving interrupt handling and system debug

SAM3S8 /| SAM3SDS8 [DATASHEET 37
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

capabilities. The Cortex-M3 processor implements a version of the Thumb® instruction set, ensuring high code
density and reduced program memory requirements. The Cortex-M3 instruction set provides the exceptional
performance expected of a modern 32-bit architecture, with the high code density of 8-bit and 16-bit
microcontrollers.

The Cortex-M3 processor closely integrates a configurable nested interrupt controller (NVIC), to deliver industry-
leading interrupt performance. The NVIC provides up to 16 interrupt priority levels. The tight integration of the
processor core and NVIC provides fast execution of interrupt service routines (ISRs), dramatically reducing the
interrupt latency. This is achieved through the hardware stacking of registers, and the ability to suspend load-
multiple and store-multiple operations. Interrupt handlers do not require any assembler stubs, removing any code
overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from
one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that
enables the entire device to be rapidly powered down.

10.2.1 System level interface

. . . . ® . .
The Cortex-M3 processor provides multiple interfaces using AMBA technology to provide high speed, low latency
memory accesses. It supports unaligned data accesses and implements atomic bit manipulation that enables
faster peripheral controls, system spinlocks and thread-safe Boolean data handling.

The Cortex-M3 processor has a memory protection unit (MPU) that provides fine grain memory control, enabling
applications to implement security privilege levels, separating code, data and stack on a task-by-task basis. Such
requirements are becoming critical in many embedded applications.

10.2.2 Integrated configurable debug

The Cortex-M3 processor implements a complete hardware debug solution. This provides high system visibility of
the processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is
ideal for microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data watchpoints
and a profiling unit. To enable simple and cost-effective profiling of the system events these generate, a Serial
Wire Viewer (SWV) can export a stream of software-generated messages, data trace, and profiling information
through a single pin.

10.2.3 Cortex-M3 processor features and benefits summary

tight integration of system peripherals reduces area and development costs
Thumb instruction set combines high code density with 32-bit performance
code-patch ability for ROM system updates

power control optimization of system components

integrated sleep modes for low power consumption

fast code execution permits slower processor clock or increases sleep mode time
hardware division and fast multiplier

deterministic, high-performance interrupt handling for time-critical applications

» memory protection unit (MPU) for safety-critical applications
e extensive debug and trace capabilities:

— Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging and
tracing.

38 SAM3S8 / SAM3SD8 [DATASHEET)] AtmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.2.4 Cortex-M3 core peripherals

These are:

10.2.4.1 Nested Vectored Interrupt Controller

The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that supports low latency
interrupt processing.

10.2.4.2 System control block

The System control block (SCB) is the programmers model interface to the processor. It provides system
implementation information and system control, including configuration, control, and reporting of system
exceptions.

10.2.4.3 System timer

The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System (RTOS) tick
timer or as a simple counter.

10.2.4.4 Memory protection unit

The Memory protection unit (MPU) improves system reliability by defining the memory attributes for different
memory regions. It provides up to eight different regions, and an optional predefined background region.

10.3 Programmers model

This section describes the Cortex-M3 programmers model. In addition to the individual core register descriptions, it
contains information about the processor modes and privilege levels for software execution and stacks.

10.3.1 Processor mode and privilege levels for software execution

The processor modes are:

10.3.1.1 Thread mode

Used to execute application software. The processor enters Thread mode when it comes out of reset.

10.3.1.2 Handler mode
Used to handle exceptions. The processor returns to Thread mode when it has finished exception processing.
The privilege levels for software execution are:

10.3.1.3 Unprivileged
The software:
e has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
e cannot access the system timer, NVIC, or system control block
e might have restricted access to memory or peripherals.

Unprivileged software executes at the unprivileged level.

10.3.1.4 Privileged
The software can use all the instructions and has access to all resources.
Privileged software executes at the privileged level.

In Thread mode, the CONTROL register controls whether software execution is privileged or unprivileged, see
“CONTROL Register” on page 48. In Handler mode, software execution is always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for software execution in
Thread mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to
privileged software.

SAM3S8 /| SAM3SDS8 [DATASHEET 39
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.3.2 Stacks

The processor uses a full descending stack. This means the stack pointer indicates the last stacked item on the
stack memory. When the processor pushes a new item onto the stack, it decrements the stack pointer and then
writes the item to the new memory location. The processor implements two stacks, the main stack and the process
stack, with independent copies of the stack pointer, see “Stack Pointer” on page 41.

In Thread mode, the CONTROL register controls whether the processor uses the main stack or the process stack,
see “CONTROL Register” on page 48. In Handler mode, the processor always uses the main stack. The options
for processor operations are:

Table 10-1. Summary of processor mode, execution privilege level, and stack use options

Processor Used to Privilege level for

mode execute software execution Stack used

Thread Applications Privileged or unprivileged™ | Main stack or process stack®
Handler Exception handlers Always privileged Main stack

Note: 1. “CONTROL Register” on page 48

10.3.3 Core registers

The processor core registers are:

(RO

R1

R2

R3

R4

R5

R6 General-purpose registers

R7

R8

R9

High registers R10

R11

R12
Stack Pointer SP (R13) | pspt || wmspPf *Banked version of SP
Link Register LR (R14)

Program Counter PC (R15)

Low registers

PSR
PRIMASK

Program status register

FAULTMASK Exception mask registers Special registers
BASEPRI
CONTROL CONTROL register

40 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Table 10-2. Core register set summary

Required Reset
Name Type @ | privilege @ | value Description
RO-R12 RW Either Unknown “General-purpose registers” on page 41
MSP RW Privileged See description “Stack Pointer” on page 41
PSP RW Either Unknown “Stack Pointer” on page 41
LR RW Either OXFFFFFFFF “Link Register” on page 41
PC RW Either See description “Program Counter” on page 41
PSR RW Privileged 0x01000000 “Program Status Register” on page 42
ASPR RwW Either 0x00000000 “Application Program Status Register” on page 43
IPSR RO Privileged 0x00000000 “Interrupt Program Status Register” on page 44
EPSR RO Privileged 0x01000000 “Execution Program Status Register” on page 44
PRIMASK RW Privileged 0x00000000 “Priority Mask Register” on page 45
FAULTMASK RW Privileged 0x00000000 “Fault Mask Register” on page 46
BASEPRI RW Privileged 0x00000000 “Base Priority Mask Register” on page 47
CONTROL RW Privileged 0x00000000 “CONTROL Register” on page 48
1. Describes access type during program execution in thread mode and Handler mode. Debug access can differ.
2. An entry of Either means privileged and unprivileged software can access the register.

10.3.3.1 General-purpose registers

RO-R12 are 32-bit general-purpose registers for data operations.

10.3.3.2 Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indicates the stack pointer
to use:

e 0= Main Stack Pointer (MSP). This is the reset value.
e 1= Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

10.3.3.3 Link Register
The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and
exceptions. On reset, the processor loads the LR value OXFFFFFFFF,

10.3.3.4 Program Counter

The Program Counter (PC) is register R15. It contains the current program address. Bit[0] is always 0 because
instruction fetches must be halfword aligned. On reset, the processor loads the PC with the value of the reset
vector, which is at address 0x00000004.

SAM3S8 / SAM3SDS8 [DATASHEET 41
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.3.3.5 Program Status Register
The Program Status Register (PSR) combines:
e Application Program Status Register (APSR)
e Interrupt Program Status Register (IPSR)
e Execution Program Status Register (EPSR).
These registers are mutually exclusive bitfields in the 32-bit PSR. The bit assignments are:

* APSR:
31 30 29 28 27 26 25 24

| N | z C Vv | Q | Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved |

* IPSR:
31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |SR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

+ EPSR:
31 30 29 28 27 26 25 24

| Reserved ICI/T T |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| ICI/IT Reserved |
7 6 5 4 3 2 1 0

| Reserved |

42 SAM3S8 / SAM3SD8 [DATASHEET)] AtmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

The PSR bit assignments are:

31 30 29 28 27 26 25 24

| N | z | C v | Q | ICINT T |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| ICINT Reserved | ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

Access these registers individually or as a combination of any two or all three registers, using the register name as
an argument to the MSR or MRS instructions. For example:

e read all of the registers using PSR with the MRS instruction
e write to the APSR using APSR with the MSR instruction.

The PSR combinations and attributes are:

Table 10-3. PSR register combinations

Register Type Combination
PSR RW®: @ APSR, EPSR, and IPSR
IEPSR RO EPSR and IPSR
IAPSR RwW® APSR and IPSR
EAPSR RW®) APSR and EPSR
1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the processor ignores writes to the these bits.

See the instruction descriptions “MRS” on page 132 and “MSR” on page 133 for more information about how to
access the program status registers.

10.3.3.6 Application Program Status Register

The APSR contains the current state of the condition flags from previous instruction executions. See the register
summary in Table 10-2 on page 41 for its attributes. The bit assignments are:

* N

Negative or less than flag:

0 = operation result was positive, zero, greater than, or equal
1 = operation result was negative or less than.

e Z

Zero flag:

0 = operation result was not zero
1 = operation result was zero.

SAM3S8 /| SAM3SDS8 [DATASHEET 43
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

« C

Carry or borrow flag:

0 = add operation did not result in a carry bit or subtract operation resulted in a borrow bit
1 = add operation resulted in a carry bit or subtract operation did not result in a borrow bit.

eV
Overflow flag:
0 = operation did not result in an overflow

1 = operation resulted in an overflow.

* Q

Sticky saturation flag:

0 = indicates that saturation has not occurred since reset or since the bit was last cleared to zero
1 = indicates when an ssAT or UsAT instruction results in saturation.

This bit is cleared to zero by software using an MRs instruction.

10.3.3.7 Interrupt Program Status Register

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR). See the register
summary in Table 10-2 on page 41 for its attributes. The bit assignments are:

¢ ISR_NUMBER

This is the number of the current exception:
0 = Thread mode

1 = Reserved

2 =NMI

3 = Hard fault

4 = Memory management fault
5 = Bus fault

6 = Usage fault

7-10 = Reserved

11 = SVCall

12 = Reserved for Debug
13 = Reserved

14 = PendSV
15 = SysTick
16 = IRQO
50 = IRQ34

see “Exception types” on page 58 for more information.

10.3.3.8 Execution Program Status Register
The EPSR contains the Thumb state bit, and the execution state bits for either the:
e If-Then (IT) instruction
e Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction.

44 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

See the register summary in Table 10-2 on page 41 for the EPSR attributes. The bit assignments are:

« ICI

Interruptible-continuable instruction bits, see “Interruptible-continuable instructions” on page 45.

o IT
Indicates the execution state bits of the IT instruction, see “IT” on page 122.

e T
Always set to 1.

Attempts to read the EPSR directly through application software using the MSR instruction always return zero.
Attempts to write the EPSR using the MSR instruction in application software are ignored. Fault handlers can
examine EPSR value in the stacked PSR to indicate the operation that is at fault. See “Exception entry and return”
on page 62

10.3.3.9 Interruptible-continuable instructions

When an interrupt occurs during the execution of an LDM or STM instruction, the processor:
e stops the load multiple or store multiple instruction operation temporarily
e stores the next register operand in the multiple operation to EPSR bits[15:12].
After servicing the interrupt, the processor:
e returns to the register pointed to by bits[15:12]
e resumes execution of the multiple load or store instruction.

When the EPSR holds ICI execution state, bits[26:25,11:10] are zero.
10.3.3.10 If-Then block

The If-Then block contains up to four instructions following a 16-bit IT instruction. Each instruction in the block is
conditional. The conditions for the instructions are either all the same, or some can be the inverse of others. See
“IT” on page 122 for more information.

10.3.3.11 Exception mask registers

The exception mask registers disable the handling of exceptions by the processor. Disable exceptions where they
might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change the
value of PRIMASK or FAULTMASK. See “MRS” on page 132, “MSR” on page 133, and “CPS” on page 128 for
more information.

10.3.3.12 Priority Mask Register

The PRIMASK register prevents activation of all exceptions with configurable priority. See the register summary in
Table 10-2 on page 41 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved PRIMASK |

SAM3S8 /| SAM3SDS8 [DATASHEET 45
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

* PRIMASK
0 = no effect

1 = prevents the activation of all exceptions with configurable priority.

10.3.3.13 Fault Mask Register

The FAULTMASK register prevents activation of all exceptions. See the register summary in Table 10-2 on page
41 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved FAULTMASK |

¢ FAULTMASK
0 = no effect
1 = prevents the activation of all exceptions.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

46 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.3.3.14 Base Priority Mask Register

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero
value, it prevents the activation of all exceptions with same or lower priority level as the BASEPRI value. See the
register summary in Table 10-2 on page 41 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| BASEPRI |

+ BASEPRI

Priority mask bits:

0x0000 = no effect

Nonzero = defines the base priority for exception processing.

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this
field, bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” on page 147 for more information. Remem-
ber that higher priority field values correspond to lower exception priorities.

SAM3S8 / SAM3SDS8 [DATASHEET 47
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.3.3.15 CONTROL Register

The CONTROL register controls the stack used and the privilege level for software execution when the processor
is in Thread mode. See the register summary in Table 10-2 on page 41 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

: Thread Mode
Reserved Acg\é?n?et?ck Privilege
Leve

» Active stack pointer

Defines the current stack:

0 = MSP is the current stack pointer

1 = PSP is the current stack pointer.

In Handler mode this bit reads as zero and ignores writes.

» Thread mode privilege level
Defines the Thread mode privilege level:
0 = privileged

1 = unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the CON-
TROL register when in Handler mode. The exception entry and return mechanisms update the CONTROL register.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack and the kernel and
exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, use the MSR
instruction to set the Active stack pointer bit to 1, see “MSR” on page 133.

When changing the stack pointer, software must use an ISB instruction immediately after the MSR instruction. This
ensures that instructions after the ISB execute using the new stack pointer. See “ISB” on page 131

48 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.3.4 Exceptions and interrupts

The Cortex-M3 processor supports interrupts and system exceptions. The processor and the Nested Vectored
Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software
control. The processor uses handler mode to handle all exceptions except for reset. See “Exception entry” on page
63 and “Exception return” on page 64 for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller” on page 140 for more
information.

10.3.5 Data types

The processor:
e supports the following data types:
— 32-bit words
— 16-bit halfwords
— 8-bit bytes
e supports 64-bit data transfer instructions.

e manages all data memory accesses as little-endian. Instruction memory and Private Peripheral Bus (PPB)
accesses are always little-endian. See “Memory regions, types and attributes” on page 50 for more
information.

10.3.6 The Cortex Microcontroller Software Interface Standard

For a Cortex-M3 microcontroller system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:
e acommon way to:
— access peripheral registers
— define exception vectors
e the names of:
— the registers of the core peripherals
— the core exception vectors
e adevice-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M3 processor. It
also includes optional interfaces for middleware components comprising a TCP/IP stack and a Flash file system.

CMSIS simplifies software development by enabling the reuse of template code and the combination of CMSIS-
compliant software components from various middleware vendors. Software vendors can expand the CMSIS to
include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS
functions that address the processor core and the core peripherals.

This document uses the register short names defined by the CMSIS. In a few cases these differ from the
architectural short names that might be used in other documents.
The following sections give more information about the CMSIS:

e “Power management programming hints” on page 67

e “Intrinsic functions” on page 71

e “The CMSIS mapping of the Cortex-M3 NVIC registers” on page 141

e “NVIC programming hints” on page 152.

SAM3S8 /| SAM3SDS8 [DATASHEET 49
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.4 Memory model

This section describes the processor memory map, the behavior of memory accesses, and the bit-banding
features. The processor has a fixed memory map that provides up to 4GB of addressable memory. The memory

map is:
OxFFFFFFFF
Vendor-specific 511MB
memory
0xE0100000
i i OXEOOFFFFF
Prlvatebpuesrlpheral 1.0MB
0xE0000000
OXDFFFFFFF
External device 1.0GB
0xA0000000
Ox9FFFFFFF
Ox43FFFFEF External RAM 1.0GB
32MB Bit band alias
0x60000000
0x42000000 OX5FFFFFFF
Ox400EFEEF . . Peripheral 0.5GB
|1MB Bit band region
0x40000000 0x40000000
O0x23FFFFFF Ox3FFFFFFF
32MB Bit band alias SRAM 0.568
0x20000000
0x22000000 Ox1FFFFFFF
Code 0.5GB
0x200FFFFF - -
0x20000000 /MB_Bitband region | 0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit
data, see “Bit-banding” on page 54.

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers,
see “About the Cortex-M3 peripherals” on page 139.

This memory mapping is generic to ARM Cortex-M3 products. To get the specific memory mapping of this product,
refer to the Memories section of the datasheet.

10.4.1 Memory regions, types and attributes

The memory map and the programming of the MPU split the memory map into regions. Each region has a defined
memory type, and some regions have additional memory attributes. The memory type and attributes determine the
behavior of accesses to the region.

50 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

The memory types are:

10.4.1.1 Normal
The processor can re-order transactions for efficiency, or perform speculative reads.

10.4.1.2 Device
The processor preserves transaction order relative to other transactions to Device or Strongly-ordered memory.

10.4.1.3 Strongly-ordered
The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can
buffer a write to Device memory, but must not buffer a write to Strongly-ordered memory.

The additional memory attributes include.

10.4.1.4 Shareable

For a shareable memory region, the memory system provides data synchronization between bus masters in a
system with multiple bus masters, for example, a processor with a DMA controller.

Strongly-ordered memory is always shareable.

If multiple bus masters can access a non-shareable memory region, software must ensure data coherency
between the bus masters.

10.4.1.5 Execute Never (XN)

Means the processor prevents instruction accesses. Any attempt to fetch an instruction from an XN region causes
a memory management fault exception.

10.4.2 Memory system ordering of memory accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not
guarantee that the order in which the accesses complete matches the program order of the instructions, providing
this does not affect the behavior of the instruction sequence. Normally, if correct program execution depends on
two memory accesses completing in program order, software must insert a memory barrier instruction between the
memory access instructions, see “Software ordering of memory accesses” on page 53.

However, the memory system does guarantee some ordering of accesses to Device and Strongly-ordered
memory. For two memory access instructions Al and A2, if A1 occurs before A2 in program order, the ordering of
the memory accesses caused by two instructions is:

i Strongly-

A2 Normal Device access gly

A1 access ordered

Non-shareable| Shareable access
Normal access - - - -
Device access, non-shareable - < - <
Device access, shareable - - < <
Strongly-ordered access - < < <

Where:
- Means that the memory system does not guarantee the ordering of the accesses.
< Means that accesses are observed in program order, that is, Al is always observed before A2.

SAM3S8 / SAM3SDS8 [DATASHEET 51
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.4.3 Behavior of memory accesses

The behavior of accesses to each region in the memory map is:

Table 10-4. Memory access behavior

Address Memory Memory

range region type XN Description

0x00000000- Executable region for program code. You can also put

) -

OXLFFFFFFF | C0de Normal data here.

Executable region for data. You can also put code
- here.

0x20000000 SRAM Normal® | - . o . . .

Ox3FFFFFFF This region includes bit band and bit band alias areas,
see Table 10-6 on page 54.

0x40000000- This region includes bit band and bit band alias areas,

i ice®
OxsFEFEFFF | Peripheral | Device XN

0x60000000- | External
OX9FFFFFFF | RAM

0xA0000000- | External
OxDFFFFFFF | device

see Table 10-6 on page 54.

Normal® | - Executable region for data.

Device®” | XN | External Device memory

0xE0000000- E(ral\r/iaheeral Strongly- %N This region includes the NVIC, System timer, and
OXEOOFFFFF Busp ordered® system control block.
0xE0100000- .
@
OXFFFFEEFF Reserved Device XN Reserved

Note: 1. See “Memory regions, types and attributes” on page 50 for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends that programs
always use the Code region. This is because the processor has separate buses that enable instruction fetches and
data accesses to occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more information, see
“Memory protection unit” on page 185.

10.4.3.1 Additional memory access constraints for shared memory

When a system includes shared memory, some memory regions have additional access constraints, and some
regions are subdivided, as Table 10-5 shows:

Table 10-5. Memory region share ability policies

Address range Memory region Memory type Shareability
0x00000000-))
OXLFFFFFFF Code Normal
0x20000000-
1) _
OX3FFFFFFF SRAM Normal
0x40000000- . .
(2) (1) R
OXGFFFFFFF Peripheral Device
0x60000000- N
OX7FFFFFFF WBWA
External RAM Normal ™ .
0x80000000-
2
OXOFFFFFFF wT

52 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Table 10-5. Memory region share ability policies (Continued)

Address range Memory region Memory type Shareability
0xA0000000-
1)

OXBFFFFFFF Shareable

External device Device ™ -
0xC0000000- Non-
OXDFFFFFFF shareable™
0xE0000000- Private Peripheral Strongly- o
OXEQOFFFFF Bus ordered Shareable ;
0xE0100000- Vendor-specific Device®) i
OXFFFFFFFF device®

Notes: 1. See “Memory regions, types and attributes” on page 50 for more information.
2. The Peripheral and Vendor-specific device regions have no additional access constraints.

10.4.4 Software ordering of memory accesses
The order of instructions in the program flow does not always guarantee the order of the corresponding memory
transactions. This is because:

e the processor can reorder some memory accesses to improve efficiency, providing this does not affect the
behavior of the instruction sequence.

e the processor has multiple bus interfaces

e memory or devices in the memory map have different wait states

e some memory accesses are buffered or speculative.
“Memory system ordering of memory accesses” on page 51 describes the cases where the memory system
guarantees the order of memory accesses. Otherwise, if the order of memory accesses is critical, software must

include memory barrier instructions to force that ordering. The processor provides the following memory barrier
instructions:

10.4.4.1 DMB

The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before
subsequent memory transactions. See “DMB” on page 129.

10.4.4.2 DSB

The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete
before subsequent instructions execute. See “DSB” on page 130.

10.4.4.3 ISB

The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is
recognizable by subsequent instructions. See “ISB” on page 131.

Use memory barrier instructions in, for example:
e MPU programming:
— Use a DSB instruction to ensure the effect of the MPU takes place immediately at the end of context
switching.
— Use an ISB instruction to ensure the new MPU setting takes effect immediately after programming the

MPU region or regions, if the MPU configuration code was accessed using a branch or call. If the MPU
configuration code is entered using exception mechanisms, then an ISB instruction is not required.
e Vector table. If the program changes an entry in the vector table, and then enables the corresponding
exception, use a DMB instruction between the operations. This ensures that if the exception is taken
immediately after being enabled the processor uses the new exception vector.

SAM3S8 /| SAM3SDS8 [DATASHEET 53
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

e Self-modifying code. If a program contains self-modifying code, use an ISB instruction immediately after the
code modification in the program. This ensures subsequent instruction execution uses the updated program.

e Memory map switching. If the system contains a memory map switching mechanism, use a DSB instruction
after switching the memory map in the program. This ensures subsequent instruction execution uses the
updated memory map.

e Dynamic exception priority change. When an exception priority has to change when the exception is pending
or active, use DSB instructions after the change. This ensures the change takes effect on completion of the
DSB instruction.

e Using a semaphore in multi-master system. If the system contains more than one bus master, for example, if
another processor is present in the system, each processor must use a DMB instruction after any
semaphore instructions, to ensure other bus masters see the memory transactions in the order in which they
were executed.

Memory accesses to Strongly-ordered memory, such as the system control block, do not require the use of DMB
instructions.

10.4.5 Bit-banding
A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band
regions occupy the lowest 1MB of the SRAM and peripheral memory regions.
The memory map has two 32MB alias regions that map to two 1MB bit-band regions:
e accesses to the 32MB SRAM alias region map to the 1MB SRAM bit-band region, as shown in Table 10-6
e accesses to the 32MB peripheral alias region map to the 1MB peripheral bit-band region, as shown in Table
10-7.

Table 10-6. SRAM memory bit-banding regions

Address Memory

range region Instruction and data accesses

0x20000000- SRAM bit-band Direct accesses to this memory range behave as SRAM
reqion memory accesses, but this region is also bit addressable

Ox200FFFFF 9 through bit-band alias.

0x22000000- Data accesses to this region are remapped to bit band
SRAM bit-band alias | region. A write operation is performed as read-modify-write.

Ox23FFFFFF Instruction accesses are not remapped.

Table 10-7. Peripheral memory bit-banding regions

Address Memory
range region Instruction and data accesses

Direct accesses to this memory range behave as peripheral
memory accesses, but this region is also bit addressable
through bit-band alias.

0x40000000- Peripheral bit-band
Ox400FFFFF | alias

Data accesses to this region are remapped to bit band
region. A write operation is performed as read-modify-write.
Instruction accesses are not permitted.

0x42000000- | peripheral bit-band
Ox43FFFFFF | region

A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM or peripheral bit-
band region.

54 SAM3S8 / SAM3SD8 [DATASHEET)] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

The following formula shows how the alias region maps onto the bit-band region:
bit_word_offset = (byte_offset x 32) + (bit_nunber x 4)
bit_word_addr = bit_band_base + bit_word_of fset

where:
e Bit word offset is the position of the target bit in the bit-band memory region.
Bit _word_addr is the address of the word in the alias memory region that maps to the targeted bit.
Bi t band_base is the starting address of the alias region.
Byt e_of f set is the number of the byte in the bit-band region that contains the targeted bit.
Bi t _nunber is the bit position, 0-7, of the targeted bit.

Figure 10-2 shows examples of bit-band mapping between the SRAM bit-band alias region and the SRAM bit-
band region:

e The alias word at 0x23FFFFEO maps to bit[0] of the bit-band byte at 0x200FFFFF: 0x23FFFFEO = 0x22000000 +
(OXFFFFF*32) + (0*4).

e The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0x200FFFFF: 0x23FFFFFC = 0x22000000 +
(OXFFFFF*32) + (7*4).

e The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 = 0x22000000 +
(0*32) + (0 *4).

e The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C = 0x22000000+
(0*32) + (7*4).
Figure 10-2. Bit-band mapping

32MB alias region

I 0x23FFFFFC I 0x23FFFFF8 | 0x23FFFFF4 | 0x23FFFFFO | Ox23FFFFEC | O0x23FFFFE8 | O0x23FFFFE4 I 0x23FFFFEO I
.
.
.
/I 0x2200001C I 0x22000018 0x22000014 0x22000010 0x22000 0x22000008 | 0x22000004 I 0x22000000 I
1MB SRAM bit-band region \
\7654321076 3 21 07 6 5 4 3 2 1 07 6 5 4 3 2 10
I [[I [[~ I [[I [[
0x200FFFFF 0x200FFFFE \\ 0x200FFFFD 0x200FFFFC
J - J - J - J -
.
.
.

7 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 21 7 6 5 4 3 2 10
I | [I | [I | [I | [
0x20000003 0x20000002 0x20000001 0x20000000
J - J - J - J -

10.4.5.1 Directly accessing an alias region
Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the targeted bit in the bit-
band region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit, and writing a value with bit[0] set to O
writes a 0 to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing OxFF.
Writing 0x00 has the same effect as writing OxOE.

SAM3S8 /| SAM3SDS8 [DATASHEET 55
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Reading a word in the alias region:
e 0x00000000 indicates that the targeted bit in the bit-band region is set to zero
e (x00000001 indicates that the targeted bit in the bit-band region is set to 1

10.4.5.2 Directly accessing a bit-band region

“Behavior of memory accesses” on page 52 describes the behavior of direct byte, halfword, or word accesses to
the bit-band regions.

10.4.6 Memory endianness

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example,
bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word. or “Little-endian format” describes
how words of data are stored in memory.

10.4.6.1 Little-endian format

In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered byte, and
the most significant byte at the highest-numbered byte. For example:

Memory Register
7 0
31 2423 1615 87 0
Address A BO Isbyte B3 B2 B1 BO
A+1 B1
A+2(B2

A+3(B3 |msbyte

10.4.7 Synchronization primitives

The Cortex-M3 instruction set includes pairs of synchronization primitives. These provide a non-blocking
mechanism that a thread or process can use to obtain exclusive access to a memory location. Software can use
them to perform a guaranteed read-modify-write memory update sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

10.4.7.1 A Load-Exclusive instruction

Used to read the value of a memory location, requesting exclusive access to that location.

10.4.7.2 A Store-Exclusive instruction
Used to attempt to write to the same memory location, returning a status bit to a register. If this bit is:
0: it indicates that the thread or process gained exclusive access to the memory, and the write succeeds,
1: it indicates that the thread or process did not gain exclusive access to the memory, and no write is performed,
The pairs of Load-Exclusive and Store-Exclusive instructions are:
e the word instructions LDREX and STREX

e the halfword instructions LDREXH and STREXH
e the byte instructions LDREXB and STREXB.

Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.

56 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

To perform a guaranteed read-modify-write of a memory location, software must:

e Use a Load-Exclusive instruction to read the value of the location.

e Update the value, as required.

e Use a Store-Exclusive instruction to attempt to write the new value back to the memory location, and tests
the returned status bit. If this bit is:
0: The read-modify-write completed successfully,

1: No write was performed. This indicates that the value returned the first step might be out of date. The
software must retry the read-modify-write sequence,
Software can use the synchronization primitives to implement a semaphores as follows:

e Use a Load-Exclusive instruction to read from the semaphore address to check whether the semaphore is
free.

e If the semaphore is free, use a Store-Exclusive to write the claim value to the semaphore address.

e If the returned status bit from the second step indicates that the Store-Exclusive succeeded then the
software has claimed the semaphore. However, if the Store-Exclusive failed, another process might have
claimed the semaphore after the software performed the first step.

The Cortex-M3 includes an exclusive access monitor, that tags the fact that the processor has executed a Load-
Exclusive instruction. If the processor is part of a multiprocessor system, the system also globally tags the memory
locations addressed by exclusive accesses by each processor.
The processor removes its exclusive access tag if:

e It executes a CLREX instruction

e It executes a Store-Exclusive instruction, regardless of whether the write succeeds.

e An exception occurs. This means the processor can resolve semaphore conflicts between different threads.
In a multiprocessor implementation:

e executing a CLREX instruction removes only the local exclusive access tag for the processor

e executing a Store-Exclusive instruction, or an exception. removes the local exclusive access tags, and all

global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX” on page 91 and
“CLREX” on page 93.

10.4.8 Programming hints for the synchronization primitives
ANSI C cannot directly generate the exclusive access instructions. Some C compilers provide intrinsic functions
for generation of these instructions:
Table 10-8. C compiler intrinsic functions for exclusive access instructions
Instruction Intrinsic function
LDREX, LDREXH, or . . . —_—
LDREXB unsigned int __Idrex(volatile void *ptr)
STREX, STREXH, or _—
STREXB int __strex(unsigned int val, volatile void *ptr)
CLREX void __ clrex(void)
The actual exclusive access instruction generated depends on the data type of the pointer passed to the intrinsic
function. For example, the following C code generates the require LDREXB operation:
__ldrex((vol atile char *) OxFF);
/lt L SAM3S8 / SAM3SD8 [DATASHEET] 57
me Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.5 Exception model

This section describes the exception model.

10.5.1 Exception states

Each exception is in one of the following states:

10.5.1.1 Inactive
The exception is not active and not pending.

10.5.1.2 Pending
The exception is waiting to be serviced by the processor.
An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to
pending.
10.5.1.3 Active
An exception that is being serviced by the processor but has not completed.
An exception handler can interrupt the execution of another exception handler. In this case both exceptions are in
the active state.
10.5.1.4 Active and pending
The exception is being serviced by the processor and there is a pending exception from the same source.

10.5.2 Exception types
The exception types are:

10.5.2.1 Reset

Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception.
When reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset
is deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution
restarts as privileged execution in Thread mode.

10.5.2.2 Non Maskable Interrupt (NMI)

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is the highest
priority exception other than reset. It is permanently enabled and has a fixed priority of -2.
NMIs cannot be:

e Masked or prevented from activation by any other exception.

e Preempted by any exception other than Reset.

10.5.2.3 Hard fault

A hard fault is an exception that occurs because of an error during exception processing, or because an exception
cannot be managed by any other exception mechanism. Hard faults have a fixed priority of -1, meaning they have
higher priority than any exception with configurable priority.

10.5.2.4 Memory management fault

A memory management fault is an exception that occurs because of a memory protection related fault. The MPU
or the fixed memory protection constraints determines this fault, for both instruction and data memory transactions.
This fault is used to abort instruction accesses to Execute Never (XN) memory regions, even if the MPU is
disabled.

58 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.5.2.5 Bus fault

A bus fault is an exception that occurs because of a memory related fault for an instruction or data memory
transaction. This might be from an error detected on a bus in the memory system.

10.5.2.6 Usage fault

A usage fault is an exception that occurs because of a fault related to instruction execution. This includes:
e an undefined instruction
e anillegal unaligned access
e invalid state on instruction execution
e an error on exception return.
The following can cause a usage fault when the core is configured to report them:
e an unaligned address on word and halfword memory access
e division by zero.

10.5.2.7 Svcall

A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications
can use SVC instructions to access OS kernel functions and device drivers.

10.5.2.8 PendSV

PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context
switching when no other exception is active.

10.5.2.9 SysTick

A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate
a SysTick exception. In an OS environment, the processor can use this exception as system tick.

10.5.2.10 Interrupt (IRQ)

A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software request. All interrupts are
asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the

processor.
Table 10-9. Properties of the different exception types
IRQ
Exception | number(| Exception Vector address
number @ | Y type Priority or offset @ Activation
-3, the
1 - Reset . 0x00000004 Asynchronous
highest
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 Hard fault -1 0x0000000C -
Memory)
4 -12 management %)nflgurable 0x00000010 Synchronous
fault
Synchronous when
5 11 Bus fault configurable |, 60000014 preciss,
asynchronous when
imprecise
Configurable
6 -10 Usage fault @ 0x00000018 Synchronous
7-10 - - - Reserved -

Atmel

SAM3S8 / SAM3SD8 [DATASHEET]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

59

Table 10-9. Properties of the different exception types (Continued)
IRQ
Exception | number(| Exception Vector address
number @ | Y type Priority or offset @ Activation
11 5 svcall configurable | o, 4000002c | Synchronous
12-13 - - - Reserved -
Configurable
14 -2 PendSVv) 0x00000038 Asynchronous
15 -1 SysTick configurable |-, 0000003¢ Asynchronous
16 and 0 and Configurable | 0x00000040 and
above above @ Interrupt (IRQ) ®) above © Asynchronous
1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative
values for exceptions other than interrupts. The IPSR returns the Exception number, see
“Interrupt Program Status Register” on page 44.
2. See “Vector table” on page 61 for more information.
3. See “System Handler Priority Registers” on page 165.
4. See the “Peripheral Identifiers” section of the datasheet.
5. See “Interrupt Priority Registers” on page 147.
6. Increasing in steps of 4.

For an asynchronous exception, other than reset, the processor can execute another instruction between when the
exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 10-9 on page 59 shows as having configurable priority,
see:

e “System Handler Control and State Register” on page 168
e ‘“Interrupt Clear-enable Registers” on page 143.

For more information about hard faults, memory management faults, bus faults, and usage faults, see “Fault
handling” on page 64.

10.5.3 Exception handlers

The processor handles exceptions using:
10.5.3.1 Interrupt Service Routines (ISRSs)
Interrupts IRQO to IRQ34 are the exceptions handled by ISRs.
10.5.3.2 Fault handlers
Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the fault handlers.

10.5.3.3 System handlers

NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are handled by system
handlers.

60 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

10.5.4 Vector table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception
vectors, for all exception handlers. Figure 10-3 on page 61 shows the order of the exception vectors in the vector
table. The least-significant bit of each vector must be 1, indicating that the exception handler is Thumb code.

Figure 10-3. Vector table

Exception number IRQ number Offset Vector
45 29 IRQ29
0x00B4
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040 -
15 -1 Systick
0x003C
14 -2 PendSV
0x0038
13 Reserved
12 Reserved for Debug
11 -5 SVCall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 -1 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 Reserved
0x0008
1 Reset
0x0004 —
Initial SP value

0x0000

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the VTOR to
relocate the vector table start address to a different memory location, in the range 0x00000080 to 0x3FFFFF80, see
“Vector Table Offset Register” on page 159.

SAM3S8 / SAM3SDS8 [DATASHEET 61
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.5.5 Exception priorities

As Table 10-9 on page 59 shows, all exceptions have an associated priority, with:

e alower priority value indicating a higher priority

e configurable priorities for all exceptions except Reset, Hard fault.
If software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0. For
information about configuring exception priorities see

e “System Handler Priority Registers” on page 165

e ‘“Interrupt Priority Registers” on page 147.

Configurable priority values are in the range 0-15. This means that the Reset, Hard fault, and NMI exceptions, with
fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has
higher priority than IRQ[O0]. If both IRQ[1] and IRQI[0] are asserted, IRQ[1] is processed before IRQ[O].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number
takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[O] is
processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority
exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not
preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

10.5.6 Interrupt priority grouping
To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each
interrupt priority register entry into two fields:
e an upper field that defines the group priority
e alower field that defines a subpriority within the group.
Only the group priority determines preemption of interrupt exceptions. When the processor is executing an

interrupt exception handler, another interrupt with the same group priority as the interrupt being handled does not
preempt the handler,

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they
are processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the
lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see “Application
Interrupt and Reset Control Register” on page 160.

10.5.7 Exception entry and return
Descriptions of exception handling use the following terms:

10.5.7.1 Preemption

When the processor is executing an exception handler, an exception can preempt the exception handler if its
priority is higher than the priority of the exception being handled. See “Interrupt priority grouping” on page 62 for
more information about preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See “Exception entry” on
page 63 more information.

62 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.5.7.2 Return
This occurs when the exception handler is completed, and:
e there is no pending exception with sufficient priority to be serviced
e the completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred.
See “Exception return” on page 64 for more information.

10.5.7.3 Tail-chaining

This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending
exception that meets the requirements for exception entry, the stack pop is skipped and control transfers to the
new exception handler.

10.5.7.4 Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous
exception, the processor switches to handle the higher priority exception and initiates the vector fetch for that
exception. State saving is not affected by late arrival because the state saved is the same for both exceptions.
Therefore the state saving continues uninterrupted. The processor can accept a late arriving exception until the
first instruction of the exception handler of the original exception enters the execute stage of the processor. On
return from the exception handler of the late-arriving exception, the normal tail-chaining rules apply.

10.5.7.5 Exception entry

Exception entry occurs when there is a pending exception with sufficient priority and either:
e the processor is in Thread mode
e the new exception is of higher priority than the exception being handled, in which case the new exception
preempts the original exception.
When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has more priority than any limits set by the mask registers, see “Exception
mask registers” on page 45. An exception with less priority than this is pending but is not handled by the
processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the
processor pushes information onto the current stack. This operation is referred as stacking and the structure of
eight data words is referred as stack frame. The stack frame contains the following information:
e RO-R3,R12
e Return address
e PSR
e LR
Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. Unless stack

alignment is disabled, the stack frame is aligned to a double-word address. If the STKALIGN bit of the
Configuration Control Register (CCR) is set to 1, stack align adjustment is performed during stacking.

The stack frame includes the return address. This is the address of the next instruction in the interrupted program.
This value is restored to the PC at exception return so that the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start
address from the vector table. When stacking is complete, the processor starts executing the exception handler. At
the same time, the processor writes an EXC_RETURN value to the LR. This indicates which stack pointer
corresponds to the stack frame and what operation mode the was processor was in before the entry occurred.

If no higher priority exception occurs during exception entry, the processor starts executing the exception handler
and automatically changes the status of the corresponding pending interrupt to active.

SAM3S8 /| SAM3SDS8 [DATASHEET 63
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

If another higher priority exception occurs during exception entry, the processor starts executing the exception
handler for this exception and does not change the pending status of the earlier exception. This is the late arrival
case.

10.5.7.6 Exception return
Exception return occurs when the processor is in Handler mode and executes one of the following instructions to
load the EXC_RETURN value into the PC:
e a POP instruction that includes the PC
e aBX instruction with any register.
e an LDR or LDM instruction with the PC as the destination.
EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism relies on this value
to detect when the processor has completed an exception handler. The lowest four bits of this value provide

information on the return stack and processor mode. Table 10-10 shows the EXC_RETURN][3:0] values with a
description of the exception return behavior.

The processor sets EXC_RETURN bits[31:4] to oxFFFFFFF. When this value is loaded into the PC it indicates to the
processor that the exception is complete, and the processor initiates the exception return sequence.

Table 10-10. Exception return behavior

EXC_RETURNI3:0] | Description

bXXX0 Reserved.
Return to Handler mode.
b0001 Exception return gets state from MSP.
Execution uses MSP after return.
b0011 Reserved.
b01X1 Reserved.

Return to Thread mode.
b1001 Exception return gets state from MSP.
Execution uses MSP after return.

Return to Thread mode.
b1101 Exception return gets state from PSP.
Execution uses PSP after return.

b1X11 Reserved.

10.6 Fault handling

Faults are a subset of the exceptions, see “Exception model” on page 58. The following generate a fault:
— abus error on:
— aninstruction fetch or vector table load
— adata access

e an internally-detected error such as an undefined instruction or an attempt to change state with a BX
instruction

e attempting to execute an instruction from a memory region marked as Non-Executable (XN).
e an MPU fault because of a privilege violation or an attempt to access an unmanaged region.

64 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.6.1

10.6.2

Fault types

Table 10-11 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the
register bit that indicates that the fault has occurred. See “Configurable Fault Status Register” on page 170 for
more information about the fault status registers.

Table 10-11. Faults
Fault Handler Bit name Fault status register
Bus error on a vector read VECTTBL
Hard fault “Hard Fault Status Register” on page 176

Fault escalated to a hard fault FORCED
MPU mismatch: - -

on instruction access IACCVIOL W

Memory
on data access management | DACCVIOL “Memory Management Fault Address
. . . fault istar”

during exception stacking MSTKERR Register” on page 177

during exception unstacking MUNSKERR
Bus error: - -

during exception stacking STKERR

during exception unstacking UNSTKERR

— : Bus fault _

during instruction prefetch IBUSERR “Bus Fault Status Register” on page 172
Precise data bus error PRECISERR
Imprecise data bus error IMPRECISERR
Attempt to access a coprocessor NOCP
Undefined instruction UNDEFINSTR
AttteTptt t?z)enter an invalid instruction INVSTATE .
set state Usage fault “Usage Fault Status Register” on page 174
Invalid EXC_RETURN value INVPC
lllegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO

Occurs on an access to an XN region even if the MPU is disabled.
Attempting to use an instruction set other than the Thumb instruction set.

Fault escalation and hard faults

Atmel

All faults exceptions except for hard fault have configurable exception priority, see “System Handler Priority
Registers” on page 165. Software can disable execution of the handlers for these faults, see “System Handler
Control and State Register” on page 168.

Usually, the exception priority, together with the values of the exception mask registers, determines whether the
processor enters the fault handler, and whether a fault handler can preempt another fault handler. as described in
“Exception model” on page 58.

SAM3S8 / SAM3SD8 [DATASHEET] 65

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.6.3

In some situations, a fault with configurable priority is treated as a hard fault. This is called priority escalation, and
the fault is described as escalated to hard fault. Escalation to hard fault occurs when:

e A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs
because a fault handler cannot preempt itself because it must have the same priority as the current priority
level.

e A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the
handler for the new fault cannot preempt the currently executing fault handler.

e An exception handler causes a fault for which the priority is the same as or lower than the currently
executing exception.

e A fault occurs and the handler for that fault is not enabled.

If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a
hard fault. This means that if a corrupted stack causes a fault, the fault handler executes even though the stack
push for the handler failed. The fault handler operates but the stack contents are corrupted.

Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other than
Reset, NMI, or another hard fault.

Fault status registers and fault address registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault
address register indicates the address accessed by the operation that caused the fault, as shown in Table 10-12.

Table 10-12. Fault status and fault address registers

Status register | Address register

Handler name name Register description
Hard fault HFSR - “Hard Fault Status Register” on page 176
“Memory Management Fault Status Register” on page 171
Memory management fault | MMFSR MMFAR)
“Memory Management Fault Address Register” on page 177
“Bus Fault Status Register” on page 172
Bus fault BFSR BFAR)
“Bus Fault Address Register” on page 178
Usage fault UFSR - “Usage Fault Status Register” on page 174
10.6.4 Lockup

10.7

66

The processor enters a lockup state if a hard fault occurs when executing the hard fault handlers. When the
processor is in lockup state it does not execute any instructions. The processor remains in lockup state until:

e jtisreset

Power management

The Cortex-M3 processor sleep modes reduce power consumption:
e Backup Mode
e Wait Mode
e Sleep Mode
The SLEEPDEEP bit of the SCR selects which sleep mode is used, see “System Control Register” on page 162.

For more information about the behavior of the sleep modes see “Low Power Modes” in the PMC section of the
datasheet.

This section describes the mechanisms for entering sleep mode, and the conditions for waking up from sleep
mode.

SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.7.1 Entering sleep mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the processor.
Therefore software must be able to put the processor back into sleep mode after such an event. A program might
have an idle loop to put the processor back to sleep mode.

10.7.1.1 Wait for interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the processor executes a
WEFI instruction it stops executing instructions and enters sleep mode. See “WFI” on page 138 for more
information.

10.7.1.2 Wait for event
The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an one-bit event
register. When the processor executes a WFE instruction, it checks this register:
e if the register is 0 the processor stops executing instructions and enters sleep mode
e if the register is 1 the processor clears the register to 0 and continues executing instructions without entering
sleep mode.

See “WFE” on page 137 for more information.

10.7.1.3 Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution of an exception
handler it returns to Thread mode and immediately enters sleep mode. Use this mechanism in applications that
only require the processor to run when an exception occurs.

10.7.2 Wakeup from sleep mode

The conditions for the processor to wakeup depend on the mechanism that cause it to enter sleep mode.

10.7.2.1 Wakeup from WFI or sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception
entry.

Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it
executes an interrupt handler. To achieve this set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an
interrupt arrives that is enabled and has a higher priority than current exception priority, the processor wakes up
but does not execute the interrupt handler until the processor sets PRIMASK to zero. For more information about
PRIMASK and FAULTMASK see “Exception mask registers” on page 45.

10.7.2.2 Wakeup from WFE
The processor wakes up if:
e it detects an exception with sufficient priority to cause exception entry

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes
up the processor, even if the interrupt is disabled or has insufficient priority to cause exception entry. For more
information about the SCR see “System Control Register” on page 162.

10.7.3 Power management programming hints

ANSI C cannot directly generate the WFI and WFE instructions. The CMSIS provides the following intrinsic
functions for these instructions:

void _ WE(void) // Wit for Event

void __WFE(void) // Wait for Interrupt

SAM3S8 /| SAM3SDS8 [DATASHEET 67
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.8 Instruction set summary
The processor implements a version of the Thumb instruction set. Table 10-13 lists the supported instructions.

In Table 10-13:

angle brackets, <>, enclose alternative forms of the operand

braces, {}, enclose optional operands

the Operands column is not exhaustive

Op2 is a flexible second operand that can be either a register or a constant
most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 10-13. Cortex-M3 instructions

Mnemonic Operands Brief description Flags Page
ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,C,V | page 95
ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C,\V | page 95
ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,C\V | page 95
ADR Rd, label Load PC-relative address - page 80
AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C page 98
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C page 100
B label Branch - page 119
BFC Rd, #Isb, #width Bit Field Clear - page 116
BFI Rd, Rn, #Isb, #width Bit Field Insert - page 116
BIC, BICS {Rd} Rn, Op2 Bit Clear N,Z,C page 98
BKPT #imm Breakpoint - page 127
BL label Branch with Link - page 119
BLX Rm Branch indirect with Link - page 119
BX Rm Branch indirect - page 119
CBNZ Rn, label Compare and Branch if Non Zero - page 121
cBz Rn, label Compare and Branch if Zero - page 121
CLREX - Clear Exclusive - page 93
CLz Rd, Rm Count leading zeros - page 102
CMN, CMNS Rn, Op2 Compare Negative N,Z,C,V | page 103
CMP, CMPS Rn, Op2 Compare N,Z,C,V | page 103
CPSID iflags Change Processor State, Disable Interrupts - page 128
CPSIE iflags Change Processor State, Enable Interrupts - page 128
DMB - Data Memory Barrier - page 129
DSB - Data Synchronization Barrier - page 130
EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,z,C page 98
ISB - Instruction Synchronization Barrier - page 131
IT - If-Then condition block - page 122

68 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

Table 10-13. Cortex-M3 instructions (Continued)

Mnemonic Operands Brief description Flags Page
LDM Rn{!}, reglist Load Multiple registers, increment after - page 88
LDMDB, LDMEA Rn{1}, reglist Load Multiple registers, decrement before - page 88
LDMFD, LDMIA Rn{1}, reglist Load Multiple registers, increment after - page 88
LDR Rt, [Rn, #offset] Load Register with word - page 83
LDRB, LDRBT Rt, [Rn, #offset] Load Register with byte - page 83
LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes - page 83
LDREX Rt, [Rn, #offset] Load Register Exclusive - page 83
LDREXB Rt, [Rn] Load Register Exclusive with byte - page 83
LDREXH Rt, [Rn] Load Register Exclusive with halfword - page 83
LDRH, LDRHT Rt, [Rn, #offset] Load Register with halfword - page 83
LDRSB, LDRSBT | Rt, [Rn, #offset] Load Register with signed byte - page 83
LDRSH, LDRSHT | Rt, [Rn, #offset] Load Register with signed halfword - page 83
LDRT Rt, [Rn, #offset] Load Register with word - page 83
LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,zZ,C page 100
LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,z,C page 100
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result - page 110
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result - page 110
MOV, MOVS Rd, Op2 Move N,Z,C page 104
MOVT Rd, #imm16 Move Top - page 106
MOVW, MOV Rd, #imm16 Move 16-bit constant N,Z,C page 104
MRS Rd, spec_reg Move from special register to general register - page 132
MSR spec_reg, Rm Move from general register to special register N,Z,C\V | page 133
MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z page 110
MVN, MVNS Rd, Op2 Move NOT N,Z,C page 104
NOP - No Operation - page 134
ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,z,C page 98
ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C page 98
POP reglist Pop registers from stack - page 90
PUSH reglist Push registers onto stack - page 90
RBIT Rd, Rn Reverse Bits - page 107
REV Rd, Rn Reverse byte order in a word - page 107
REV16 Rd, Rn Reverse byte order in each halfword - page 107
REVSH Rd, Rn Reverse byte order in bottom halfword and sign extend - page 107
ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,Z,C page 100
RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C page 100
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,C\V | page 95
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C\V | page 95

Atmel

SAM3S8 / SAM3SD8 [DATASHEET]

69

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Table 10-13. Cortex-M3 instructions (Continued)

Mnemonic Operands Brief description Flags Page
SBFX Rd, Rn, #Isb, #width Signed Bit Field Extract - page 117
SDIV {Rd,} Rn, Rm Signed Divide - page 112
SEV - Send Event - page 135
SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result - page 111
SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result - page 111
SSAT Rd, #n, Rm {,shift #s} | Signed Saturate Q page 113
STM Rn{!}, reglist Store Multiple registers, increment after - page 88
STMDB, STMEA Rn{!}, reglist Store Multiple registers, decrement before - page 88
STMFD, STMIA Rn{1}, reglist Store Multiple registers, increment after - page 88
STR Rt, [Rn, #offset] Store Register word - page 83
STRB, STRBT Rt, [Rn, #offset] Store Register byte - page 83
STRD Rt, Rt2, [Rn, #offset] Store Register two words - page 83
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive - page 91
STREXB Rd, Rt, [Rn] Store Register Exclusive byte - page 91
STREXH Rd, Rt, [Rn] Store Register Exclusive halfword - page 91
STRH, STRHT Rt, [Rn, #offset] Store Register halfword - page 83
STRT Rt, [Rn, #offset] Store Register word - page 83
SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C\V | page 95
SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,C,V | page 95
SvC #imm Supervisor Call - page 136
SXTB {Rd,} Rm {,ROR #n} Sign extend a byte - page 118
SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword - page 118
TBB [Rn, Rm] Table Branch Byte - page 124
TBH [Rn, Rm, LSL #1] Table Branch Halfword - page 124
TEQ Rn, Op2 Test Equivalence N,Z,C page 108
TST Rn, Op2 Test N,Z,C page 108
UBFX Rd, Rn, #lsb, #width Unsigned Bit Field Extract - page 117
uDIV {Rd,} Rn, Rm Unsigned Divide - page 112
UMLAL RdLo, RdHi, Rn, Rm é’;sigggi“gi;fi%'i_‘é"iitt?eéﬁft“m“'ate . page 111
UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32), 64-bit result - page 111
USAT Rd, #n, Rm {;shift #s} | Unsigned Saturate Q page 113
UXTB {Rd,} Rm {,ROR #n} Zero extend a byte - page 118
UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword - page 118
WFE - Wait For Event - page 137
WFI - Wait For Interrupt - page 138

70 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

10.9 Intrinsic functions

ANSI cannot directly access some Cortex-M3 instructions. This section describes intrinsic functions that can
generate these instructions, provided by the CMIS and that might be provided by a C compiler. If a C compiler
does not support an appropriate intrinsic function, you might have to use inline assembler to access some
instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ANSI cannot directly access:

Table 10-14. CMSIS intrinsic functions to generate some Cortex-M3 instructions

Instruction CMSIS intrinsic function

CPSIE | void __enable_irg(void)

CPSID | void __disable_irg(void)

CPSIE F void __enable_fault_irg(void)

CPSID F void __disable_fault_irg(void)

ISB void __ISB(void)

DSB void __DSB(void)

DMB void __DMB(void)

REV uint32_t __ REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t _ REVSH(uint32_t int value)
RBIT uint32_t _ RBIT(uint32_t int value)
SEV void __SEV(void)

WFE void __ WFE(void)

WFI void __ WFI(void)

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR
instructions:

Table 10-15. CMSIS intrinsic functions to access the special registers

Special register | Access | CMSIS function
Read uint32_t __get_ PRIMASK (void)
PRIMASK
Write void __set PRIMASK (uint32_t value)
Read uint32_t __get FAULTMASK (void)
FAULTMASK
Write void __set FAULTMASK (uint32_t value)
Read uint32_t __get BASEPRI (void)
BASEPRI
Write void __set BASEPRI (uint32_t value)
Read uint32_t __get CONTROL (void)
CONTROL
Write void __set CONTROL (uint32_t value)
Read uint32_t __get_MSP (void)
MSP
Write void __set_ MSP (uint32_t TopOfMainStack)
Read uint32_t __get PSP (void)
PSP
Write void __set_PSP (uint32_t TopOfProcStack)

SAM3S8 / SAM3SDS8 [DATASHEET 71
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.10 About the instruction descriptions

The following sections give more information about using the instructions:
e “Operands” on page 72

“Restrictions when using PC or SP” on page 72

“Flexible second operand” on page 72

“Shift Operations” on page 73

“Address alignment” on page 75

“PC-relative expressions” on page 76

“Conditional execution” on page 76

“Instruction width selection” on page 78.

10.10.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions
act on the operands and often store the result in a destination register. When there is a destination register in the
instruction, it is usually specified before the operands.

Operands in some instructions are flexible in that they can either be a register or a constant. See “Flexible second
operand” .

10.10.2 Restrictions when using PC or SP

Many instructions have restrictions on whether you can use the Program Counter (PC) or Stack Pointer (SP) for
the operands or destination register. See instruction descriptions for more information.

Bit[O] of any address you write to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct
execution, because this bit indicates the required instruction set, and the Cortex-M3 processor only supports
Thumb instructions.

10.10.3 Flexible second operand

Many general data processing instructions have a flexible second operand. This is shown as Operand2 in the
descriptions of the syntax of each instruction.
Operand2 can be a:

e “Constant”

e “Register with optional shift” on page 73

10.10.3.1 Constant

You specify an Operand2 constant in the form:
#const ant
where const ant can be:
e any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word
e any constant of the form 0x00XY00XY
e any constant of the form OxXYO00XYO00
e any constant of the form OxXYXYXYXY.
In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, const ant can take a wider range of values. These are described in
the individual instruction descriptions.

72 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS,
TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be
produced by shifting an 8-bit value. These instructions do not affect the carry flag if Operand2 is any other
constant.

10.10.3.2 Instruction substitution

Your assembler might be able to produce an equivalent instruction in cases where you specify a constant that is
not permitted. For example, an assembler might assemble the instruction CMP Rd, #OxFFFFFFFE as the
equivalent instruction CMN Rd, #0x2.

10.10.3.3 Register with optional shift
You specify an Operand? register in the form:

Rm{, shift}

where:
Rm is the register holding the data for the second operand.
shift is an optional shift to be applied to Rm. It can be one of:

ASR #n arithmetic shift right n bits, 1 <n < 32.

LSL #n logical shift left n bits, 1 <n < 31.

LSR #n logical shift right n bits, 1 < n < 32.

ROR #n rotate right n bits, 1 < n < 31.

RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.
If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the instruction.
However, the contents in the register Rm remains unchanged. Specifying a register with shift also updates the
carry flag when used with certain instructions. For information on the shift operations and how they affect the carry
flag, see “Shift Operations”

10.10.4 Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits, the shift length.
Register shift can be performed:

e directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register

e during the calculation of Operand2 by the instructions that specify the second operand as a register with
shift, see “Flexible second operand” on page 72. The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction, see the individual instruction description or
“Flexible second operand” on page 72. If the shift length is 0, no shift occurs. Register shift operations update the
carry flag except when the specified shift length is 0. The following sub-sections describe the various shift
operations and how they affect the carry flag. In these descriptions, Rm is the register containing the value to be
shifted, and n is the shift length.

10.10.4.1 ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the
right-hand 32-n bits of the result. And it copies the original bit[31] of the register into the left-hand n bits of the
result. See Figure 10-4 on page 74.

You can use the ASR #n operation to divide the value in the register Rm by 2", with the result being rounded
towards negative-infinity.

SAM3S8 /| SAM3SDS8 [DATASHEET 73
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the
register Rm.

e If nis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
e Ifnis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 10-4. ASR#3

31 543210|]

[1f [LF

10.10.4.2 LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-
hand 32-n bits of the result. And it sets the left-hand n bits of the result to 0. See Figure 10-5.

You can use the LSR #n operation to divide the value in the register Rm by 2", if the value is regarded as an
unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the
register Rm.

e Ifnis 32 or more, then all the bits in the result are cleared to 0.
e Ifnis 33 or more and the carry flag is updated, it is updated to O.

Figure 10-5. LSR#3

g (I) Carry
A2 A | Flag
31 5/413/2|1|0 D

EEE | “i

10.10.4.3 LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand
32-n bits of the result. And it sets the right-hand n bits of the result to 0. See Figure 10-6 on page 75.

You can use he LSL #n operation to multiply the value in the register Rm by 2", if the value is regarded as an
unsigned integer or a two’'s complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[32-
n], of the register Rm. These instructions do not affect the carry flag when used with LSL #0.

e Ifnis 32 or more, then all the bits in the result are cleared to 0.
e Ifnis 33 or more and the carry flag is updated, it is updated to O.

74 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 10-6. LSL #3

, , 1]
i i 000
v " YV y
D 31 5(4(3/2]1|0

Carry 4 4 A A

a1 L] L]

10.10.4.4 ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand
32-n bits of the result. And it moves the right-hand n bits of the register into the left-hand n bits of the result. See
Figure 10-7.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the register
Rm.

e Ifnis 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated
to bit[31] of Rm.

e ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 10-7. ROR #3

Carry
YVY Flag
31 5/413|2(1|0 D
| A A f | Aiu f f
}
H !
|, a

10.10.4.5 RRX

Rotate right with extend moves the bits of the register Rm to the right by one bit. And it copies the carry flag into
bit[31] of the result. See Figure 10-8 on page 75.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 10-8. RRX

Carry
Flag

31,30 110

LY. MEEPR]

10.10.5 Address alignment

An aligned access is an operation where a word-aligned address is used for a word, dual word, or multiple word
access, or where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.

SAM3S8 /| SAM3SDS8 [DATASHEET 75
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

The Cortex-M3 processor supports unaligned access only for the following instructions:
e LDR,LDRT
e L|LDRH, LDRHT
e LDRSH, LDRSHT
e STR, STRT
e STRH, STRHT
All other load and store instructions generate a usage fault exception if they perform an unaligned access, and

therefore their accesses must be address aligned. For more information about usage faults see “Fault handling” on
page 64.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might not
support unaligned accesses. Therefore, ARM recommends that programmers ensure that accesses are aligned.
To avoid accidental generation of unaligned accesses, use the UNALIGN_TRP bit in the Configuration and Control
Register to trap all unaligned accesses, see “Configuration and Control Register” on page 163.

10.10.6 PC-relative expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is
represented in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the
required offset from the label and the address of the current instruction. If the offset is too big, the assembler
produces an error.

e For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction plus 4
bytes.

e For all other instructions that use labels, the value of the PC is the address of the current instruction plus 4
bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

e Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a
number, or an expression of the form [PC, #numberl].

10.10.7 Conditional execution

Most data processing instructions can optionally update the condition flags in the Application Program Status
Register (APSR) according to the result of the operation, see “Application Program Status Register” on page 43.
Some instructions update all flags, and some only update a subset. If a flag is not updated, the original value is
preserved. See the instruction descriptions for the flags they affect.
You can execute an instruction conditionally, based on the condition flags set in another instruction, either:

e immediately after the instruction that updated the flags

e after any number of intervening instructions that have not updated the flags.
Conditional execution is available by using conditional branches or by adding condition code suffixes to
instructions. See Table 10-16 on page 77 for a list of the suffixes to add to instructions to make them conditional

instructions. The condition code suffix enables the processor to test a condition based on the flags. If the condition
test of a conditional instruction fails, the instruction:

e does not execute
e does not write any value to its destination register
e does not affect any of the flags
e does not generate any exception.
Conditional instructions, except for conditional branches, must be inside an If-Then instruction block. See “IT” on

page 122 for more information and restrictions when using the IT instruction. Depending on the vendor, the
assembler might automatically insert an IT instruction if you have conditional instructions outside the IT block.

76 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Use the CBZ and CBNZ instructions to compare the value of a register against zero and branch on the result.
This section describes:
e “The condition flags”
e “Condition code suffixes” .
10.10.7.1 The condition flags
The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to O otherwise.

\% Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR see “Program Status Register” on page 42.

A carry occurs:
e if the result of an addition is greater than or equal to 232
e if the result of a subtraction is positive or zero
e as the result of an inline barrel shifter operation in a move or logical instruction.

Overflow occurs if the result of an add, subtract, or compare is greater than or equal to 2%, or less than —23L.

Most instructions update the status flags only if the S suffix is specified. See the instruction descriptions for more
information.

10.10.7.2 Condition code suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}.
Conditional execution requires a preceding IT instruction. An instruction with a condition code is only executed if
the condition code flags in the APSR meet the specified condition. Table 10-16 shows the condition codes to use.

You can use conditional execution with the IT instruction to reduce the number of branch instructions in code.
Table 10-16 also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Table 10-16. Condition code suffixes

Suffix Flags Meaning

EQ z=1 Equal

NE Z=0 Not equal

CSorHS c=1 Higher or same, unsigned >
CCorlLO CcC=0 Lower, unsigned <

MI N=1 Negative

PL N=0 Positive or zero

VS V=1 Overflow

VC V=0 No overflow

HI C=1andZ=0 Higher, unsigned >

LS C=0o0or Z=1 Lower or same, unsigned <
GE N=V Greater than or equal, signed >
LT N!=V Less than, signed <

SAM3S8 / SAM3SDS8 [DATASHEET 77
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Table 10-16. Condition code suffixes (Continued)

Suffix Flags Meaning

GT Z=0andN=V Greater than, signed >

LE Z=1landN!=V Less than or equal, signed <

AL Can have any value Always. This is the default when no suffix is specified.

10.10.7.3 Absolute value
The example below shows the use of a conditional instruction to find the absolute value of a number. RO = ABS(R1).

MOVS RO, R1 ; RO = Rl, setting flags
T M ; I Tinstruction for the negative condition
RSBM RO, R1, #0 ; If negative, RO = -R1

10.10.7.4 Compare and update value

The example below shows the use of conditional instructions to update the value of R4 if the signed values RO is greater
than R1 and R2 is greater than R3.

cwP RO, R1 ; Conmpare RO and R1, setting flags

ITT GT ; I Tinstruction for the two GI conditions

CVPGT R2, R3 ; If '"greater than', conpare R2 and R3, setting flags
MOVGT R4, R5 ; If still "greater than', do R4 = RS

10.10.8 Instruction width selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending on the
operands and destination register specified. For some of these instructions, you can force a specific instruction
size by using an instruction width suffix. The .W suffix forces a 32-bit instruction encoding. The .N suffix forces a
16-bit instruction encoding.

If you specify an instruction width suffix and the assembler cannot generate an instruction encoding of the
requested width, it generates an error.

In some cases it might be necessary to specify the .W suffix, for example if the operand is the label of an
instruction or literal data, as in the case of branch instructions. This is because the assembler might not
automatically generate the right size encoding.

10.10.8.1 Instruction width selection

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any. The
example below shows instructions with the instruction width suffix.
BCS. W | abel ; creates a 32-bit instruction even for a short branch

ADDS. WRO, RO, Rl ; creates a 32-bit instruction even though the sane
; operation can be done by a 16-bit instruction

78 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Table 10-17 shows the memory access instructions:

10.11 Memory access instructions

Table 10-17. Memory access instructions
Mnemonic Brief description See
ADR Load PC-relative address “ADR” on page 80
CLREX Clear Exclusive “CLREX” on page 93
LDM{mode} Load Multiple registers “LDM and STM” on page 88
LDR{type} Load Register using immediate offset “LDR and STR, immediate offset” on page 81
LDR{type} Load Register using register offset “LDR and STR, register offset” on page 83
LDR{type}T Load Register with unprivileged access “LDR and STR, unprivileged” on page 85
LDR Load Register using PC-relative address “LDR, PC-relative” on page 86
LDREX{type} Load Register Exclusive “LDREX and STREX” on page 91
POP Pop registers from stack “PUSH and POP” on page 90
PUSH Push registers onto stack “PUSH and POP” on page 90
STM{mode} Store Multiple registers “LDM and STM” on page 88
STR{type} Store Register using immediate offset “LDR and STR, immediate offset” on page 81
STR{type} Store Register using register offset “LDR and STR, register offset” on page 83
STR{type}T Store Register with unprivileged access “LDR and STR, unprivileged” on page 85
STREX{type} Store Register Exclusive “LDREX and STREX” on page 91

Atmel

SAM3S8 / SAM3SD8 [DATASHEET]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

79

10.11.1 ADR

Load PC-relative address.

10.11.1.1 Syntax
ADR{cond} Rd, | abel

where:

cond is an optional condition code, see “Conditional execution” on page 76.
Rd is the destination register.

label is a PC-relative expression. See “PC-relative expressions” on page 76.

10.11.1.2 Operation

ADR determines the address by adding an immediate value to the PC, and writes the result to the destination
register.

ADR produces position-independent code, because the address is PC-relative.

If you use ADR to generate a target address for a BX or BLX instruction, you must ensure that bit[0] of the address
you generate is set tol for correct execution.

Values of label must be within the range of —4095 to +4095 from the address in the PC.

You might have to use the .W suffix to get the maximum offset range or to generate addresses that are not word-
aligned. See “Instruction width selection” on page 78.

10.11.1.3 Restrictions
Rd must not be SP and must not be PC.

10.11.1.4 Condition flags
This instruction does not change the flags.

10.11.1.5 Examples

ADR R1, Text Message ; Wite address value of a location |abelled as
; Text Message to R1

80 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.11.2 LDR and STR, immediate offset

Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

10.11.2.1 Syntax

op{type}{cond} R, [Rn {, #offset}] ; i mmedi ate of fset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} Rt, [Rn], #offset ; post-indexed
opD{cond} Rt, Rt2, [Rn {, #offset}] ; immedi ate offset, two words
opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} R, Rt2, [Rn], #offset ; post-indexed, two words
where:
op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.
cond is an optional condition code, see “Conditional execution” on page 76.
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2 is the additional register to load or store for two-word operations.

10.11.2.2 Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

10.11.2.3 Offset addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access. The register Rn is unaltered. The assembly language syntax for this mode is:
[Rn, #offset]

10.11.2.4 Pre-indexed addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access and written back into the register Rn. The assembly language syntax for this mode

IS:

[Rn, #offset]!

10.11.2.5 Post-indexed addressing

The address obtained from the register Rn is used as the address for the memory access. The offset value is
added to or subtracted from the address, and written back into the register Rn. The assembly language syntax for

this mode is:
[R],

Atmel

#of f set

SAM3S8 / SAM3SD8 [DATASHEET] 81

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be signed
or unsigned. See “Address alignment” on page 75.

Table 10-18 shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 10-18. Offset ranges

Instruction type Immediate offset Pre-indexed Post-indexed

Word, halfword, signed halfword,
byte, or signed byte

—255 to 4095 —255 to 255 —255 to 255

multiple of 4 in the range | multiple of 4 in the range | multiple of 4 in the range

Two words ~1020 to 1020 ~1020 to 1020 -1020 to 1020

10.11.2.6 Restrictions

For load instructions:
e Rtcan be SP or PC for word loads only
e Rt must be different from Rt2 for two-word loads
e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

When Rt is PC in a word load instruction:
e hit[0] of the loaded value must be 1 for correct execution
e a branch occurs to the address created by changing bit[0] of the loaded value to 0
e f the instruction is conditional, it must be the last instruction in the IT block.

For store instructions:
e Rtcan be SP for word stores only
e Rtmustnot be PC
e Rn must not be PC
e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

10.11.2.7 Condition flags
These instructions do not change the flags.

10.11.2.8 Examples
LDR R8, [R10] ; Loads R8 fromthe address in R10.
LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 froma word
; 960 bytes above the address in R5, and
; increments R5 by 960.

STR R2, [R9, #const-struc] ; const-struc is an expression eval uating
; to a constant in the range 0-4095.

STRH R3, [R4], #4 ; Store R3 as halfword data into address in
; R4, then increment R4 by 4

LDRD R8, R9, [R3, #0x20] ; Load R8 froma word 32 bytes above the

; address in R3, and load RO froma word 36
; bytes above the address in R3

STRD RO, R1, [R8], #-16 ; Store RO to address in R8, and store Rl to
; a word 4 bytes above the address in RS,
; and then decrenment R8 by 16.

82 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.11.3 LDR and STR, register offset

Load and Store with register offset.

10.11.3.1 Syntax

op{type}{cond} R, [Rn, Rm{, LSL #n}]

where:

op
LDR
STR

type

SB

SH

cond
Rt

Rn
Rm
LSL #n

10.11.3.2 Operation

is one of:

Load Register.

Store Register.

is one of:

unsigned byte, zero extend to 32 bits on loads.

signed byte, sign extend to 32 bits (LDR only).
unsigned halfword, zero extend to 32 bits on loads.
signed halfword, sign extend to 32 bits (LDR only).
omit, for word.

is an optional condition code, see “Conditional execution” on page 76.
is the register to load or store.

is the register on which the memory address is based.
is a register containing a value to be used as the offset.
is an optional shift, with n in the range 0 to 3.

LDR instructions load a register with a value from memory.

STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by the
register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either
be signed or unsigned. See “Address alignment” on page 75.

10.11.3.3 Restrictions

In these instructions:

Rn must not be PC
Rm must not be SP and must not be PC
Rt can be SP only for word loads and word stores

e Rtcan be PC only for word loads.

When Rt is PC in a word load instruction:

e hit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned

address

e if the instruction is conditional, it must be the last instruction in the IT block.

10.11.3.4 Condition flags
These instructions do not change the flags.

Atmel

SAM3S8 / SAM3SD8 [DATASHEET] 83

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.11.3.5 Examples

STR RO, [R5, R1i] ; Store value of RO into an address equal to
; sumof R5 and R1

LDRSB RO, [R5, Rl1, LSL #1] ; Read byte value froman address equal to
; sumof R5 and two tines R1, sign extended it
; to a word value and put it in RO

STR RO, [R1, R2, LSL #2] ; Stores RO to an address equal to sumof Rl
; and four times R2

84 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.11.4 LDR and STR, unprivileged
Load and Store with unprivileged access.
10.11.4.1 Syntax
op{type}T{cond} Rt, [Rn {, #offset}] ; i mredi ate of fset
where:
op is one of:
LDR Load Register.
STR Store Register.
type is one of:

B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 76.
Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.

10.11.4.2 Operation

These load and store instructions perform the same function as the memory access instructions with immediate
offset, see “LDR and STR, immediate offset” on page 81. The difference is that these instructions have only
unprivileged access even when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal memory access
instructions with immediate offset.

10.11.4.3 Restrictions

In these instructions:
e Rn must not be PC
e Rt must not be SP and must not be PC.

10.11.4.4 Condition flags
These instructions do not change the flags.

10.11.4.5 Examples

STRBTEQ R4, [R7] ; Conditionally store least significant byte in
; R4 to an address in R7, with unprivileged access
LDRHT R2, [R2, #8] ; Load hal fword val ue froman address equal to

; sumof R2 and 8 into R2, with unprivil eged access

SAM3S8 /| SAM3SDS8 [DATASHEET 85
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.11.5 LDR, PC-relative

Load register from memory.

10.11.5.1 Syntax
LDR{type}{cond} Rt, | abel

LDRD{ cond} Rt, Rt2, |abel ; Load two words
where:
type is one of:
B unsigned byte, zero extend to 32 bits.
SB signed byte, sign extend to 32 bits.
H unsigned halfword, zero extend to 32 bits.

SH signed halfword, sign extend to 32 bits.
- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 76.
Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression. See “PC-relative expressions” on page 76.

10.11.5.2 Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is specified by a label
or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either
be signed or unsigned. See “Address alignment” on page 75.

label must be within a limited range of the current instruction. Table 10-19 shows the possible offsets between
label and the PC.

Table 10-19. Offset ranges

Instruction type Offset range
Word, halfword, signed halfword, byte, signed byte —4095 to 4095
Two words -1020 to 1020

You might have to use the .W suffix to get the maximum offset range. See “Instruction width selection” on page 78.

10.11.5.3 Restrictions
In these instructions:
e Rtcanbe SP or PC only for word loads
e Rt2 must not be SP and must not be PC
e Rt must be different from Rt2.
When Rt is PC in a word load instruction:

e hit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

e if the instruction is conditional, it must be the last instruction in the IT block.

10.11.5.4 Condition flags
These instructions do not change the flags.

86 SAM3S8 / SAM3SD8 [DATASHEET)] AtmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.11.5.5 Examples

LDR RO, LookUpTabl e ; Load RO with a word of data from an address
; labelled as LookUpTabl e
LDRSB R7, local data ; Load a byte value froman address | abelled

; as localdata, sign extend it to a word
; value, and put it in R7

SAM3S8 /| SAM3SDS8 [DATASHEET 87
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.11.6 LDM and STM
Load and Store Multiple registers.
10.11.6.1 Syntax
op{addr_node}{cond} Rn{!}, reglist
where:
op is one of:
LDM Load Multiple registers.
STM Store Multiple registers.
addr_mode is any one of the following:

IA Increment address After each access. This is the default.

DB Decrement address Before each access.
cond is an optional condition code, see “Conditional execution” on page 76.
Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If Iis present the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It can contain register
ranges. It must be comma separated if it contains more than one register or register range, see “Examples” on
page 89.

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending
stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending
stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks

10.11.6.2 Operation
LDM instructions load the registers in reglist with word values from memory addresses based on Rn.
STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens in
order of increasing register numbers, with the lowest numbered register using the lowest memory address and the
highest number register using the highest memory address. If the writeback suffix is specified, the value of Rn + 4
* (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals
ranging from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses happen in order of
decreasing register numbers, with the highest numbered register using the highest memory address and the
lowest number register using the lowest memory address. If the writeback suffix is specified, the value of Rn - 4 *
(n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” on page 90 for details.

88 SAM3S8 / SAM3SD8 [DATASHEET)] AtmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.11.6.3 Restrictions

In these instructions:

Rn must not be PC

reglist must not contain SP

in any STM instruction, reglist must not contain PC

in any LDM instruction, reglist must not contain PC if it contains LR
e reglist must not contain Rn if you specify the writeback suffix.

When PC is in reglist in an LDM instruction:
e hit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-
aligned address
e if the instruction is conditional, it must be the last instruction in the IT block.

10.11.6.4 Condition flags
These instructions do not change the flags.

10.11.6.5 Examples
LDM R8, { RO, R2, RO} ; LDM A is a synonymfor LDM
STMDB R1!, {R3-R6, R11, R12}

10.11.6.6 Incorrect examples
ST™M R5!,{R5, R4, R9} ; Value stored for R5 is unpredictable
LDM R2, {} ; There must be at |east one register in the |ist

SAM3S8 /| SAM3SDS8 [DATASHEET 89
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.11.7 PUSH and POP

Push registers onto, and pop registers off a full-descending stack.

10.11.7.1 Syntax
PUSH{ cond} regli st
POP{cond} regli st

where:
cond is an optional condition code, see “Conditional execution” on page 76.
reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges. It must be comma

separated if it contains more than one register or register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based
on SP, and with the final address for the access written back to the SP. PUSH and POP are the preferred
mnemonics in these cases.

10.11.7.2 Operation

PUSH stores registers on the stack in order of decreasing the register numbers, with the highest numbered
register using the highest memory address and the lowest numbered register using the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest numbered register
using the lowest memory address and the highest numbered register using the highest memory address.

See “LDM and STM” on page 88 for more information.

10.11.7.3 Restrictions

In these instructions:

e reglist must not contain SP

e for the PUSH instruction, reglist must not contain PC

e for the POP instruction, reglist must not contain PC if it contains LR.
When PC is in reglist in a POP instruction:

e hit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-
aligned address

e f the instruction is conditional, it must be the last instruction in the IT block.
10.11.7.4 Condition flags
These instructions do not change the flags.
10.11.7.5 Examples
PUSH { RO, R4- R7}

PUSH {R2, LR}
POP { RO, R10, PC}

90 SAM3S8 / SAM3SD8 [DATASHEET)] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.11.8 LDREX and STREX

Load and Store Register Exclusive.

10.11.8.1 Syntax
LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]
STREXB{cond} Rd, Rt, [Rn]
LDREXH{ cond} Rt, [Rn]
STREXH{ cond} Rd, Rt, [Rn]

where:

cond is an optional condition code, see “Conditional execution” on page 76.
Rd is the destination register for the returned status.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.

10.11.8.2 Operation
LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address.
The address used in any Store-Exclusive instruction must be the same as the address in the most recently
executed Load-exclusive instruction. The value stored by the Store-Exclusive instruction must also have the same
data size as the value loaded by the preceding Load-exclusive instruction. This means software must always use a
Load-exclusive instruction and a matching Store-Exclusive instruction to perform a synchronization operation, see
“Synchronization primitives” on page 56

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not perform the
store, it writes 1 to its destination register. If the Store-Exclusive instruction writes O to the destination register, it is
guaranteed that no other process in the system has accessed the memory location between the Load-exclusive
and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-
Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that used in the preceding
Load-Exclusive instruction is unpredictable.

10.11.8.3 Restrictions
In these instructions:
e donotuse PC
e do notuse SP for Rd and Rt
e for STREX, Rd must be different from both Rt and Rn
e the value of offset must be a multiple of four in the range 0-1020.
10.11.8.4 Condition flags
These instructions do not change the flags.

SAM3S8 / SAM3SDS8 [DATASHEET 91
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.11.8.5 Examples

MoV R1, #0Ox1 ; Initialize the ‘lock taken' val ue
try
LDREX RO, [LockAddr] ; Load the lock val ue
cwp RO, #0 ; Is the lock free?
ITT EQ ; I T instruction for STREXEQ and CMPEQ
STREXEQ RO, R1, [LockAddr] ; Try and claimthe |ock
CVPEQ RO, #0 ; Did this succeed?
BNE try ; No — try again
; Yes — we have the | ock
92 SAM3S8 / SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.11.9 CLREX
Clear Exclusive.
10.11.9.1 Syntax
CLREX{ cond}
where:

cond is an optional condition code, see “Conditional execution” on page 76.

10.11.9.2 Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination register and fail to
perform the store. It is useful in exception handler code to force the failure of the store exclusive if the exception
occurs between a load exclusive instruction and the matching store exclusive instruction in a synchronization
operation.

See “Synchronization primitives” on page 56 for more information.
10.11.9.3 Condition flags

These instructions do not change the flags.

10.11.9.4 Examples
CLREX

SAM3S8 /| SAM3SDS8 [DATASHEET 93
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.12 General data processing instructions

Table 10-20 shows the data processing instructions:

Table 10-20. Data processing instructions

Mnemonic Brief description See

ADC Add with Carry “ADD, ADC, SUB, SBC, and RSB” on page 95
ADD Add “ADD, ADC, SUB, SBC, and RSB” on page 95
ADDW Add “ADD, ADC, SUB, SBC, and RSB” on page 95
AND Logical AND “AND, ORR, EOR, BIC, and ORN" on page 98
ASR Arithmetic Shift Right “ASR, LSL, LSR, ROR, and RRX” on page 100
BIC Bit Clear “AND, ORR, EOR, BIC, and ORN” on page 98
CLz Count leading zeros “CLZ" on page 102

CMN Compare Negative “CMP and CMN” on page 103

CMP Compare “CMP and CMN” on page 103

EOR Exclusive OR “AND, ORR, EOR, BIC, and ORN" on page 98
LSL Logical Shift Left “ASR, LSL, LSR, ROR, and RRX" on page 100
LSR Logical Shift Right “ASR, LSL, LSR, ROR, and RRX” on page 100
MOV Move “MOV and MVN” on page 104

MOVT Move Top “MOVT"” on page 106

MOVW Move 16-bit constant “MQOV and MVN” on page 104

MVN Move NOT “MQOV and MVN” on page 104

ORN Logical OR NOT “AND, ORR, EOR, BIC, and ORN" on page 98
ORR Logical OR “AND, ORR, EOR, BIC, and ORN” on page 98
RBIT Reverse Bits “REV, REV16, REVSH, and RBIT” on page 107
REV Reverse byte order in a word “REV, REV16, REVSH, and RBIT” on page 107
REV16 Reverse byte order in each halfword “REV, REV16, REVSH, and RBIT” on page 107
REVSH Reverse byte order in bottom halfword and sign extend “REV, REV16, REVSH, and RBIT” on page 107
ROR Rotate Right “ASR, LSL, LSR, ROR, and RRX” on page 100
RRX Rotate Right with Extend “ASR, LSL, LSR, ROR, and RRX” on page 100
RSB Reverse Subtract “ADD, ADC, SUB, SBC, and RSB” on page 95
SBC Subtract with Carry “ADD, ADC, SUB, SBC, and RSB” on page 95
SUB Subtract “ADD, ADC, SUB, SBC, and RSB” on page 95
SUBW Subtract “ADD, ADC, SUB, SBC, and RSB” on page 95
TEQ Test Equivalence “TST and TEQ” on page 108

TST Test “TST and TEQ” on page 108

94 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.12.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

10.12.1.1 Syntax
op{S}{cond} {Rd,} Rn, Operand2

op{cond} {Rd,} Rn, #inml2 ; ADD and SUB only
where:
op is one of:
ADD Add.

ADC Add with Carry.
SUB Subtract.

SBC Subtract with Carry.
RSB Reverse Subtract.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional execution” on page 76.

cond is an optional condition code, see “Conditional execution” on page 76.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the first operand.

Operand2 is a flexible second operand.
See “Flexible second operand” on page 72 for details of the options.
imm12 is any value in the range 0-4095.

10.12.1.2 Operation
The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.
The ADC instruction adds the values in Rn and Operand2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the result is
reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the wide
range of options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see “Multiword arithmetic examples” on page 97.
See also “ADR” on page 80.

ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB syntax that
uses the imm12 operand.

10.12.1.3 Restrictions

In these instructions:
e Operand2 must not be SP and must not be PC
e Rdcan be SP only in ADD and SUB, and only with the additional restrictions:
— Rnmust also be SP
— any shift in Operand2 must be limited to a maximum of 3 bits using LSL
e Rncanbe SP only in ADD and SUB

SAM3S8 /| SAM3SDS8 [DATASHEET 95
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

e Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:
— you must not specify the S suffix
— Rm must not be PC and must not be SP
— if the instruction is conditional, it must be the last instruction in the IT block

e with the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and only
with the additional restrictions:

— you must not specify the S suffix
— the second operand must be a constant in the range 0 to 4095.

— When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to b00 before
performing the calculation, making the base address for the calculation word-aligned.

— If you want to generate the address of an instruction, you have to adjust the constant based on the
value of the PC. ARM recommends that you use the ADR instruction instead of ADD or SUB with Rn
equal to the PC, because your assembler automatically calculates the correct constant for the ADR
instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:
e hit[0] of the value written to the PC is ignored
e a branch occurs to the address created by forcing bit[0] of that value to 0.

10.12.1.4 Condition flags
If S is specified, these instructions update the N, Z, C and V flags according to the result.

10.12.1.5 Examples

ADD R2, Rl, R3

SUBS R8, R6, #240 ; Sets the flags on the result

RSB R4, R4, #1280 ; Subtracts contents of R4 from 1280
ADCHI R11, RO, R3 ; Only executed if Cflag set and Z

; flag clear

96 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.12.1.6 Multiword arithmetic examples

10.12.1.7 64-bit addition

The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit integer con-
tained in RO and R1, and place the result in R4 and R5.

ADDS R4, RO, R2 ; add the least significant words

ADC R5, R1, R3 ; add the nost significant words with carry

10.12.1.8 96-bit subtraction

Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a 96-bit
integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the result in R6, R9,

and R2.
SUBS R6, R6, RO ; subtract the |east significant words
SBCS R9, R2, RL ; subtract the nmiddle words with carry
SBC R2, R8, Rl1 ; subtract the nost significant words with carry
/lt m eL SAM3S8 / SAM3SD8 [DATASHEET] 97
Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.12.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.
10.12.2.1 Syntax
op{S}{cond} {Rd,} Rn, Operand2
where:
op is one of:
AND logical AND.
ORR logical OR, or bit set.
EOR logical Exclusive OR.
BIC logical AND NOT, or bit clear.
ORN logical OR NOT.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional execution” on page 76.

cond is an optional condition code, see “Conditional execution” on page 76.
Rd is the destination register.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 72 for details of the options.

10.12.2.2 Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the values in Rn
and Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the corresponding bits in
the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the corresponding bits in
the value of Operand2.

10.12.2.3 Restrictions
Do not use SP and do not use PC.

10.12.2.4 Condition flags
If S is specified, these instructions:
e update the N and Z flags according to the result
e can update the C flag during the calculation of Operand2, see “Flexible second operand” on page 72
e do not affect the V flag.

98 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.12.2.5 Examples

AND RO, R2, #OxFFOO
ORREQ R2, RO, RS

ANDS R9, R8, #0x19

EORS R7, RL1, #0x18181818
BI C RO, Rl, #Oxab

ORN R7, Rl1, R4, ROR #4
ORNS R7, RL1, Rl14, ASR #32

SAM3S8 /| SAM3SDS8 [DATASHEET 99
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.12.3 ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.

10.12.3.1 Syntax

op{S}{cond} Rd, Rm Rs
op{S}{cond} Rd, Rm #n
RRX{ S} {cond} Rd, Rm

where:

op is one of:
ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional execution” on page 76.

Rd is the destination register.
Rm is the register holding the value to be shifted.
Rs is the register holding the shift length to apply to the value in Rm. Only the least significant byte is

used and can be in the range 0 to 255.
n is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32
LSL shift length from 0 to 31
LSR shift length from 1 to 32
ROR shift length from 1 to 31.
MOV{S}cond} Rd, Rm is the preferred syntax for LSL{S}{cond} Rd, Rm, #0.

10.12.3.2 Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places specified by
constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For details on
what result is generated by the different instructions, see “Shift Operations” on page 73.

10.12.3.3 Restrictions

Do not use SP and do not use PC.

10.12.3.4 Condition flags
If S is specified:
e these instructions update the N and Z flags according to the result

e the C flag is updated to the last bit shifted out, except when the shift length is 0, see “Shift Operations” on
page 73.

100 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.12.3.5 Examples

ASR R7, R8, #9 ; Arithnetic shift right by 9 bits

LSLS Rl1, R2, #3 ; Logical shift left by 3 bits with flag update

LSR R4, R5, #6 ; Logical shift right by 6 bits

ROR R4, R5, R6 ; Rotate right by the value in the bottombyte of R6
RRX R4, RS ; Rotate right with extend

SAM3S8 / SAM3SDS8 [DATASHEET 101
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.124 CLz
Count Leading Zeros.

10.12.4.1 Syntax
CLZ{cond} Rd, Rm

where:

cond is an optional condition code, see “Conditional execution” on page 76.
Rd is the destination register.

Rm is the operand register.

10.12.4.2 Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd. The result
value is 32 if no bits are set in the source register, and zero if bit[31] is set.

10.12.4.3 Restrictions

Do not use SP and do not use PC.
10.12.4.4 Condition flags

This instruction does not change the flags.

10.12.4.5 Examples

CLz R4, R9
CLZNE R2,R3

102 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.12.5 CMP and CMN

Compare and Compare Negative.

10.12.5.1 Syntax
CvP{cond} Rn, Operand2
CWMN{ cond} Rn, Operand2

where:
cond is an optional condition code, see “Conditional execution” on page 76.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 72 for details of the options.

10.12.5.2 Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the result,
but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS
instruction, except that the result is discarded.

The CMN instruction adds the value of Operand?2 to the value in Rn. This is the same as an ADDS instruction,
except that the result is discarded.
10.12.5.3 Restrictions
In these instructions:
e donotusePC
e Operand2 must not be SP.
10.12.5.4 Condition flags
These instructions update the N, Z, C and V flags according to the result.
10.12.5.5 Examples
CwP R2, RO

CWN RO, #6400
CWGI SP, R7, LSL #2

SAM3S8 /| SAM3SDS8 [DATASHEET 103
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.12.6 MOV and MVN
Move and Move NOT.

10.12.6.1 Syntax
MOV{ S} {cond} Rd, Operand2
MOV{cond} Rd, #i nml6
MN{ S} {cond} Rd, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional execution” on page 76.

cond is an optional condition code, see “Conditional execution” on page 76.

Rd is the destination register.

Operand2 is a flexible second operand. See “Flexible second operand” on page 72 for details of the options.

imm16 is any value in the range 0-65535.

10.12.6.2 Operation
The MOV instruction copies the value of Operand?2 into Rd.
When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is the
corresponding shift instruction:

e ASR{SKcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n
LSL{SKcond} Rd, Rm, #n is the preferred syntax for MOV{SHcond} Rd, Rm, LSL #nifn!=0
LSR{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n
ROR{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n
RRX{SHcond} Rd, Rm is the preferred syntax for MOV{S}cond} Rd, Rm, RRX.

Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions:
e MOV{SHcond} Rd, Rm, ASR Rs is a synonym for ASR{SHcond} Rd, Rm, Rs
e MOV{SHcond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs
e MOV{SHcond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs
e MOV{SHcond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs
See “ASR, LSL, LSR, ROR, and RRX” on page 100.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value, and
places the result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.

10.12.6.3 Restrictions
You can use SP and PC only in the MOV instruction, with the following restrictions:
e the second operand must be a register without shift
e you must not specify the S suffix.
When Rd is PC in a MOV instruction:
e hit[0] of the value written to the PC is ignored
e a branch occurs to the address created by forcing bit[0] of that value to 0.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or BLX
instruction to branch for software portability to the ARM instruction set.

104 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.12.6.4 Condition flags
If S is specified, these instructions:
e update the N and Z flags according to the result
e can update the C flag during the calculation of Operand2, see “Flexible second operand” on page 72
e do not affect the V flag.

10.12.6.5 Example

MOVS R11, #0x000B ; Wite value of 0x000B to R11, flags get updated
MOV R1, #OxFAO05 ; Wite value of OxFAO5 to Rl, flags are not updated
MOVS R10, R12 ; Wite value in R12 to R10, flags get updated

MOV R3, #23 ; Wite value of 23 to R3

MOV R8, SP ; Wite value of stack pointer to R8

MNS R2, #OxF ; Wite value of OxFFFFFFFO (bitw se inverse of OxF)

; to the R2 and update fl ags

SAM3S8 /| SAM3SDS8 [DATASHEET 105
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.12.7 MOVT
Move Top.

10.12.7.1 Syntax
MOVT{ cond} Rd, #i mMmi6

where:

cond is an optional condition code, see “Conditional execution” on page 76.
Rd is the destination register.

imm216 is a 16-bit immediate constant.

10.12.7.2 Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register. The write
does not affect Rd[15:0].

The MOV, MOVT instruction pair enables you to generate any 32-bit constant.
10.12.7.3 Restrictions
Rd must not be SP and must not be PC.

10.12.7.4 Condition flags
This instruction does not change the flags.

10.12.7.5 Examples

MWVT R3, #0xF123 ; Wite OxF123 to upper hal fword of R3, |ower hal fword
; and APSR are unchanged

106 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.12.8 REV, REV16, REVSH, and RBIT
Reverse bytes and Reverse bits.
10.12.8.1 Syntax
op{cond} Rd, Rn
where:
op is any of:
REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32-bit word.

cond is an optional condition code, see “Conditional execution” on page 76.
Rd is the destination register.
Rn is the register holding the operand.

10.12.8.2 Operation
Use these instructions to change endianness of data:

REV converts 32-bit big-endian data into little-endian data or 32-bit little-endian data into big-endian data.
REV16 converts 16-bit big-endian data into little-endian data or 16-bit little-endian data into big-endian data.
REVSH converts either:

16-bit signed big-endian data into 32-bit signed little-endian data
16-bit signed little-endian data into 32-bit signed big-endian data.

10.12.8.3 Restrictions
Do not use SP and do not use PC.

10.12.8.4 Condition flags
These instructions do not change the flags.

10.12.8.5 Examples

REV R3, R7 ; Reverse byte order of value in R7 and wite it to R3
REV16 RO, RO ; Reverse byte order of each 16-bit halfword in RO

REVSH RO, R5 ; Reverse Signed Hal fword

REVHS R3, R7 ; Reverse with Hi gher or Sane condition

RBIT R7, R8 ; Reverse bit order of value in R8 and wite the result to R7

SAM3S8 /| SAM3SDS8 [DATASHEET 107
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.12.9 TST and TEQ

Test bits and Test Equivalence.

10.12.9.1 Syntax
TST{cond} Rn, Operand2
TEQ cond} Rn, Operand2

where:
cond is an optional condition code, see “Conditional execution” on page 76.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible second operand” on page 72 for details of the options.

10.12.9.2 Operation

These instructions test the value in a register against Operand2. They update the condition flags based on the
result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2. This is the
same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has that bit set to 1
and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of Operand2.
This is the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.
TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive OR of the
sign bits of the two operands.
10.12.9.3 Restrictions
Do not use SP and do not use PC.

10.12.9.4 Condition flags

These instructions:
e update the N and Z flags according to the result
e can update the C flag during the calculation of Operand2, see “Flexible second operand” on page 72
e do not affect the V flag.

10.12.9.5 Examples

TST RO, #0x3F8 ; Perform bitwi se AND of RO val ue to Ox3F8,
; APSR is updated but result is discarded
TEQEQ R10, R9 ; Conditionally test if value in R1O is equal to

; value in R9, APSR is updated but result is discarded

108 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.13 Multiply and divide instructions

Table 10-21 shows the multiply and divide instructions:

Table 10-21. Multiply and divide instructions

Mnemonic | Brief description See

MLA Multiply with Accumulate, 32-bit result “MUL, MLA, and MLS” on page 110

MLS Multiply and Subtract, 32-bit result “MUL, MLA, and MLS” on page 110

MUL Multiply, 32-bit result “MUL, MLA, and MLS” on page 110

SDIV Signed Divide “SDIV and UDIV” on page 112

SMLAL Signed Multiply with Accumulate (32x32+64), 64-bit result “UMULL, UMLAL, SMULL, and SMLAL" on page 111
SMULL Signed Multiply (32x32), 64-bit result “UMULL, UMLAL, SMULL, and SMLAL" on page 111
ubIV Unsigned Divide “SDIV and UDIV” on page 112

UMLAL Unsigned Multiply with Accumulate (32x32+64), 64-bit result | “UMULL, UMLAL, SMULL, and SMLAL” on page 111
UMULL Unsigned Multiply (32x32), 64-bit result “UMULL, UMLAL, SMULL, and SMLAL” on page 111
/ItmeL SAM3S8 / SAM3SD8 [DATASHEET] 109

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.13.1 MUL, MLA, and MLS
Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a 32-bit result.
10.13.1.1 Syntax

MUL{S}{cond} {Rd,} Rn, Rm; Miltiply
M.A{cond} Rd, Rn, Rm Ra ; Miltiply with accumul ate
M.S{cond} Rd, Rn, Rm Ra ; Miltiply with subtract
where:
cond is an optional condition code, see “Conditional execution” on page 76.
S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional execution” on page 76.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm are registers holding the values to be multiplied.
Ra is a register holding the value to be added or subtracted from.

10.13.1.2 Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the result in
Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least
significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra, and
places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.

10.13.1.3 Restrictions
In these instructions, do not use SP and do not use PC.

If you use the S suffix with the MUL instruction:
e Rd, Rn, and Rm must all be in the range RO to R7
e Rd must be the same as Rm
e you must not use the cond suffix.

10.13.1.4 Condition flags

If S is specified, the MUL instruction:
e updates the N and Z flags according to the result
e does not affect the C and V flags.

10.13.1.5 Examples

MUL R10, R2, RS ; Miultiply, RI0O = R2 x RS

M.A R10, R2, Rl, R5 ; Miltiply with accunulate, RI0 = (R2 x Rl) + R5
MULS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2

MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2

M.S R4, R5, R6, R7 ; Miltiply with subtract, R4 = R7 - (R5 x R6)

110 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.13.2 UMULL, UMLAL, SMULL, and SMLAL

Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit
result.

10.13.2.1 Syntax

op{cond} RdLo, RdHi, Rn, Rm

where:
op is one of:

UMULL Unsigned Long Multiply.

UMLAL Unsigned Long Multiply, with Accumulate.

SMULL Signed Long Multiply.

SMLAL Signed Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional execution” on page 76.
RdHi, RdLo are the destination registers.

For UMLAL and SMLAL they also hold the accumulating value.

Rn, Rm are registers holding the operands.

10.13.2.2 Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers and
places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers,
adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and writes the result back to
RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies
these integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the
result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies
these integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo, and writes the result
back to RdHi and RdLo.

10.13.2.3 Restrictions

In these instructions:
e do not use SP and do not use PC
e RdHi and RdLo must be different registers.

10.13.2.4 Condition flags

These instructions do not affect the condition code flags.

10.13.2.5 Examples

R5 x R6

UMULL RO, R4, R5, R6 ; Unsigned (R4,R0) =
= (R5,R4) + R3 x R8

SMLAL R4, R5, R3, R8 ; Signed (R5, R4)

SAM3S8 / SAM3SDS8 [DATASHEET 111
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.13.3 SDIV and UDIV
Signed Divide and Unsigned Divide.
10.13.3.1 Syntax

SDI V{cond} {Rd,} Rn, Rm

UDI V{cond} {Rd,} Rn, Rm
where:
cond is an optional condition code, see “Conditional execution” on page 76.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.
Rm is a register holding the divisor.

10.13.3.2 Operation

SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded towards zero.
10.13.3.3 Restrictions

Do not use SP and do not use PC.
10.13.3.4 Condition flags

These instructions do not change the flags.

10.13.3.5 Examples
SDIV RO, R2, R4 ; Signed divide, RO = R2/R4
UDIV R8, R8, Rl ; Unsigned divide, R8 = R8/Rl

112 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.14 Saturating instructions

This section describes the saturating instructions, SSAT and USAT.

10.14.1 SSAT and USAT
Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

10.14.1.1 Syntax
op{cond} Rd, #n, Rm{, shift #s}

where:

op is one of:
SSAT Saturates a signed value to a signed range.
USAT Saturates a signed value to an unsigned range.

cond is an optional condition code, see “Conditional execution” on page 76.
Rd is the destination register.
n specifies the bit position to saturate to:

n ranges from 1 to 32 for SSAT
n ranges from 0 to 31 for USAT.
Rm is the register containing the value to saturate.
shift #s is an optional shift applied to Rm before saturating. It must be one of the following:
ASR #s where s is in the range 1 to 31
LSL #s where s is in the range 0 to 31.

10.14.1.2 Operation
These instructions saturate to a signed or unsigned n-bit value.
The SSAT instruction applies the specified shift, then saturates to the signed range —2"* <x < 2"1-1.
The USAT instruction applies the specified shift, then saturates to the unsigned range 0 < x < 2"-1.

For signed n-bit saturation using SSAT, this means that:
e if the value to be saturated is less than —2"1, the result returned is —2"1
e if the value to be saturated is greater than 2"*-1, the result returned is 2"*-1
e otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation using USAT, this means that:
e f the value to be saturated is less than 0, the result returned is 0
e if the value to be saturated is greater than 2"-1, the result returned is 2"-1
e otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the
instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To clear the Q flag to O,
you must use the MSR instruction, see “MSR” on page 133.

To read the state of the Q flag, use the MRS instruction, see “MRS” on page 132.
10.14.1.3 Restrictions
Do not use SP and do not use PC.

SAM3S8 / SAM3SDS8 [DATASHEET 113
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.14.1.4 Condition flags
These instructions do not affect the condition code flags.
If saturation occurs, these instructions set the Q flag to 1.

10.14.1.5 Examples

SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
saturate it as a signed 16-bit val ue and
wite it back to R7
USATNE RO, #7, RS ; Conditionally saturate value in R5 as an
unsigned 7 bit value and wite it to RO

114 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.15 Bitfield instructions

Table 10-22 shows the instructions that operate on adjacent sets of bits in registers or bitfields:

Table 10-22. Packing and unpacking instructions

Mnemonic | Brief description See

BFC Bit Field Clear “BFC and BFI” on page 116
BFI Bit Field Insert “BFC and BFI” on page 116
SBFX Signed Bit Field Extract “SBFX and UBFX” on page 117
SXTB Sign extend a byte “SXT and UXT” on page 118
SXTH Sign extend a halfword “SXT and UXT” on page 118
UBFX Unsigned Bit Field Extract “SBFX and UBFX” on page 117
UXTB Zero extend a byte “SXT and UXT” on page 118
UXTH Zero extend a halfword “SXT and UXT” on page 118

SAM3S8 / SAM3SDS8 [DATASHEET 115
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.15.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

10.15.1.1 Syntax

BFC{cond} Rd, #lsb, #wi dth
BFI {cond} Rd, Rn, #lsb, #wdth

where:
cond is an optional condition code, see “Conditional execution” on page 76.
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield.
Isb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-Isb.

10.15.1.2 Operation

BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position Isb. Other bits in Rd are
unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at the low bit
position Isb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

10.15.1.3 Restrictions
Do not use SP and do not use PC.
10.15.1.4 Condition flags

These instructions do not affect the flags.

10.15.1.5 Examples

BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of RAto O
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of RO with
; bit O0to bit 11 fromR2

116 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.15.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

10.15.2.1 Syntax

SBFX{cond} Rd, Rn, #lshb, #wi dth
UBFX{ cond} Rd, Rn, #l sb, #wi dth

where:
cond is an optional condition code, see “Conditional execution” on page 76.
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield.
Isb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-Isb.

10.15.2.2 Operation
SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the destination
register.

10.15.2.3 Restrictions
Do not use SP and do not use PC.

10.15.2.4 Condition flags
These instructions do not affect the flags.

10.15.2.5 Examples

SBFX RO, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) fromRl and sign
; extend to 32 bits and then wite the result to RO.

UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) fromRl1l and zero
; extend to 32 bits and then wite the result to R8

SAM3S8 / SAM3SDS8 [DATASHEET 117
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.15.3 SXT and UXT

Sign extend and Zero extend.

10.15.3.1 Syntax
SXText end{cond} {Rd,} Rm{, ROR #n}
UXText end{cond} {Rd}, Rm{, ROR #n}

where:
extend is one of:
B Extends an 8-bit value to a 32-bit value.
H Extends a 16-bit value to a 32-bit value.
cond is an optional condition code, see “Conditional execution” on page 76.
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:

ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.

10.15.3.2 Operation

These instructions do the following:
e Rotate the value from Rmright by 0, 8, 16 or 24 bits.
e Extract bits from the resulting value:

SXTB extracts bits[7:0] and sign extends to 32 bits.
UXTB extracts bits[7:0] and zero extends to 32 bits.
SXTH extracts bits[15:0] and sign extends to 32 bits.
UXTH extracts bits[15:0] and zero extends to 32 bits.

10.15.3.3 Restrictions
Do not use SP and do not use PC.

10.15.3.4 Condition flags
These instructions do not affect the flags.

10.15.3.5 Examples
SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the | ower
; halfword of the result and then sign extend to
; 32 bits and wite the result to R4.
UXTB R3, R10 ; Extract | owest byte of the value in RLO and zero
; extend it, and wite the result to R3

118 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.16 Branch and control instructions

Table 10-23 shows the branch and control instructions:

Table 10-23. Branch and control instructions
Mnemonic | Brief description See
B Branch “B, BL, BX, and BLX” on page 119
BL Branch with Link “B, BL, BX, and BLX" on page 119
BLX Branch indirect with Link “B, BL, BX, and BLX" on page 119
BX Branch indirect “B, BL, BX, and BLX" on page 119
CBNz Compare and Branch if Non Zero “CBZ and CBNZ" on page 121
cBz Compare and Branch if Non Zero “CBZ and CBNZ" on page 121
IT If-Then “IT” on page 122
TBB Table Branch Byte “TBB and TBH” on page 124
TBH Table Branch Halfword “TBB and TBH” on page 124

10.16.1 B, BL, BX, and BLX

Branch instructions.

10.16.1.1 Syntax

B{ cond} | abel
BL{ cond} | abel
BX{ cond} Rm
BLX{cond} Rm
where:
B is branch (immediate).
BL is branch with link (immediate).
BX is branch indirect (register).
BLX is branch indirect with link (register).
cond is an optional condition code, see “Conditional execution” on page 76.
label is a PC-relative expression. See “PC-relative expressions” on page 76.
Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm must be 1, but the

address to branch to is created by changing bit[0] to 0.

10.16.1.2 Operation
All these instructions cause a branch to label, or to the address indicated in Rm. In addition:
e The BL and BLX instructions write the address of the next instruction to LR (the link register, R14).
e The BX and BLX instructions cause a UsageFault exception if bit[0] of Rm is 0.
Bcond label is the only conditional instruction that can be either inside or outside an IT block. All other branch

instructions must be conditional inside an IT block, and must be unconditional outside the IT block, see “IT” on
page 122.

SAM3S8 / SAM3SD8 [DATASHEET] 119

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

Table 10-24 shows the ranges for the various branch instructions.

Table 10-24. Branch ranges

Instruction Branch range

B label -16 MB to +16 MB
Bcond label (outside IT block) -1 MB to +1 MB
Bcond label (inside IT block) -16 MB to +16 MB
BL{cond} label -16 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

You might have to use the .W suffix to get the maximum branch range. See “Instruction width selection” on page
78.

10.16.1.3 Restrictions

The restrictions are:
e do notuse PC in the BLX instruction
e for BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target address
created by changing bit[0] to O
e when any of these instructions is inside an IT block, it must be the last instruction of the IT block.

Bcond is the only conditional instruction that is not required to be inside an IT block. However, it has a longer
branch range when it is inside an IT block.

10.16.1.4 Condition flags
These instructions do not change the flags.

10.16.1.5 Examples
B | oopA ; Branch to | oopA
BLE ng ; Conditionally branch to | abel ng
B. W target ; Branch to target within 16MB range
BEQ target ; Conditionally branch to target
BEQ W target ; Conditionally branch to target within 1MB

BL funC ; Branch with link (Call) to function funC, return address
; stored in LR
BX LR ; Return fromfunction call
BXNE RO ; Conditionally branch to address stored in RO
BLX RO ; Branch with link and exchange (Call) to a address stored
; in RO
120 SAM3S8 / SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.16.2 CBZ and CBNZ
Compare and Branch on Zero, Compare and Branch on Non-Zero.

10.16.2.1 Syntax

CBZ Rn, | abel
CBNZ Rn, | abel

where:
Rn is the register holding the operand.
label is the branch destination.

10.16.2.2 Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number of
instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CwP Rn, #0
BEQ | abel
CBNZ Rn, label does not change condition flags but is otherwise equivalent to:
CwP Rn, #0
BNE | abel

10.16.2.3 Restrictions
The restrictions are:
e Rn must be in the range of RO to R7
e the branch destination must be within 4 to 130 bytes after the instruction
e these instructions must not be used inside an IT block.
10.16.2.4 Condition flags
These instructions do not change the flags.

10.16.2.5 Examples

CcBz R5, target ; Forward branch if R5 is zero
CBNz RO, target ; Forward branch if RO is not zero

SAM3S8 / SAM3SDS8 [DATASHEET 121
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.16.3 IT

If-Then condition instruction.

10.16.3.1 Syntax
I T{x{y{z}}} cond

where:

X specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.

z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.
E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of the instructions in
the IT block must be unconditional, and each of x, y, and z must be T or omitted but not E.

10.16.3.2 Operation

The IT instruction makes up to four following instructions conditional. The conditions can be all the same, or some
of them can be the logical inverse of the others. The conditional instructions following the IT instruction form the IT
block.

The instructions in the IT block, including any branches, must specify the condition in the {cond} part of their
syntax.

Your assembler might be able to generate the required IT instructions for conditional instructions automatically, so
that you do not need to write them yourself. See your assembler documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT block. Such an
exception results in entry to the appropriate exception handler, with suitable return information in LR and stacked
PSR.

Instructions designed for use for exception returns can be used as normal to return from the exception, and
execution of the IT block resumes correctly. This is the only way that a PC-modifying instruction is permitted to
branch to an instruction in an IT block.

10.16.3.3 Restrictions

The following instructions are not permitted in an IT block:
e T
e CBZand CBNZ
e CPSID and CPSIE.

Other restrictions when using an IT block are:

e a branch or any instruction that modifies the PC must either be outside an IT block or must be the last
instruction inside the IT block. These are:

— ADDPC, PC,Rm

— MOV PC,Rm

— B, BL,BX,BLX

— any LDM, LDR, or POP instruction that writes to the PC
— TBBand TBH

122 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

e do not branch to any instruction inside an IT block, except when returning from an exception handler

e all conditional instructions except Bcond must be inside an IT block. Bcond can be either outside or inside an
IT block but has a larger branch range if it is inside one

e each instruction inside the IT block must specify a condition code suffix that is either the same or logical
inverse as for the other instructions in the block.

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of assembler
directives within them.

10.16.3.4 Condition flags
This instruction does not change the flags.

10.16.3.5 Example

ITTE NE ; Next 3 instructions are conditional

ANDNE RO, RO, R1 ; ANDNE does not update condition flags

ADDSNE R2, R2, #1 ; ADDSNE updates condition flags

MOVEQ R2, R3 ; Conditional nove

cwp RO, #9 ; Convert RO hex value (0 to 15) into ASCl I
; ("0 -T9, A -TFY)

| TE GT ; Next 2 instructions are conditional

ADDGT R1, RO, #55 ; Convert OxA ->"A

ADDLE R1, RO, #48 ; Convert 0x0 -> '0'

1T Gr ; I T block with only one conditional instruction

ADDGT R1, R1, #1 ; Increment Rl conditionally

ITTEE EQ ; Next 4 instructions are conditional

MOVEQ RO, RL ; Conditional nove

ADDEQ R2, R2, #10 ; Conditional add

ANDNE R3, R3, #1 ; Conditional AND

BNE. W dl oop ; Branch instruction can only be used in the |ast
; instruction of an IT bl ock

1T NE ; Next instruction is conditional

ADD RO, RO, R1 ; Syntax error: no condition code used in IT bl ock

SAM3S8 / SAM3SDS8 [DATASHEET 123
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.16.4 TBB and TBH
Table Branch Byte and Table Branch Halfword.

10.16.4.1 Syntax
TBB [Rn, Rnj
TBH [Rn, Rm LSL #1]

where:

Rn is the register containing the address of the table of branch lengths. If Rn is PC, then the address of
the table is the address of the byte immediately following the TBB or TBH instruction.

Rm is the index register. This contains an index into the table. For halfword tables, LSL #1 doubles the
value in Rm to form the right offset into the table.

10.16.4.2 Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for TBB, or halfword
offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index into the table. For TBB the branch
offset is twice the unsigned value of the byte returned from the table. and for TBH the branch offset is twice the
unsigned value of the halfword returned from the table. The branch occurs to the address at that offset from the
address of the byte immediately after the TBB or TBH instruction.

10.16.4.3 Restrictions
The restrictions are:
e Rn must not be SP
e Rm must not be SP and must not be PC
e when any of these instructions is used inside an IT block, it must be the last instruction of the IT block.

10.16.4.4 Condition flags
These instructions do not change the flags.

10.16.4.5 Examples
ADR. W RO, BranchTabl e_Byte

TBB [RO, R1] ; RLis the index, RO is the base address of the
; branch table

Casel
; an instruction sequence follows
Case2
; an instruction sequence follows
Case3

; an instruction sequence follows
BranchTabl e_Byte
DCB 0 ; Casel offset calculation
DCB ((Case2-Casel)/2) ; Case2 offset calculation
DCB ((Case3-Casel)/2) ; Case3 offset calculation
TBH [PC, R1, LSL #1] ; RLis the index, PCis used as base of the
; branch table
BranchTabl e_H

DCl ((CaseA - BranchTable_H)/2) ; CaseA offset calculation
DCl ((CaseB - BranchTable_H)/2) ; CaseB offset cal culation
DCl ((CaseC - BranchTable_H)/2) ; CaseC offset cal culation

CaseA

; an instruction sequence follows

CaseB

124 SAM3S8 / SAM3SD8 [DATASHEET]
Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14 /I t m eL

;an instruction sequence follows
CaseC
;an instruction sequence foll ows

SAM3S8 / SAM3SDS8 [DATASHEET 125
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.17 Miscellaneous instructions

Table 10-25 shows the remaining Cortex-M3 instructions:

126

Table 10-25. Miscellaneous instructions
Mnemonic Brief description See
BKPT Breakpoint “BKPT” on page 127
CPSID Change Processor State, Disable Interrupts “CPS” on page 128
CPSIE Change Processor State, Enable Interrupts “CPS” on page 128
DMB Data Memory Barrier “DMB” on page 129
DSB Data Synchronization Barrier “DSB” on page 130
ISB Instruction Synchronization Barrier “ISB” on page 131
MRS Move from special register to register “MRS” on page 132
MSR Move from register to special register “MSR” on page 133
NOP No Operation “NOP” on page 134
SEV Send Event “SEV” on page 135
SvC Supervisor Call “SVC” on page 136
WFE Wait For Event “WFE” on page 137
WFI Wait For Interrupt “WFI” on page 138

SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

10.17.1 BKPT
Breakpoint.
10.17.1.1 Syntax
BKPT #i nm
where:
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

10.17.1.2 Operation
The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system
state when the instruction at a particular address is reached.
imm is ignored by the processor. If required, a debugger can use it to store additional information about the
breakpoint.
The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected by the condition
specified by the IT instruction.

10.17.1.3 Condition flags
This instruction does not change the flags.
10.17.1.4 Examples

BKPT OxAB ; Breakpoint with i medi ate value set to OxAB (debugger can
extract the i mediate value by locating it using the PC

SAM3S8 / SAM3SD8 [DATASHEET] 127

/I t ' I IeL Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.17.2 CPS

Change Processor State.

10.17.2.1 Syntax
CPSeffect iflags

where:
effect is one of:
IE Clears the special purpose register.
ID Sets the special purpose register.
iflags is a sequence of one or more flags:
i Set or clear PRIMASK.
f Set or clear FAULTMASK.

10.17.2.2 Operation

CPS changes the PRIMASK and FAULTMASK special register values. See “Exception mask registers” on page 45
for more information about these registers.

10.17.2.3 Restrictions
The restrictions are:
e use CPS only from privileged software, it has no effect if used in unprivileged software
e CPS cannot be conditional and so must not be used inside an IT block.
10.17.2.4 Condition flags
This instruction does not change the condition flags.

10.17.2.5 Examples

CPSIDi ; Disable interrupts and configurable fault handl ers (set PRI MASK)
CPSIDf ; Disable interrupts and all fault handlers (set FAULTMASK)

CPSIE i ; Enable interrupts and configurable fault handlers (clear
PRI MASK)
CPSIE f ; Enable interrupts and fault handlers (clear FAULTMASK)
128 SAM3S8 / SAM3SD8 [DATASHEET]
Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14 /I t m eL

10.17.3 DMB
Data Memory Barrier.

10.17.3.1 Syntax
DWVB{ cond}

where:
cond is an optional condition code, see “Conditional execution” on page 76.
10.17.3.2 Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in program order,
before the DMB instruction are completed before any explicit memory accesses that appear, in program order,
after the DMB instruction. DMB does not affect the ordering or execution of instructions that do not access
memory.

10.17.3.3 Condition flags

This instruction does not change the flags.

10.17.3.4 Examples
DVMB ; Data Menory Barrier

SAM3S8 / SAM3SDS8 [DATASHEET 129
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.17.4 DSB
Data Synchronization Barrier.

10.17.4.1 Syntax
DSB{ cond}

where:
cond is an optional condition code, see “Conditional execution” on page 76.
10.17.4.2 Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program
order, do not execute until the DSB instruction completes. The DSB instruction completes when all explicit memory
accesses before it complete.

10.17.4.3 Condition flags
This instruction does not change the flags.

10.17.4.4 Examples
DSB ; Data Synchronisation Barrier

130 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.17.5 ISB

Instruction Synchronization Barrier.

10.17.5.1 Syntax
| SB{ cond}

where:
cond is an optional condition code, see “Conditional execution” on page 76.
10.17.5.2 Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions
following the ISB are fetched from memory again, after the ISB instruction has been completed.

10.17.5.3 Condition flags
This instruction does not change the flags.

10.17.5.4 Examples
ISB ; Instruction Synchronisation Barrier

SAM3S8 / SAM3SDS8 [DATASHEET 131
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.17.6 MRS

Move the contents of a special register to a general-purpose register.

10.17.6.1 Syntax
MRS{cond} Rd, spec_reg

where:
cond is an optional condition code, see “Conditional execution” on page 76.
Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK,
BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

10.17.6.2 Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for example to
clear the Q flag.

In process swap code, the programmers model state of the process being swapped out must be saved, including
relevant PSR contents. Similarly, the state of the process being swapped in must also be restored. These
operations use MRS in the state-saving instruction sequence and MSR in the state-restoring instruction sequence.

BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.
See “MSR” on page 133.

10.17.6.3 Restrictions
Rd must not be SP and must not be PC.

10.17.6.4 Condition flags
This instruction does not change the flags.

10.17.6.5 Examples
MRS RO, PRIMASK ; Read PRI MASK value and wite it to RO

132 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.17.7 MSR
Move the contents of a general-purpose register into the specified special register.

10.17.7.1 Syntax
MBSR{ cond} spec_reg, Rn

where:
cond is an optional condition code, see “Conditional execution” on page 76.
Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK,
BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

10.17.7.2 Operation

The register access operation in MSR depends on the privilege level. Unprivileged software can only access the
APSR, see “Application Program Status Register” on page 43. Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

When you write to BASEPRI_MAX, the instruction writes to BASEPRI only if either:
e Rnis non-zero and the current BASEPRI value is O
e Rnis non-zero and less than the current BASEPRI value.

See “MRS” on page 132.
10.17.7.3 Restrictions
Rn must not be SP and must not be PC.
10.17.7.4 Condition flags
This instruction updates the flags explicitly based on the value in Rn.

10.17.7.5 Examples
MSR CONTROL, Rl ; Read Rl value and wite it to the CONTROL register

SAM3S8 /| SAM3SDS8 [DATASHEET 133
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.17.8 NOP

No Operation.

10.17.8.1 Syntax
NOP{ cond}

where:
cond is an optional condition code, see “Conditional execution” on page 76.
10.17.8.2 Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might remove it from the
pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.
10.17.8.3 Condition flags
This instruction does not change the flags.

10.17.8.4 Examples
NOP ; No operation

134 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.17.9 SEV
Send Event.

10.17.9.1 Syntax
SEV{ cond}
where:

cond is an optional condition code, see “Conditional execution” on page 76.

10.17.9.2 Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor system. It
also sets the local event register to 1, see “Power management” on page 66.

10.17.9.3 Condition flags
This instruction does not change the flags.

10.17.9.4 Examples
SEV ; Send Event

SAM3S8 /| SAM3SDS8 [DATASHEET 135
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.17.10 SVC

Supervisor Call.

10.17.10.1 Syntax
SVC{cond} #i mm

where:
cond is an optional condition code, see “Conditional execution” on page 76.
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

10.17.10.2 Operation
The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine what service
is being requested.

10.17.10.3 Condition flags
This instruction does not change the flags.

10.17.10.4 Examples

SVC 0x32 ; Supervisor Call (SVC handler can extract the i medi ate val ue
; by locating it via the stacked PC)

136 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.17.11 WFE
Wait For Event.
10.17.11.1 Syntax
WFE{ cond}
where:

cond is an optional condition code, see “Conditional execution” on page 76.

10.17.11.2 Operation
WEFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:

e an exception, unless masked by the exception mask registers or the current priority level

e an exception enters the Pending state, if SEVONPEND in the System Control Register is set
e a Debug Entry request, if Debug is enabled
[J

an event signaled by a peripheral or another processor in a multiprocessor system using the SEV
instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.
For more information see “Power management” on page 66.

10.17.11.3 Condition flags
This instruction does not change the flags.

10.17.11.4 Examples
WFE ; Wit for event

SAM3S8 /| SAM3SDS8 [DATASHEET 137
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.17.12 WFI

Wait for Interrupt.

10.17.12.1 Syntax
WFI { cond}

where:

cond is an optional condition code, see “Conditional execution” on page 76.

10.17.12.2 Operation
WFI is a hint instruction that suspends execution until one of the following events occurs:
e an exception
e a Debug Entry request, regardless of whether Debug is enabled.
10.17.12.3 Condition flags
This instruction does not change the flags.

10.17.12.4 Examples
WFl ; Wait for interrupt

138 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.18 About the Cortex-M3 peripherals
The address map of the Private peripheral bus (PPB) is:

Table 10-26. Core peripheral register regions

Address Core peripheral Description

8§E%E£§ System control block Table 10-30 on page 153
8?5%5812 System timer Table 10-33 on page 180
8§E%E}g: (N:Ezttt:g";/rectored Interrupt rable 10-27 on page 140
8§E%EB$ System control block Table 10-30 on page 153
8§E%Egg% Memory protection unit Table 10-35 on page 186
8§E%E% (N:Ezttt:g";/rectored Interrupt rable 10-27 on page 140

In register descriptions:
e the register type is described as follows:
RW Read and write.
RO Read-only.
WO Write-only.
e the required privilege gives the privilege level required to access the register, as follows:
Privileged Only privileged software can access the register.

Unprivileged Both unprivileged and privileged software can access the register.

SAM3S8 /| SAM3SDS8 [DATASHEET 139
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.19 Nested Vectored Interrupt Controller

This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses. The NVIC
supports:

1 to 35 interrupts.

e A programmable priority level of 0-15 for each interrupt. A higher level corresponds to a lower priority, so
level O is the highest interrupt priority.

e Level detection of interrupt signals.

e Dynamic reprioritization of interrupts.

e Grouping of priority values into group priority and subpriority fields.

e Interrupt tail-chaining.

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no
instruction overhead. This provides low latency exception handling. The hardware implementation of the NVIC
registers is:

Table 10-27. NVIC register summary

Required Reset
Address Name Type privilege value Description
OXEOOOE100- ISERO- RW Privileged 0x00000000 “Interrupt Set-enable Registers” on page 142
OxEOOOE104 ISER1
OXEOQOE180- ICERO- RW Privileged 0x00000000 “Interrupt Clear-enable Registers” on page 143
OXEOOOE184 ICER1
OXEOOOE200- ISPRO- RW Privileged 0x00000000 “Interrupt Set-pending Registers” on page 144
0xEOOOE204 ISPR1
OXEOOOE280- ICPRO- RW Privileged 0x00000000 “Interrupt Clear-pending Registers” on page 145
OXEOOOE284 ICPR1
OXEOOOE300- IABRO- RO Privileged 0x00000000 “Interrupt Active Bit Registers” on page 146
OXEOOOE304 IABR1
0xEOOOE400- IPRO- - . .
RwW Privileged 0x00000000 “Interrupt Priority Registers” on page 147
OXEOOOE41C IPR8
OXEOOOEEQQ STIR WO C(:l?nflgurable 0x00000000 1SS%ftware Trigger Interrupt Register” on page
1. See the register description for more information.

140 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.19.1 The CMSIS mapping of the Cortex-M3 NVIC registers

To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the CMSIS:
e the Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to arrays of 32-bit
integers, so that:
the array ISER[0] to ISER[1] corresponds to the registers ISERO-ISER1
the array ICER[0] to ICER[1] corresponds to the registers ICERO-ICER1
the array ISPR[0] to ISPR[1] corresponds to the registers ISPRO-ISPR1
the array ICPR[0] to ICPR[1] corresponds to the registers ICPRO-ICPR1
the array IABR[0] to IABR[1] corresponds to the registers IABRO-IABR1
e the 4-bit fields of the Interrupt Priority Registers map to an array of 4-bit integers, so that the array IP[0] to
IP[34] corresponds to the registers IPRO-IPR8, and the array entry IP[n] holds the interrupt priority for
interrupt n.
The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Registers. For more
information see the description of the NVIC_SetPriority function in “NVIC programming hints” on page 152. Table
10-28 shows how the interrupts, or IRQ numbers, map onto the interrupt registers and corresponding CMSIS
variables that have one bit per interrupt.

Table 10-28. Mapping of interrupts to the interrupt variables
CMSIS array elements ¥
Interrupts | Set-enable | Clear-enable | Set-pending | Clear-pending | Active Bit
0-34 ISER[0] ICER[0] ISPR[0] ICPR[0] IABR[O]
35-63 ISER[1] ICER[1] ISPR[1] ICPR[1] IABR[1]
1. Each array element corresponds to a single NVIC register, for example the element

Atmel

ICER[0] corresponds to the ICERO register.

SAM3S8 / SAM3SD8 [DATASHEET] 141

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.19.2 Interrupt Set-enable Registers

The ISERO-ISERL1 register enables interrupts, and show which interrupts are enabled. See:
e the register summary in Table 10-27 on page 140 for the register attributes
e Table 10-28 on page 141 for which interrupts are controlled by each register.

The bit assignments are:

31 30 29 28 27 26 25 24

| SETENA bits |
23 22 21 20 19 18 17 16

| SETENA bits |
15 14 13 12 11 10 9 8

| SETENA bits |
7 6 5 4 3 2 1 0

| SETENA bits |

¢ SETENA

Interrupt set-enable bits.

Write:

0 = no effect

1 = enable interrupt.
Read:

0 = interrupt disabled
1 = interrupt enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled, assert-
ing its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt, regardless of its
priority.

142 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.19.3 Interrupt Clear-enable Registers

The ICERO-ICERL1 register disables interrupts, and shows which interrupts are enabled. See:
e the register summary in Table 10-27 on page 140 for the register attributes
e Table 10-28 on page 141 for which interrupts are controlled by each register

The bit assignments are:

31 30 29 28 27 26 25 24

| CLRENA |
23 22 21 20 19 18 17 16

| CLRENA |
15 14 13 12 11 10 9 8

| CLRENA |
7 6 5 4 3 2 1 0

| CLRENA |

¢ CLRENA

Interrupt clear-enable bits.

Write:

0 = no effect

1 = disable interrupt.

Read:

0 = interrupt disabled
1 = interrupt enabled.

SAM3S8 / SAM3SDS8 [DATASHEET 143
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.19.4 Interrupt Set-pending Registers

The ISPRO-ISPRL1 register forces interrupts into the pending state, and shows which interrupts are pending. See:
e the register summary in NVIC register summary on page 140 for the register attributes
e Table 10-28 on page 141 for which interrupts are controlled by each register.

The bit assignments are:

31 30 29 28 27 26 25 24

| SETPEND |
23 22 21 20 19 18 17 16

| SETPEND |
15 14 13 12 11 10 9 8

| SETPEND |
7 6 5 4 3 2 1 0

| SETPEND |

e SETPEND

Interrupt set-pending bits.

Write:

0 = no effect.

1 = changes interrupt state to pending.
Read:

0 = interrupt is not pending.

1 = interrupt is pending.

Writing 1 to the ISPR bit corresponding to:
« an interrupt that is pending has no effect
« a disabled interrupt sets the state of that interrupt to pending

144 SAM3S8 / SAM3SD8 [DATASHEET)] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.19.5 Interrupt Clear-pending Registers
The ICPRO-ICPR1 register removes the pending state from interrupts, and show which interrupts are pending.
See:
e the register summary in Table 10-27 on page 140 for the register attributes
e Table 10-28 on page 141 for which interrupts are controlled by each register.
The bit assignments are:

31 30 29 28 27 26 25 24

| CLRPEND |
23 22 21 20 19 18 17 16

| CLRPEND |
15 14 13 12 11 10 9 8

| CLRPEND |
7 6 5 4 3 2 1 0

| CLRPEND |

¢ CLRPEND

Interrupt clear-pending bits.

Write:

0 = no effect.

1 = removes pending state an interrupt.
Read:

0 = interrupt is not pending.

1 = interrupt is pending.

Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

SAM3S8 / SAM3SDS8 [DATASHEET 145
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.19.6 Interrupt Active Bit Registers

The IABRO-IABRL1 register indicates which interrupts are active. See:
e the register summary in Table 10-27 on page 140 for the register attributes
e Table 10-28 on page 141 for which interrupts are controlled by each register.

The bit assignments are:

31 30 29 28 27 26 25 24

| ACTIVE |
23 22 21 20 19 18 17 16

| ACTIVE |
15 14 13 12 11 10 9 8

| ACTIVE |
7 6 5 4 3 2 1 0

| ACTIVE |

« ACTIVE

Interrupt active flags:
0 = interrupt not active
1 = interrupt active.

A bit reads as one if the status of the corresponding interrupt is active or active and pending.

146 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.19.7 Interrupt Priority Registers

The IPRO-IPRS registers provide a 4-bit priority field for each interrupt (See the “Peripheral Identifiers” section of
the datasheet for more details). These registers are byte-accessible. See the register summary in Table 10-27 on
page 140 for their attributes. Each register holds four priority fields, that map up to four elements in the CMSIS
interrupt priority array IP[0] to IP[34], as shown:

10.19.7.1 IPRm

31 30 29 28 27 26 25 24

| IP[4m+3] |
23 22 21 20 19 18 17 16

| IP[4m+2] |
15 14 13 12 11 10 9 8

| IP[4m+1] |
7 6 5 4 3 2 1 0

| IP[4m] |

10.19.7.2 IPR4
31 30 29 28 27 26 25 24

| IP[19] |
23 22 21 20 19 18 17 16

| IP[18] |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved |

10.19.7.3 IPR3
31 30 29 28 27 26 25 24

| IP[15] |
23 22 21 20 19 18 17 16

| IP[14] |
15 14 13 12 11 10 9 8

| IP[13] |
7 6 5 4 3 2 1 0

| IP[12] |

SAM3S8 / SAM3SD8 [DATASHEET 147
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.19.7.4 IPR2
31 30 29 28 27 26 25 24

| IP[11] |
23 22 21 20 19 18 17 16

| IP[10] |
15 14 13 12 11 10 9 8

| IP[9] |
7 6 5 4 3 2 1 0

I IP[8] |

10.19.7.5 IPR1
31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| IP[6] |
15 14 13 12 11 10 9 8

| IP[5] |
7 6 5 4 3 2 1 0

| IP[4] |

10.19.7.6 IPRO
31 30 29 28 27 26 25 24

| IP[3] |
23 22 21 20 19 18 17 16

I IP[2] |
15 14 13 12 11 10 9 8

| IP[1] |
7 6 5 4 3 2 1 0

| IP[0] |

 Priority, byte offset 3
 Priority, byte offset 2
 Priority, byte offset 1

* Priority, byte offset 0

Each priority field holds a priority value, 0-15. The lower the value, the greater the priority of the corresponding interrupt.
The processor implements only bits[7:4] of each field, bits[3:0] read as zero and ignore writes.

See “The CMSIS mapping of the Cortex-M3 NVIC registers” on page 141 for more information about the IP[0] to IP[34]
interrupt priority array, that provides the software view of the interrupt priorities.

148 SAM3S8 / SAM3SD8 [DATASHEET)] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Find the IPR number and byte offset for interrupt N as follows:
« the corresponding IPR number, M, is given by M = N DIV 4
« the byte offset of the required Priority field in this register is N MOD 4, where:
— byte offset O refers to register bits[7:0]
— byte offset 1 refers to register bits[15:8]
— byte offset 2 refers to register bits[23:16]
— byte offset 3 refers to register bits[31:24].

SAM3S8 / SAM3SDS8 [DATASHEET 149
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.19.8 Software Trigger Interrupt Register

Write to the STIR to generate a Software Generated Interrupt (SGI). See the register summary in Table 10-27 on
page 140 for the STIR attributes.

When the USERSETMPEND bit in the SCR is set to 1, unprivileged software can access the STIR, see “System
Control Register” on page 162.

Only privileged software can enable unprivileged access to the STIR.

The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved INTD |
7 6 5 4 3 2 1 0

| INTID |

¢ INTID

Interrupt ID of the required SGlI, in the range 0-239. For example, a value of bO00000011 specifies interrupt IRQ3.

150 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.19.9 Level-sensitive interrupts
The processor supports level-sensitive interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal. Typically this happens
because the ISR accesses the peripheral, causing it to clear the interrupt request.

When the processor enters the ISR, it automatically removes the pending state from the interrupt, see “Hardware
and software control of interrupts” . For a level-sensitive interrupt, if the signal is not deasserted before the
processor returns from the ISR, the interrupt becomes pending again, and the processor must execute its ISR
again. This means that the peripheral can hold the interrupt signal asserted until it no longer needs servicing.

10.19.9.1 Hardware and software control of interrupts
The Cortex-M3 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:
e the NVIC detects that the interrupt signal is HIGH and the interrupt is not active
e the NVIC detects a rising edge on the interrupt signal
e software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-pending Registers”
on page 144, or to the STIR to make an SGI pending, see “Software Trigger Interrupt Register” on page 150.
A pending interrupt remains pending until one of the following:

The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to active. Then:
— For alevel-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the
interrupt signal. If the signal is asserted, the state of the interrupt changes to pending, which might
cause the processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to
inactive.
— If the interrupt signal is not pulsed while the processor is in the ISR, when the processor returns from
the ISR the state of the interrupt changes to inactive.

e Software writes to the corresponding interrupt clear-pending register bit.

For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not change.
Otherwise, the state of the interrupt changes to inactive.

SAM3S8 / SAM3SDS8 [DATASHEET 151
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.19.10 NVIC design hints and tips

Ensure software uses correctly aligned register accesses. The processor does not support unaligned accesses to
NVIC registers. See the individual register descriptions for the supported access sizes.

A interrupt can enter pending state even it is disabled.

Before programming VTOR to relocate the vector table, ensure the vector table entries of the new vector table are
setup for fault handlers and all enabled exception like interrupts. For more information see “Vector Table Offset

Register” on page 159.

10.19.10.1 NVIC programming hints
Software uses the CPSIE | and CPSID | instructions to enable and disable interrupts. The CMSIS provides the

152

following intrinsic functions for these instructions:

void _ disable_irq(void) // Disable Interrupts
void _ _enable_irq(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

Table 10-29. CMSIS functions for NVIC control

CMSIS interrupt control function

Description

void NVIC_SetPriorityGrouping(uint32_t
priority_grouping)

Set the priority grouping

void NVIC_EnablelRQ(IRQnN_t IRQN)

Enable IRQnN

void NVIC_DisablelRQ(IRQn_t IRQnN)

Disable IRQn

uint32_t NVIC_GetPendinglRQ (IRQn_t IRQN)

Return true if IRQn is pending

void NVIC_SetPendingIRQ (IRQn_t IRQnN)

Set IRQn pending

void NVIC_ClearPendinglRQ (IRQn_t IRQn)

Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQn)

Return the IRQ number of the active
interrupt

void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority)

Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQnN)

Read priority of IRQn

void NVIC_SystemReset (void)

Reset the system

For more information about these functions see the CMSIS documentation.

SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

10.20 System control block

The System control block (SCB) provides system implementation information, and system control. This includes
configuration, control, and reporting of the system exceptions. The system control block registers are:

Table 10-30. Summary of the system control block registers
Required | Reset

Address Name Type privilege value Description
OxEOOOEO008 ACTLR RW Privileged | 0x00000000 “Auxiliary Control Register” on page 154
OXEOOOEDOO CPUID RO Privileged | 0x412FC230 “CPUID Base Register” on page 155
OXxEOOOED04 | ICSR Rw® Privileged | 0x00000000 “Interrupt Control and State Register” on page 156
OxEOOOEDO08 VTOR RW Privileged | 0x00000000 “Vector Table Offset Register” on page 159
OXEOOOEDOC AIRCR RW® Privileged | OXFA050000 1Aga())phca'uon Interrupt and Reset Control Register” on page
OxXEOOOED10 SCR RW Privileged | 0x00000000 “System Control Register” on page 162
OXEOOOED14 CCR RW Privileged | 0x00000200 “Configuration and Control Register” on page 163
OxEOOOED18 SHPR1 RW Privileged | 0x00000000 “System Handler Priority Register 1” on page 166
OXEOOOED1C SHPR2 RW Privileged | 0x00000000 “System Handler Priority Register 2" on page 167
OxEOOOED20 SHPR3 RW Privileged | 0x00000000 “System Handler Priority Register 3” on page 167
OxEOOOED24 SHCRS RW Privileged | 0x00000000 “System Handler Control and State Register” on page 168
OxXEOOOED28 CFSR RW Privileged | 0x00000000 “Configurable Fault Status Register” on page 170
OXEOOOED28 MMSR® RW Privileged | 0x00 1I\;Ismory Management Fault Address Register” on page
OXEOOOED29 | BFSR® RW Privileged | 0x00 “Bus Fault Status Register” on page 172
OXEOOOED2A | UFSR® RW Privileged | 0x0000 “Usage Fault Status Register” on page 174
OXEOOOED2C HFSR RW Privileged | 0x00000000 “Hard Fault Status Register” on page 176
OXEOOOED34 MMAR RW Privileged | Unknown 1l\;lsmory Management Fault Address Register” on page
OxEOOOED38 BFAR RW Privileged | Unknown “Bus Fault Address Register” on page 178

Notes: 1. See the register description for more information.

2. A subregister of the CFSR.

10.20.1 The CMSIS mapping of the Cortex-M3 SCB registers

To improve software efficiency, the CMSIS simplifies the SCB register presentation. In the CMSIS, the byte array
SHP[0] to SHP[12] corresponds to the registers SHPR1-SHPR3.

SAM3S8 / SAM3SD8 [DATASHEET] 153

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

10.20.2 Auxiliary Control Register
The ACTLR provides disable bits for the following processor functions:
e IT folding
e write buffer use for accesses to the default memory map
e interruption of multi-cycle instructions.

See the register summary in Table 10-30 on page 153 for the ACTLR attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved | DISFOLD | DISDEFWBUF [DISMCYCINT |

» DISFOLD

When set to 1, disables IT folding. see Table 10.20.2.1 on page 154 for more information.

+ DISDEFWBUF

When set to 1, disables write buffer use during default memory map accesses. This causes all bus faults to be precise bus
faults but decreases performance because any store to memory must complete before the processor can execute the next
instruction.

This bit only affects write buffers implemented in the Cortex-M3 processor.

* DISMCYCINT

When set to 1, disables interruption of load multiple and store multiple instructions. This increases the interrupt latency of
the processor because any LDM or STM must complete before the processor can stack the current state and enter the
interrupt handler.

10.20.2.1 About IT folding

In some situations, the processor can start executing the first instruction in an IT block while it is still executing the
IT instruction. This behavior is called IT folding, and improves performance, However, IT folding can cause jitter in
looping. If a task must avoid jitter, set the DISFOLD bit to 1 before executing the task, to disable IT folding.

154 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.20.3 CPUID Base Register

The CPUID register contains the processor part number, version, and implementation information. See the register
summary in Table 10-30 on page 153 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Implementer |
23 22 21 20 19 18 17 16

| Variant | Constant |
15 14 13 12 11 10 9 8

| PartNo |
7 6 5 4 3 2 1 0

| PartNo Revision |

* Implementer
Implementer code:
0x41 = ARM

» Variant
Variant number, the r value in the rnpn product revision identifier:
0x2 =r2p0

e Constant
Reads as OxF

* PartNo
Part number of the processor:
0xC23 = Cortex-M3

* Revision
Revision number, the p value in the rnpn product revision identifier:
0x0 =r2p0

SAM3S8 /| SAM3SDS8 [DATASHEET 155
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.20.4 Interrupt Control and State Register

The ICSR:
e provides:
— set-pending and clear-pending bits for the PendSV and SysTick exceptions
e indicates:
— the exception number of the exception being processed
— whether there are preempted active exceptions
— the exception number of the highest priority pending exception
— whether any interrupts are pending.

See the register summary in Table 10-30 on page 153, and the Type descriptions in Table 10-33 on page 180, for
the ICSR attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved | Reserved | PENDSVSET | PENDSVCLR | PENDSTSET | PENDSTCLR | Reserved |
23 22 21 20 19 18 17 16

Reserved for | |coneNDING VECTPENDING
Debug

15 14 13 12 1 10 9 8

| VECTPENDING RETTOBASE Reserved VECTACTIVE |
7 6 5 4 3 2 1 0

| VECTACTIVE |

* PENDSVSET
RW

PendSV set-pending bit.

Write:

0 = no effect

1 = changes PendSV exception state to pending.

Read:

0 = PendSV exception is not pending

1 = PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to pending.

+ PENDSVCLR
WO

PendSV clear-pending bit.
Write:
0 = no effect

1 = removes the pending state from the PendSV exception.

156 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

« PENDSTSET

RW

SysTick exception set-pending bit.

Write:

0 = no effect

1 = changes SysTick exception state to pending.
Read:

0 = SysTick exception is not pending

1 = SysTick exception is pending.

+ PENDSTCLR

WO

SysTick exception clear-pending bit.

Write:

0 = no effect

1 = removes the pending state from the SysTick exception.
This bit is WO. On a register read its value is Unknown.

» Reserved for Debug use
RO

This bit is reserved for Debug use and reads-as-zero when the processor is not in Debug.

» ISRPENDING

RO

Interrupt pending flag, excluding Faults:
0 = interrupt not pending

1 = interrupt pending.

 VECTPENDING

RO

Indicates the exception number of the highest priority pending enabled exception:
0 = no pending exceptions

Nonzero = the exception number of the highest priority pending enabled exception.

The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the
PRIMASK register.

 RETTOBASE

RO

Indicates whether there are preempted active exceptions:
0 = there are preempted active exceptions to execute

1 = there are no active exceptions, or the currently-executing exception is the only active exception.

SAM3S8 /| SAM3SDS8 [DATASHEET 157
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

¢ VECTACTIVE

RO

Contains the active exception number:

0 = Thread mode

Nonzero = The exception number) of the currently active exception.

Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Clear-Enable, Set-Enable, Clear-
Pending, Set-Pending, or Priority Registers, see “Interrupt Program Status Register” on page 44.

When you write to the ICSR, the effect is Unpredictable if you:
» write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit
e write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

Note: 1. Thisis the same value as IPSR bits [8:0] see “Interrupt Program Status Register” on page 44.

158 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.20.5 Vector Table Offset Register

The VTOR indicates the offset of the vector table base address from memory address 0x00000000. See the

register summary in Table 10-30 on page 153 for its attributes.
The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved TBLOFF |
23 22 21 20 19 18 17 16

| TBLOFF |
15 14 13 12 11 10 9 8

| TBLOFF |
7 6 5 4 3 2 1 0

[TBLOFF | Reserved |

e TBLOFF

Vector table base offset field. It contains bits[29:7] of the offset of the table base from the bottom of the memory map.

Bit[29] determines whether the vector table is in the code or SRAM memory region:

0 = code
1 = SRAM.
Bit[29] is sometimes called the TBLBASE bit.

When setting TBLOFF, you must align the offset to the number of exception entries in the vector table. The minimum align-
ment is 32 words, enough for up to 16 interrupts. For more interrupts, adjust the alignment by rounding up to the next
power of two. For example, if you require 21 interrupts, the alignment must be on a 64-word boundary because the
required table size is 37 words, and the next power of two is 64.

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

Atmel

SAM3S8 / SAM3SD8 [DATASHEET]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

159

10.20.6 Application Interrupt and Reset Control Register

The AIRCR provides priority grouping control for the exception model, endian status for data accesses, and reset
control of the system. See the register summary in Table 10-30 on page 153 and Table 10-33 on page 180 for its
attributes.

To write to this register, you must write 0x05FA to the VECTKEY field, otherwise the processor ignores the write.
The bit assignments are:

31 30 29 28 27 26 25 24
| On Read: VECTKEYSTAT, On Write: VECTKEY |

23 22 21 20 19 18 17 16
| On Read: VECTKEYSTAT, On Write: VECTKEY |

15 14 13 12 11 10 9 8
| ENDIANESS Reserved PRIGROUP |
7 6 5 4 3 2 1 0
VECTCLR-
Reserved SYSRESETREQ ESTVE VECTRESET

e VECTKEYSTAT
Register Key:
Reads as OxFAQ5

* VECTKEY
Register key:
On writes, write OX5FA to VECTKEY, otherwise the write is ignored.

« ENDIANESS

RO

Data endianness bit:
0 = Little-endian

ENDIANESS is set from the BIGEND configuration signal during reset.

* PRIGROUP
R/W

Interrupt priority grouping field. This field determines the split of group priority from subpriority, see “Binary point” on page
161.

« SYSRESETREQ

WO

System reset request:

0 = no effect

1 = asserts a proc_reset_signal.

This is intended to force a large system reset of all major components except for debug.
This bit reads as 0.

160 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

* VECTCLRACTIVE
WO

Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to this bit, otherwise behavior is
Unpredictable.

+ VECTRESET
WO

Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to this bit, otherwise behavior is
Unpredictable.

10.20.6.1 Binary point

The PRIGROUP field indicates the position of the binary point that splits the PRI_n fields in the Interrupt Priority
Registers into separate group priority and subpriority fields. Table 10-31 shows how the PRIGROUP value controls
this spilit.

Table 10-31. Priority grouping

Interrupt priority level value, PRI_N[7:0] Number of
Binary Group Subpriority Group
PRIGROUP | point® priority bits bits priorities Subpriorities
b011 bxxxx.0000 [7:4] None 16 1
b100 bxxx.y0000 [7:5] [4] 8 2
b101 bxx.yy0000 [7:6] [5:4] 4 4
b110 bx.yyy0000 [7] [6:4] 2 8
b111 b.yyyy0000 None [7:4] 1 16
1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a

subpriority field bit.

Determining preemption of an exception uses only the group priority field, see “Interrupt priority grouping” on page
62.

SAM3S8 / SAM3SDS8 [DATASHEET 161
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.20.7 System Control Register

The SCR controls features of entry to and exit from low power state. See the register summary in Table 10-30 on
page 153 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved SEVONPEND Reserved SLEEPDEEP SLEEONEXIT Reserved |

« SEVONPEND
Send Event on Pending bit:

0 = only enabled interrupts or events can wakeup the processor, disabled interrupts are excluded

1 = enabled events and all interrupts, including disabled interrupts, can wakeup the processor.

When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the processor is not
waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an sev instruction or an external event.

e SLEEPDEEP
Controls whether the processor uses sleep or deep sleep as its low power mode:

0 =sleep

1 = deep sleep.

* SLEEPONEXIT
Indicates sleep-on-exit when returning from Handler mode to Thread mode:

0 = do not sleep when returning to Thread mode.

1 = enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.

162

SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

10.20.8 Configuration and Control Register

The CCR controls entry to Thread mode and enables:

e the handlers for hard fault and faults escalated by FAULTMASK to ignore bus faults

e trapping of divide by zero and unaligned accesses

e access to the STIR by unprivileged software, see “Software Trigger Interrupt Register” on page 150.
See the register summary in Table 10-30 on page 153 for the CCR attributes.
The bit assignments are:

31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| Reserved |
15 14 13 12 11 10 9 8
| Reserved STKALIGN BFHFNMIGN |
7 6 5 4 3 2 1 0
UNALIGN_T USERSETM NONBASET
Reserved DIV_O_TRP RP — Reserved PEND HRDENA
e« STKALIGN

Indicates stack alignment on exception entry:
0 = 4-byte aligned
1 = 8-byte aligned.

On exception entry, the processor uses bit[9] of the stacked PSR to indicate the stack alignment. On return from the excep-
tion it uses this stacked bit to restore the correct stack alignment.

* BFHFNMIGN

Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the
hard fault and FAULTMASK escalated handlers:

0 = data bus faults caused by load and store instructions cause a lock-up
1 = handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.

Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe sys-
tem devices and bridges to detect control path problems and fix them.

« DIV_O_TRP

Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of O:
0 = do not trap divide by 0

1 = trap divide by 0.

When this bit is set to 0,a divide by zero returns a quotient of 0.

¢ UNALIGN_TRP

Enables unaligned access traps:

0 = do not trap unaligned halfword and word accesses

1 = trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether UNALIGN_TRP is set to 1.

SAM3S8 /| SAM3SDS8 [DATASHEET 163
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

¢ USERSETMPEND

Enables unprivileged software access to the STIR, see “Software Trigger Interrupt Register” on page 150:
0 = disable

1 = enable.

* NONEBASETHRDENA
Indicates how the processor enters Thread mode:
0 = processor can enter Thread mode only when no exception is active.

1 = processor can enter Thread mode from any level under the control of an EXC_RETURN value, see “Exception return”
on page 64.

164 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.20.9 System Handler Priority Registers
The SHPR1-SHPR3 registers set the priority level, 0 to 15 of the exception handlers that have configurable priority.
SHPR1-SHPR3 are byte accessible. See the register summary in Table 10-30 on page 153 for their attributes.
The system fault handlers and the priority field and register for each handler are:

Table 10-32. System fault handler priority fields

Handler Field Register description
Memory management PRI 4
fault -
Bus fault PRI 5 System Handler Priority Register 1” on page 166
Usage fault PRI_6
SVcall PRI_11 “System Handler Priority Register 2” on page 167
PendSV PRI_14

“System Handler Priority Register 3” on page 167
SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits[7:4] of each field, and bits[3:0] read as zero
and ignore writes.

SAM3S8 /| SAM3SDS8 [DATASHEET 165
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.20.9.1 System Handler Priority Register 1
The bit assignments are:

31 30 29 28 27 26 25 24

| PRI_7: Reserved |
23 22 21 20 19 18 17 16

| PRI 6 |
15 14 13 12 11 10 9 8

| PRI_5 |
7 6 5 4 3 2 1 0

| PRI_4 |

« PRI_7

Reserved

« PRL6

Priority of system handler 6, usage fault

* PRI_5
Priority of system handler 5, bus fault

* PRI_4
Priority of system handler 4, memory management fault

166 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.20.9.2 System Handler Priority Register 2
The bit assignments are:

31 30 29 28 27 26 25 24

| PRI_11 |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved |

* PRI_11

Priority of system handler 11, SVCall

10.20.9.3 System Handler Priority Register 3
The bit assignments are:

31 30 29 28 27 26 25 24

| PRI_15 |
23 22 21 20 19 18 17 16

| PRI_14 |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved |

* PRI_15

Priority of system handler 15, SysTick exception

e PRI_14
Priority of system handler 14, PendSV

SAM3S8 /| SAM3SDS8 [DATASHEET 167
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.20.10 System Handler Control and State Register

The SHCSR enables the system handlers, and indicates:
e the pending status of the bus fault, memory management fault, and SVC exceptions
e the active status of the system handlers.

See the register summary in Table 10-30 on page 153 for the SHCSR attributes. The bit assignments are:

31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| Reserved USGFAULTENA | BUSFAULTENA | MEMFAULTENA |
15 14 13 12 11 10 9 8
SVCALIISPENDE BUSFAEJ:STPEND MEMFISAIlEJIE;TPEN USGFAEJBTPEND SYSTICKACT PENDSVACT Reserved MONITORACT
7 6 5 4 3 2 1 0
| SVCALLAVCT | Reserved USGFAULTACT Reserved BUSFAULTACT MEMFAULTACT

e USGFAULTENA
Usage fault enable bit, set to 1 to enable

 BUSFAULTENA
Bus fault enable bit, set to 1 to enable®

+ MEMFAULTENA
Memory management fault enable bit, set to 1 to enable®

e SVCALLPENDED
SVC call pending bit, reads as 1 if exception is pending ®

* BUSFAULTPENDED
Bus fault exception pending bit, reads as 1 if exception is pending®

+ MEMFAULTPENDED
Memory management fault exception pending bit, reads as 1 if exception is pending®

» USGFAULTPENDED
Usage fault exception pending bit, reads as 1 if exception is pending®

* SYSTICKACT
SysTick exception active bit, reads as 1 if exception is active @

* PENDSVACT
PendSV exception active bit, reads as 1 if exception is active

1. Enable bits, set to 1 to enable the exception, or set to 0 to disable the exception.

2. Pending bits, read as 1 if the exception is pending, or as 0 if it is not pending. You can write to these bits to change the pending
status of the exceptions.

3. Active bits, read as 1 if the exception is active, or as 0 if it is not active. You can write to these bits to change the active status of

the exceptions, but see the Caution in this section.

168 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

* MONITORACT
Debug monitor active bit, reads as 1 if Debug monitor is active

« SVCALLACT
SVC call active bit, reads as 1 if SVC call is active

* USGFAULTACT
Usage fault exception active bit, reads as 1 if exception is active

« BUSFAULTACT
Bus fault exception active bit, reads as 1 if exception is active

+ MEMFAULTACT
Memory management fault exception active bit, reads as 1 if exception is active

If you disable a system handler and the corresponding fault occurs, the processor treats the fault as a hard fault.

You can write to this register to change the pending or active status of system exceptions. An OS kernel can write to the
active bits to perform a context switch that changes the current exception type.

 Software that changes the value of an active bit in this register without correct adjustment to the stacked content can
cause the processor to generate a fault exception. Ensure software that writes to this register retains and subsequently
restores the current active status.

« After you have enabled the system handlers, if you have to change the value of a bit in this register you must use a
read-modify-write procedure to ensure that you change only the required bit.

SAM3S8 /| SAM3SDS8 [DATASHEET 169
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.20.11 Configurable Fault Status Register

The CFSR indicates the cause of a memory management fault, bus fault, or usage fault. See the register summary
in Table 10-30 on page 153 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24
| Usage Fault Status Register: UFSR |

23 22 21 20 19 18 17 16
| Usage Fault Status Register: UFSR |

15 14 13 12 11 10 9 8
| Bus Fault Status Register: BFSR |

7 6 5 4 3 2 1 0
| Memory Management Fault Status Register: MMFSR |

The following subsections describe the subregisters that make up the CFSR:
e “Memory Management Fault Status Register” on page 171
e “Bus Fault Status Register” on page 172
e ‘“Usage Fault Status Register” on page 174.
The CFSR is byte accessible. You can access the CFSR or its subregisters as follows:
e access the complete CFSR with a word access to OXEOOOED28
access the MMFSR with a byte access to OXEOOOED28
access the MMFSR and BFSR with a halfword access to OXEOOOED28
access the BFSR with a byte access to OXEOOOED29
access the UFSR with a halfword access to OXEOOOED2A.

170 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.20.11.1 Memory Management Fault Status Register
The flags in the MMFSR indicate the cause of memory access faults. The bit assignments are:

7 6 5 4 3 2 1 0
| MMARVALID | Reserved | MSTKERR [wmunstkerr | Reserved | DACCVIOL IACCVIOL

¢ MMARVALID

Memory Management Fault Address Register (MMAR) valid flag:
0 = value in MMAR is not a valid fault address

1 = MMAR holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set
this bit to 0. This prevents problems on return to a stacked active memory management fault handler whose MMAR value
has been overwritten.

e MSTKERR

Memory manager fault on stacking for exception entry:

0 = no stacking fault

1 = stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor
has not written a fault address to the MMAR.

* MUNSTKERR

Memory manager fault on unstacking for a return from exception:

0 = no unstacking fault

1 = unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The proces-
sor has not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a
fault address to the MMAR.

« DACCVIOL

Data access violation flag:

0 = no data access violation fault

1 = the processor attempted a load or store at a location that does not permit the operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded
the MMAR with the address of the attempted access.

* IACCVIOL

Instruction access violation flag:

0 = no instruction access violation fault

1 = the processor attempted an instruction fetch from a location that does not permit execution.
This fault occurs on any access to an XN region, even when the MPU is disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not
written a fault address to the MMAR.

SAM3S8 / SAM3SDS8 [DATASHEET 171
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.20.11.2 Bus Fault Status Register
The flags in the BFSR indicate the cause of a bus access fault. The bit assignments are:

7 6 5 4 3 2 1 0
[BFRVALID | Reserved | STKERR | UNSTKERR | mpreciserr | PRECISERR | IBUSERR
« BFARVALID

Bus Fault Address Register (BFAR) valid flag:
0 = value in BFAR is not a valid fault address
1 = BFAR holds a valid fault address.

The processor sets this bit to 1 after a bus fault where the address is known. Other faults can set this bit to 0, such as a
memory management fault occurring later.

If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This
prevents problems if returning to a stacked active bus fault handler whose BFAR value has been overwritten.

« STKERR

Bus fault on stacking for exception entry:

0 = no stacking fault

1 = stacking for an exception entry has caused one or more bus faults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be incor-
rect. The processor does not write a fault address to the BFAR.

¢ UNSTKERR

Bus fault on unstacking for a return from exception:

0 = no unstacking fault

1 = unstack for an exception return has caused one or more bus faults.

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is still
present. The processor does not adjust the SP from the failing return, does not performed a new save, and does not write
a fault address to the BFAR.

¢ IMPRECISERR
Imprecise data bus error:
0 = no imprecise data bus error

1 = a data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the
error.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault
priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority pro-
cesses. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects
both IMPRECISERR set to 1 and one of the precise fault status bits set to 1.

172 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

« PRECISERR
Precise data bus error:
0 = no precise data bus error

1 = a data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused
the fault.

When the processor sets this bit is 1, it writes the faulting address to the BFAR.

e IBUSERR

Instruction bus error:

0 = no instruction bus error
1 = instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it
attempts to issue the faulting instruction.

When the processor sets this bit is 1, it does not write a fault address to the BFAR.

SAM3S8 / SAM3SDS8 [DATASHEET 173
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.20.11.3 Usage Fault Status Register
The UFSR indicates the cause of a usage fault. The bit assignments are:

15 14 13 12 11 10 9 8
| Reserved | DIVBYZERO | UNALIGNED |
7 6 5 4 3 2 1 0
| Reserved NOCP INVPC | INVSTATE | unperinsTR |
« DIVBYZERO

Divide by zero usage fault:
0 = no divide by zero fault, or divide by zero trapping not enabled
1 = the processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed
the divide by zero.

Enable trapping of divide by zero by setting the DIV_0_TRP bit in the CCR to 1, see “Configuration and Control Register”
on page 163.

* UNALIGNED

Unaligned access usage fault:

0 = no unaligned access fault, or unaligned access trapping not enabled
1 = the processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the CCR to 1, see “Configuration and Control
Register” on page 163.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of UNALIGN_TRP.

*+ NOCP

No coprocessor usage fault. The processor does not support coprocessor instructions:
0 = no usage fault caused by attempting to access a coprocessor

1 = the processor has attempted to access a coprocessor.

¢ INVPC
Invalid PC load usage fault, caused by an invalid PC load by EXC_RETURN:
0 =no invalid PC load usage fault

1 = the processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid
EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the ille-
gal load of the PC.

e INVSTATE

Invalid state usage fault:

0 = no invalid state usage fault

1 = the processor has attempted to execute an instruction that makes illegal use of the EPSR.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that attempted the illegal
use of the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

174 SAM3S8 / SAM3SD8 [DATASHEET)] AtmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

¢ UNDEFINSTR

Undefined instruction usage fault:

0 = no undefined instruction usage fault

1 = the processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.
An undefined instruction is an instruction that the processor cannot decode.

The UFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is setto 1 is
cleared to 0 only by writing 1 to that bit, or by a reset.

SAM3S8 / SAM3SDS8 [DATASHEET 175
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.20.12 Hard Fault Status Register

The HFSR gives information about events that activate the hard fault handler. See the register summary in Table
10-30 on page 153 for its attributes.

This register is read, write to clear. This means that bits in the register read normally, but writing 1 to any bit clears
that bit to 0. The bit assignments are:

31 30 29 28 27 26 25 24

| DEBUGEVT | FORCED | Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved | VECTTBL | Reserved |

« DEBUGEVT

Reserved for Debug use. When writing to the register you must write O to this bit, otherwise behavior is Unpredictable.

+ FORCED

Indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either
because of priority or because it is disabled:

0 = no forced hard fault
1 = forced hard fault.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.

» VECTTBL

Indicates a bus fault on a vector table read during exception processing:
0 = no bus fault on vector table read

1 = bus fault on vector table read.

This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the
exception.

The HFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is setto 1 is
cleared to 0 only by writing 1 to that bit, or by a reset.

176 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.20.13 Memory Management Fault Address Register

The MMFAR contains the address of the location that generated a memory management fault. See the register
summary in Table 10-30 on page 153 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

« ADDRESS

When the MMARVALID bit of the MMFSR is set to 1, this field holds the address of the location that generated the memory
management fault

When an unaligned access faults, the address is the actual address that faulted. Because a single read or write instruction
can be split into multiple aligned accesses, the fault address can be any address in the range of the requested access size.

Flags in the MMFSR indicate the cause of the fault, and whether the value in the MMFAR is valid. See “Memory Manage-
ment Fault Status Register” on page 171.

SAM3S8 / SAM3SDS8 [DATASHEET 177
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.20.14 Bus Fault Address Register

The BFAR contains the address of the location that generated a bus fault. See the register summary in Table 10-
30 on page 153 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

« ADDRESS

When the BFARVALID bit of the BFSR is set to 1, this field holds the address of the location that generated the bus fault

When an unaligned access faults the address in the BFAR is the one requested by the instruction, even if it is not the
address of the fault.

Flags in the BFSR indicate the cause of the fault, and whether the value in the BFAR is valid. See “Bus Fault Status Regis-
ter” on page 172.

178 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.20.15 System control block design hints and tips

Ensure software uses aligned accesses of the correct size to access the system control block registers:
e except for the CFSR and SHPR1-SHPR3, it must use aligned word accesses
e for the CFSR and SHPR1-SHPR3 it can use byte or aligned halfword or word accesses.
The processor does not support unaligned accesses to system control block registers.
In a fault handler. to determine the true faulting address:
e Read and save the MMFAR or BFAR value.
e Readthe MMARVALID bit in the MMFSR, or the BFARVALID bit in the BFSR. The MMFAR or BFAR address
is valid only if this bit is 1.

Software must follow this sequence because another higher priority exception might change the MMFAR or BFAR
value. For example, if a higher priority handler preempts the current fault handler, the other fault might change the
MMFAR or BFAR value.

SAM3S8 / SAM3SDS8 [DATASHEET 179
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.21 System timer, SysTick

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero, reloads (wraps
to) the value in the LOAD register on the next clock edge, then counts down on subsequent clocks.

When the processor is halted for debugging the counter does not decrement.
The system timer registers are:

Table 10-33. System timer registers summary

Required | Reset
Address Name Type privilege | value Description
O0xEOOOEO010 CTRL RW Privileged | 0x00000004 “SysTick Control and Status Register” on page 181
OxEOOOEO014 LOAD RW Privileged | 0x00000000 “SysTick Reload Value Register” on page 182
OxEOOOE018 VAL RW Privileged | 0x00000000 “SysTick Current Value Register” on page 183
OxXEOOOEO1C CALIB RO Privileged | 0x0002904 & “SysTick Calibration Value Register” on page 184
1. SysTick calibration value.

180 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.21.1 SysTick Control and Status Register

The SysTick CTRL register enables the SysTick features. See the register summary in Table 10-33 on page 180
for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved COUNTFLAG |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved CLKSOURCE TICKINT ENABLE |

e COUNTFLAG
Returns 1 if timer counted to O since last time this was read.

e CLKSOURCE
Indicates the clock source:

0= MCK/8
1=MCK
* TICKINT

Enables SysTick exception request:

0 = counting down to zero does not assert the SysTick exception request

1 = counting down to zero to asserts the SysTick exception request.

Software can use COUNTFLAG to determine if SysTick has ever counted to zero.

« ENABLE

Enables the counter:
0 = counter disabled
1 = counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the LOAD register and then counts down. On reach-
ing 0, it sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It then loads the
RELOAD value again, and begins counting.

SAM3S8 / SAM3SDS8 [DATASHEET 181
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.21.2 SysTick Reload Value Register

The LOAD register specifies the start value to load into the VAL register. See the register summary in Table 10-33
on page 180 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| RELOAD |
15 14 13 12 11 10 9 8

| RELOAD |
7 6 5 4 3 2 1 0

| -RELOAD |

e RELOAD

Value to load into the VAL register when the counter is enabled and when it reaches 0, see “Calculating the RELOAD

value” .

10.21.2.1 Calculating the RELOAD value
The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. A start value of 0 is possible, but
has no effect because the SysTick exception request and COUNTFLAG are activated when counting from 1 to 0.
The RELOAD value is calculated according to its use:

e To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD value of N-1. For
example, if the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

e Todeliver a single SysTick interrupt after a delay of N processor clock cycles, use a RELOAD of value N. For
example, if a SysTick interrupt is required after 400 clock pulses, set RELOAD to 400.

182 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.21.3 SysTick Current Value Register

The VAL register contains the current value of the SysTick counter. See the register summary in Table 10-33 on
page 180 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24
| Reserved |
23 22 21 20 19 18 17 16
| CURRENT |
15 14 13 12 11 10 9 8
| CURRENT |
7 6 5 4 3 2 1 0
| CURRENT |

« CURRENT

Reads return the current value of the SysTick counter.
A write of any value clears the field to 0, and also clears the SysTick CTRL.COUNTFLAG bit to 0.

SAM3S8 /| SAM3SDS8 [DATASHEET 183
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.21.4 SysTick Calibration Value Register

The CALIB register indicates the SysTick calibration properties. See the register summary in Table 10-33 on page
180 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

[Norer | skew | Reserved |
23 22 21 20 19 18 17 16

| TENMS |
15 14 13 12 11 10 9 8

| TENMS |
7 6 5 4 3 2 1 0

| TENMS |

« NOREF

Reads as zero.

« SKEW
Reads as zero

 TENMS
Read as 0x00001F40. The SysTick calibration value is fixed at 0x00001F40 (8000), which allows the generation of a time

base of 1 ms with SysTick clock at 8 MHz (64/8 = 8 MHz)
10.21.5 SysTick design hints and tips

The SysTick counter runs on the processor clock. If this clock signal is stopped for low power mode, the SysTick
counter stops.

Ensure software uses aligned word accesses to access the SysTick registers.

184 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.22 Memory protection unit
This section describes the Memory protection unit (MPU).
The MPU divides the memory map into a number of regions, and defines the location, size, access permissions,
and memory attributes of each region. It supports:
e independent attribute settings for each region
e overlapping regions
e export of memory attributes to the system.
The memory attributes affect the behavior of memory accesses to the region. The Cortex-M3 MPU defines:
e eight separate memory regions, 0-7
e a background region.
When memory regions overlap, a memory access is affected by the attributes of the region with the highest

number. For example, the attributes for region 7 take precedence over the attributes of any region that overlaps
region 7.

The background region has the same memory access attributes as the default memory map, but is accessible
from privileged software only.

The Cortex-M3 MPU memory map is unified. This means instruction accesses and data accesses have same
region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a memory
management fault. This causes a fault exception, and might cause termination of the process in an OS
environment.

In an OS environment, the kernel can update the MPU region setting dynamically based on the process to be
executed. Typically, an embedded OS uses the MPU for memory protection.

Configuration of MPU regions is based on memory types, see “Memory regions, types and attributes” on page 50.

Table 10-34 shows the possible MPU region attributes. These include Share ability and cache behavior attributes
that are not relevant to most microcontroller implementations. See “MPU configuration for a microcontroller” on
page 197 for guidelines for programming such an implementation.

Table 10-34. Memory attributes summary

Memory type Shareability | Other attributes | Description

All accesses to Strongly-ordered memory occur in program order.

Strongly- ordered | - i All Strongly-ordered regions are assumed to be shared.

Device Shared - Memory-mapped peripherals that several processors share.
Non-shared - Memory-mapped peripherals that only a single processor uses.

Normal Shared Normal memory that is shared between several processors.
Non-shared Normal memory that only a single processor uses.

SAM3S8 /| SAM3SDS8 [DATASHEET 185
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Use the MPU registers to define the MPU regions and their attributes. The MPU registers are:

Table 10-35. MPU registers summary

Required | Reset

Address Name Type | privilege | value Description

OxEOOOEDS0 | TYPE RO Privileged | 0x00000800 | “MPU Type Register” on page 187

OxEOOOED94 | CTRL RW Privileged | 0x00000000 | “MPU Control Register” on page 188

OxXEOOOED98 | RNR RW Privileged | 0x00000000 | “MPU Region Number Register” on page 190
OXEOOOED9C | RBAR RW Privileged | 0x00000000 | “MPU Region Base Address Register” on page 191
OXEOOOEDAO | RASR RW Privileged | 0x00000000 | “MPU Region Attribute and Size Register” on page 192

Alias of RBAR, see “MPU Region Base Address

OXEOOOEDA4 | RBAR_Al1 | RW Privileged | 0x00000000 L
Register” on page 191

Alias of RASR, see “MPU Region Attribute and Size

OXEOOOEDA8 | RASR_A1 | RW Privileged | 0x00000000 L
Register” on page 192

Alias of RBAR, see “MPU Region Base Address

OXEOOOEDAC | RBAR_A2 | RW Privileged | 0x00000000 L
Register” on page 191

Alias of RASR, see “MPU Region Attribute and Size

OXEOOOEDBO | RASR_A2 | RW Privileged | 0x00000000 L
Register” on page 192

Alias of RBAR, see “MPU Region Base Address

OXEOOOEDB4 | RBAR_A3 | RW Privileged | 0x00000000 L
Register” on page 191

Alias of RASR, see “MPU Region Attribute and Size

OXEOOOEDB8 | RASR_A3 | RW Privileged | 0x00000000 L
Register” on page 192

186 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.22.1 MPU Type Register

The TYPE register indicates whether the MPU is present, and if so, how many regions it supports. See the register
summary in Table 10-35 on page 186 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| IREGION |
15 14 13 12 11 10 9 8

| DREGION |
7 6 5 4 3 2 1 0

| Reserved SEPARATE |

« IREGION

Indicates the number of supported MPU instruction regions.

Always contains 0x00. The MPU memory map is unified and is described by the DREGION field.

+ DREGION
Indicates the number of supported MPU data regions:
0x08 = Eight MPU regions.

« SEPARATE
Indicates support for unified or separate instruction and date memory maps:
0 = unified.
SAM3S8 / SAM3SD8 [DATASHEET 187
Atmel [)

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.22.2 MPU Control Register

The MPU CTRL register:
e enables the MPU
e enables the default memory map background region
e enables use of the MPU when in the hard fault, Non-maskable Interrupt (NMI), and FAULTMASK escalated
handlers.

See the register summary in Table 10-35 on page 186 for the MPU CTRL attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| Reserved PRIVDEFENA | HFNMIENA ENABLE |

* PRIVDEFENA
Enables privileged software access to the default memory map:

0 = If the MPU is enabled, disables use of the default memory map. Any memory access to a location not covered by any
enabled region causes a fault.

1 = If the MPU is enabled, enables use of the default memory map as a background region for privileged software
accesses.

When enabled, the background region acts as if it is region number -1. Any region that is defined and enabled has priority
over this default map.

If the MPU is disabled, the processor ignores this bit.

» HFNMIENA

Enables the operation of MPU during hard fault, NMI, and FAULTMASK handlers.

When the MPU is enabled:

0 = MPU is disabled during hard fault, NMI, and FAULTMASK handlers, regardless of the value of the ENABLE bit
1 =the MPU is enabled during hard fault, NMI, and FAULTMASK handlers.

When the MPU is disabled, if this bit is set to 1 the behavior is Unpredictable.

« ENABLE

Enables the MPU:

0 = MPU disabled

1 = MPU enabled.

When ENABLE and PRIVDEFENA are both set to 1:

For privileged accesses, the default memory map is as described in “Memory model” on page 50. Any access by privileged
software that does not address an enabled memory region behaves as defined by the default memory map.

Any access by unprivileged software that does not address an enabled memory region causes a memory management
fault.

XN and Strongly-ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

188 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system to function unless
the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions are enabled, then only privileged soft-
ware can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same memory attributes as if the
MPU is not implemented, see Table 10-34 on page 185. The default memory map applies to accesses from both privileged
and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other areas are
accessible based on regions and whether PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for an exception with
priority —1 or —2. These priorities are only possible when handling a hard fault or NMI exception, or when FAULTMASK is
enabled. Setting the HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

SAM3S8 /| SAM3SDS8 [DATASHEET 189
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.22.3 MPU Region Number Register

The RNR selects which memory region is referenced by the RBAR and RASR registers. See the register summary
in Table 10-35 on page 186 for its attributes. The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved |
23 22 21 20 19 18 17 16

| Reserved |
15 14 13 12 11 10 9 8

| Reserved |
7 6 5 4 3 2 1 0

| REGION |

* REGION

Indicates the MPU region referenced by the RBAR and RASR registers.
The MPU supports 8 memory regions, so the permitted values of this field are 0-7.

Normally, you write the required region number to this register before accessing the RBAR or RASR. However you can
change the region number by writing to the RBAR with the VALID bit set to 1, see “"MPU Region Base Address Register” on
page 191. This write updates the value of the REGION field.

190 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14 /I t I I I eL

10.22.4 MPU Region Base Address Register

The RBAR defines the base address of the MPU region selected by the RNR, and can update the value of the
RNR. See the register summary in Table 10-35 on page 186 for its attributes.

Write RBAR with the VALID bit set to 1 to change the current region number and update the RNR. The bit
assignments are:

31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 N

| ADDR |
N-1 6 5 4 3 2 1 0

| Reserved | vaup | REGION |

« ADDR

Region base address field. The value of N depends on the region size. For more information see “The ADDR field” .

* VALID

MPU Region Number valid bit:

Write:

0 = RNR not changed, and the processor:

updates the base address for the region specified in the RNR

ignores the value of the REGION field

1 = the processor:

updates the value of the RNR to the value of the REGION field
updates the base address for the region specified in the REGION field.
Always reads as zero.

*+ REGION
MPU region field:
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the RNR.

10.22.4.1 The ADDR field

The ADDR field is bits[31:N] of the RBAR. The region size, as specified by the SIZE field in the RASR, defines the
value of N:

N = Log,(Region size in bytes),
If the region size is configured to 4GB, in the RASR, there is no valid ADDR field. In this case, the region occupies
the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64KB region must be aligned on a multiple of
64KB, for example, at 0x00010000 or 0x00020000.

SAM3S8 / SAM3SDS8 [DATASHEET 191
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.22.5 MPU Region Attribute and Size Register

The RASR defines the region size and memory attributes of the MPU region specified by the RNR, and enables
that region and any subregions. See the register summary in Table 10-35 on page 186 for its attributes.
RASR is accessible using word or halfword accesses:
e the most significant halfword holds the region attributes
e the least significant halfword holds the region size and the region and subregion enable bits.
The bit assignments are:

31 30 29 28 27 26 25 24

| Reserved XN Reserved | AP |
23 22 21 20 19 18 17 16

| Reserved TEX | s C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| Reserved | SIZE ENABLE |

« XN

Instruction access disable bit:
0 = instruction fetches enabled
1 = instruction fetches disabled.

e AP
Access permission field, see Table 10-39 on page 194.

« TEX,C,B
Memory access attributes, see Table 10-37 on page 193.

* S
Shareable bit, see Table 10-36 on page 193.

« SRD

Subregion disable bits. For each bit in this field:

0 = corresponding sub-region is enabled

1 = corresponding sub-region is disabled

See “Subregions” on page 196 for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

» SIZE

Specifies the size of the MPU protection region. The minimum permitted value is 3 (b00010), see See “SIZE field values”
on page 193 for more information.

« ENABLE
Region enable bit.

For information about access permission, see “MPU access permission attributes” .

192 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.22.5.1 SIZE field values

The SIZE field defines the size of the MPU memory region specified by the RNR. as follows:
(Region size in bytes) = 2(S'Z&1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. Table 10-36 gives example SIZE
values, with the corresponding region size and value of N in the RBAR.

Table 10-36. Example SIZE field values

SIZE value Region size Value of N @ Note

b00100 (4) 32B 5 Minimum permitted size

b01001 (9) 1KB 10 -

b10011 (19) 1MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4GB b01100 Maximum possible size
1. In the RBAR, see “MPU Region Base Address Register” on page 191.

10.22.6 MPU access permission attributes

This section describes the MPU access permission attributes. The access permission bits, TEX, C, B, S, AP, and
XN, of the RASR, control access to the corresponding memory region. If an access is made to an area of memory
without the required permissions, then the MPU generates a permission fault.

Table 10-37 shows the encodings for the TEX, C, B, and S access permission bits.

Table 10-37. TEX, C, B, and S encoding

TEX | C B S Memory type Shareability Other attributes
0 0 x@® | Strongly-ordered | Shareable -
1 x® | Device Shareable -
0 Not shareable
b000 0 Normal Outer and inner write-through. No write allocate.
1 Shareable
1
0 Not shareable)) .
1 Normal Outer and inner write-back. No write allocate.
1 Shareable
0 Not shareable
0 0 Normal
1 Shareable
1 x® | Reserved encoding -
b001 : - -
0 x® | Implementation defined attributes. -
1 0 Not shareable)))
1 Normal Outer and inner write-back. Write and read allocate.
1 Shareable
0 x® | Device Not shareable | Nonshared Device.
0
b010 1 x® | Reserved encoding -
1 x® | x® | Reserved encoding -
0 Not shareable
biBB | A A Normal
1 Shareable

SAM3S8 /| SAM3SDS8 [DATASHEET 193
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

1.

The MPU ignores the value of this bit.

Table 10-38 shows the cache policy for memory attribute encodings with a TEX value is in the range 4-7.

Table 10-38. Cache policy for memory attribute encoding
Encoding, AA or BB | Corresponding cache policy
00 Non-cacheable
01 Write back, write and read allocate
10 Write through, no write allocate
11 Write back, no write allocate

Table 10-39 shows the AP encodings that define the access permissions for privileged and unprivileged software.

Table 10-39. AP encoding
Privileged Unprivileged
AP[2:0] | permissions permissions Description
000 No access No access All accesses generate a permission fault
001 RW No access Access from privileged software only
010 RW RO Writes by unprivileged software generate a permission fault
011 RW RW Full access
100 Unpredictable Unpredictable | Reserved
101 RO No access Reads by privileged software only
110 RO RO Read only, by privileged or unprivileged software
111 RO RO Read only, by privileged or unprivileged software

10.22.7 MPU mismatch

When an access violates the MPU permissions, the processor generates a memory management fault, see
“Exceptions and interrupts” on page 49. The MMFSR indicates the cause of the fault. See “Memory Management
Fault Status Register” on page 171 for more information.

10.22.8 Updating an MPU region

To update the attributes for an MPU region, update the RNR, RBAR and RASR registers. You can program each
register separately, or use a multiple-word write to program all of these registers. You can use the RBAR and
RASR aliases to program up to four regions simultaneously using an STM instruction.

10.22.8.1 Updating an MPU region using separate words

Simple code to configure one region:

; RL = region nunber

; R2 = sizel/enable

; R3 = attributes

; R4 = address

LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register
STR R1, [RO, #0x0] ; Regi on Number

STR R4, [RO, #0x4] ; Regi on Base Address

STRH R2, [RO, #0x8] ; Region Size and Enabl e

STRH R3, [RO, #0xA] ; Region Attribute

194 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

Disable a region before writing new region settings to the MPU if you have previously enabled the region being
changed. For example:

; Rl = regi on nunmber

; R2 = sizelenable

; R3 = attributes

; R4 = address

LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register
STR R1, [RO, #0x0] ; Regi on Nunber

BIC R2, R2, #1 ; Disable

STRH R2, [RO, #0x8] ; Region Size and Enabl e

STR R4, [RO, #0x4] ; Regi on Base Address

STRH R3, [RO, #0xA] ; Region Attribute

ORR R2, #1 : Enabl e

STRH R2, [RO, #0x8] ; Region Size and Enabl e

Software must use memory barrier instructions:
e before MPU setup if there might be outstanding memory transfers, such as buffered writes, that might be
affected by the change in MPU settings
e after MPU setup if it includes memory transfers that must use the new MPU settings.

However, memory barrier instructions are not required if the MPU setup process starts by entering an exception
handler, or is followed by an exception return, because the exception entry and exception return mechanism cause
memory barrier behavior.

Software does not need any memory barrier instructions during MPU setup, because it accesses the MPU through
the PPB, which is a Strongly-Ordered memory region.

For example, if you want all of the memory access behavior to take effect immediately after the programming
sequence, use a DSB instruction and an ISB instruction. A DSB is required after changing MPU settings, such as
at the end of context switch. An ISB is required if the code that programs the MPU region or regions is entered
using a branch or call. If the programming sequence is entered using a return from exception, or by taking an
exception, then you do not require an ISB.

10.22.8.2 Updating an MPU region using multi-word writes

You can program directly using multi-word writes, depending on how the information is divided. Consider the
following reprogramming:
; R1 = region nunber

; R2 = address

; R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register
STR R1, [RO, #0x0] ; Region Nunber

STR R2, [RO, #0x4] ; Region Base Address

STR R3, [RO, #0x8] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:

; RL = regi on nunber

; R2 = address

; R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register

STM RO, {Rl-R3} ; Region Nunber, address, attribute, size and enable

You can do this in two words for pre-packed information. This means that the RBAR contains the required region
number and had the VALID bit set to 1, see “MPU Region Base Address Register” on page 191. Use this when the
data is statically packed, for example in a boot loader:

; RL = address and region nunber in one

; R2 = size and attributes in one

LDR RO, =MPU RBAR ; OxEOOOEDOC, MPU Regi on Base register

SAM3S8 /| SAM3SDS8 [DATASHEET 195
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

STR R1, [RO, #0x0] ; Region base address and
; region nunber conbined with VALID (bit 4) set to 1
STR R2, [RO, #0x4] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:
; RL = address and regi on nunber in one
; R2 = size and attributes in one
LDR RO, =MPU_RBAR ; OXEOOOED9C, MPU Regi on Base regi ster
STM RO, {Rl-R2} ; Regi on base address, region nunber and VALID bit,
; and Region Attribute, Size and Enabl e

10.22.8.3 Subregions

Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the corresponding bit in the SRD
field of the RASR to disable a subregion, see “MPU Region Attribute and Size Register” on page 192. The least
significant bit of SRD controls the first subregion, and the most significant bit controls the last subregion. Disabling
a subregion means another region overlapping the disabled range matches instead. If no other enabled region
overlaps the disabled subregion the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions, With regions of these sizes, you must set the SRD
field to 0x00, otherwise the MPU behavior is Unpredictable.

10.22.8.4 Example of SRD use

Two regions with the same base address overlap. Region one is 128KB, and region two is 512KB. To ensure the
attributes from region one apply to the first128KB region, set the SRD field for region two to b00000011 to disable
the first two subregions, as Figure 10-9 shows

Figure 10-9. SRD use

Region 2, with Offset from
subregions base address
512KB
448KB
384KB
320KB
256KB
Region 1 192KB
128KB
64KB
0

Disabled subregion
Disabled subregion

Base address of both regions

10.22.9 MPU design hints and tips

To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the interrupt
handlers might access.
Ensure software uses aligned accesses of the correct size to access MPU registers:
e except for the RASR, it must use aligned word accesses
e for the RASR it can use byte or aligned halfword or word accesses.
The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused regions to prevent
any previous region settings from affecting the new MPU setup.

196 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.22.9.1 MPU configuration for a microcontroller

Usually, a microcontroller system has only a single processor and no caches. In such a system, program the MPU
as follows:

Table 10-40. Memory region attributes for a microcontroller

Memory region | TEX C B S Memory type and attributes

Flash memory b000 1 | 0 | 0 | Normal memory, Non-shareable, write-through
Internal SRAM b000 1 | 0 | 1 | Normal memory, Shareable, write-through

External SRAM b000 1 |1 | 1 | Normal memory, Shareable, write-back, write-allocate
Peripherals b000 0 | 1 | 1 | Device memory, Shareable

In most microcontroller implementations, the share ability and cache policy attributes do not affect the system
behavior. However, using these settings for the MPU regions can make the application code more portable. The
values given are for typical situations. In special systems, such as multiprocessor designs or designs with a
separate DMA engine, the share ability attribute might be important. In these cases refer to the recommendations
of the memory device manufacturer.

SAM3S8 /| SAM3SDS8 [DATASHEET 197
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

10.23 Glossary
This glossary describes some of the terms used in technical documents from ARM.
Abort

A mechanism that indicates to a processor that the value associated with a memory access is invalid. An abort can
be caused by the external or internal memory system as a result of attempting to access invalid instruction or data
memory.

Aligned

A data item stored at an address that is divisible by the number of bytes that defines the data size is said to be
aligned. Aligned words and halfwords have addresses that are divisible by four and two respectively. The terms
word-aligned and halfword-aligned therefore stipulate addresses that are divisible by four and two respectively.

Banked register

A register that has multiple physical copies, where the state of the processor determines which copy is used. The
Stack Pointer, SP (R13) is a banked register.

Base register

In instruction descriptions, a register specified by a load or store instruction that is used to hold the base value for
the instruction’s address calculation. Depending on the instruction and its addressing mode, an offset can be
added to or subtracted from the base register value to form the address that is sent to memory.

See also “Index register”
Breakpoint

A breakpoint is a mechanism provided by debuggers to identify an instruction at which program execution is to be
halted. Breakpoints are inserted by the programmer to enable inspection of register contents, memory locations,
variable values at fixed points in the program execution to test that the program is operating correctly. Breakpoints
are removed after the program is successfully tested.

Condition field
A four-bit field in an instruction that specifies a condition under which the instruction can execute.
Conditional execution

If the condition code flags indicate that the corresponding condition is true when the instruction starts executing, it
executes normally. Otherwise, the instruction does nothing.

Context

The environment that each process operates in for a multitasking operating system. In ARM processors, this is
limited to mean the physical address range that it can access in memory and the associated memory access
permissions.

Coprocessor
A processor that supplements the main processor. Cortex-M3 does not support any COprocessors.
Debugger

A debugging system that includes a program, used to detect, locate, and correct software faults, together with
custom hardware that supports software debugging.

Direct Memory Access (DMA)

An operation that accesses main memory directly, without the processor performing any accesses to the data
concerned.

Doubleword
A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise stated.

198 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Doubleword-aligned
A data item having a memory address that is divisible by eight.
Endianness

Byte ordering. The scheme that determines the order that successive bytes of a data word are stored in memory.
An aspect of the system’s memory mapping.

See also “Little-endian (LE)”
Exception

An event that interrupts program execution. When an exception occurs, the processor suspends the normal
program flow and starts execution at the address indicated by the corresponding exception vector. The indicated
address contains the first instruction of the handler for the exception.

An exception can be an interrupt request, a fault, or a software-generated system exception. Faults include
attempting an invalid memory access, attempting to execute an instruction in an invalid processor state, and
attempting to execute an undefined instruction.

Exception service routine
See “Interrupt handler” .
Exception vector

See “Interrupt vector” .
Flat address mapping

A system of organizing memory in which each physical address in the memory space is the same as the
corresponding virtual address.

Halfword

A 16-bit data item.

lllegal instruction

An instruction that is architecturally Undefined.

Implementation-defined

The behavior is not architecturally defined, but is defined and documented by individual implementations.
Implementation-specific

The behavior is not architecturally defined, and does not have to be documented by individual implementations.
Used when there are a number of implementation options available and the option chosen does not affect software
compatibility.

Index register

In some load and store instruction descriptions, the value of this register is used as an offset to be added to or
subtracted from the base register value to form the address that is sent to memory. Some addressing modes
optionally enable the index register value to be shifted prior to the addition or subtraction.

See also “Base register”

Instruction cycle count

The number of cycles that an instruction occupies the Execute stage of the pipeline.
Interrupt handler

A program that control of the processor is passed to when an interrupt occurs.
Interrupt vector

One of a number of fixed addresses in low memory, or in high memory if high vectors are configured, that contains
the first instruction of the corresponding interrupt handler.

SAM3S8 /| SAM3SDS8 [DATASHEET 199
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Little-endian (LE)

Byte ordering scheme in which bytes of increasing significance in a data word are stored at increasing addresses
in memory.

See also “Condition field” , “Endianness” .

Little-endian memory

Memory in which:

a byte or halfword at a word-aligned address is the least significant byte or halfword within the word at that address
a byte at a halfword-aligned address is the least significant byte within the halfword at that address.

Load/store architecture

A processor architecture where data-processing operations only operate on register contents, not directly on
memory contents.

Memory Protection Unit (MPU)

Hardware that controls access permissions to blocks of memory. An MPU does not perform any address
translation.

Prefetching

In pipelined processors, the process of fetching instructions from memory to fill up the pipeline before the
preceding instructions have finished executing. Prefetching an instruction does not mean that the instruction has to
be executed.

Read

Reads are defined as memory operations that have the semantics of a load. Reads include the Thumb instructions
LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

Region
A partition of memory space.
Reserved

A field in a control register or instruction format is reserved if the field is to be defined by the implementation, or
produces Unpredictable results if the contents of the field are not zero. These fields are reserved for use in future
extensions of the architecture or are implementation-specific. All reserved bits not used by the implementation
must be written as 0 and read as 0.

Should Be One (SBO)

Write as 1, or all 1s for bit fields, by software. Writing as 0 produces Unpredictable results.
Should Be Zero (SBZ)

Write as 0, or all Os for bit fields, by software. Writing as 1 produces Unpredictable results.
Should Be Zero or Preserved (SBZP)

Write as 0, or all Os for bit fields, by software, or preserved by writing the same value back that has been previously
read from the same field on the same processor.

Thread-safe

In a multi-tasking environment, thread-safe functions use safeguard mechanisms when accessing shared
resources, to ensure correct operation without the risk of shared access conflicts.

200 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Thumb instruction

One or two halfwords that specify an operation for a processor to perform. Thumb instructions must be halfword-
aligned.

Unaligned

A data item stored at an address that is not divisible by the number of bytes that defines the data size is said to be
unaligned. For example, a word stored at an address that is not divisible by four.

Undefined
Indicates an instruction that generates an Undefined instruction exception.
Unpredictable (UNP)

You cannot rely on the behavior. Unpredictable behavior must not represent security holes. Unpredictable
behavior must not halt or hang the processor, or any parts of the system.

Warm reset

Also known as a core reset. Initializes the majority of the processor excluding the debug controller and debug
logic. This type of reset is useful if you are using the debugging features of a processor.

Word
A 32-bit data item.
Write

Writes are defined as operations that have the semantics of a store. Writes include the Thumb instructions STM,
STR, STRH, STRB, and PUSH.

SAM3S8 / SAM3SDS8 [DATASHEET 201
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

11. Debug and Test Features

11.1 Description

The SAM3 Series Microcontrollers feature a number of complementary debug and test capabilities. The Serial
Wire/JTAG Debug Port (SWJ-DP) combining a Serial Wire Debug Port (SW-DP) and JTAG Debug (JTAG-DP) port
is used for standard debugging functions, such as downloading code and single-stepping through programs. It also
embeds a serial wire trace.

11.2 Embedded Characteristics

e Debug access to all memory and registers in the system, including Cortex-M3 register bank when the core is
running, halted, or held in reset.

Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access

Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches

Data Watchpoint and Trace (DWT) unit for implementing watchpoints, data tracing, and system profiling
Instrumentation Trace Macrocell (ITM) for support of printf style debugging

IEEE1149.1 JTAG Boundary-can on All Digital Pins

Figure 11-1. Debug and Test Block Diagram

™S

L [

TCK/SWCLK

[]| o

A A
Boundary SWJ-DP ® |:| JTAGSEL
TAP C
T / |:| TDO/TRACESWO
Reset POR

and

Test I:l TST

202 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

11.3 Application Examples

11.3.1 Debug Environment

Figure 11-2 shows a complete debug environment example. The SWJ-DP interface is used for standard

debugging functions, such as downloading code and single-stepping through the program and viewing core and
peripheral registers.

Figure 11-2. Application Debug Environment Example

/
Host Debugger
PC

SWJ-DP
Emulator/Probe

SWJ-DP
Connector

SAM3

SAM3-based Application Board

11.3.2 Test Environment

Figure 11-3 shows a test environment example (JTAG Boundary scan). Test vectors are sent and interpreted by
the tester. In this example, the “board in test” is designed using a number of JTAG-compliant devices. These
devices can be connected to form a single scan chain.

SAM3S8 /| SAM3SDS8 [DATASHEET 203
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 11-3. Application Test Environment Example

Test Adaptor
Tester
JTAG
Probe
JTAG . :
Connector || Chip np == Chip 2
I
SAM3-based Application Board In Test
11.4 Debug and Test Pin Description
Table 11-1. Debug and Test Signal List

Signal Name Function Type Active Level

Reset/Test
NRST Microcontroller Reset Input/Output Low
TST Test Select Input

SWD/JITAG
TCK/SWCLK Test Clock/Serial Wire Clock Input
TDI Test Data In Input
TDO/TRACESWO Test Data Out/Trace Asynchronous Data Out Output™®
TMS/SWDIO Test Mode Select/Serial Wire Input/Output Input
JTAGSEL JTAG Selection Input High

Note: 1. TDO pinis set in input mode when the Cortex-M3 Core is not in debug mode. Thus the internal pull-up
corresponding to this PIO line must be enabled to avoid current consumption due to floating input.

204 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

11.5 Functional Description

11.5.1 Test Pin

One dedicated pin, TST, is used to define the device operating mode. When this pin is at low level during power-
up, the device is in normal operating mode. When at high level, the device is in test mode or FFPI mode. The TST
pin integrates a permanent pull-down resistor of about 15 kQ,so that it can be left unconnected for normal
operation. Note that when setting the TST pin to low or high level at power up, it must remain in the same state
during the duration of the whole operation.

11.5.2 Debug Architecture
Figure 11-4 shows the Debug Architecture used in the SAM3. The Cortex-M3 embeds four functional units for
debug:
e SWJ-DP (Serial Wire/JTAG Debug Port)
e FPB (Flash Patch Breakpoint)
e DWT (Data Watchpoint and Trace)
e ITM (Instrumentation Trace Macrocell)
e TPIU (Trace Port Interface Unit)
The debug architecture information that follows is mainly dedicated to developers of SWJ-DP Emulators/Probes

and debugging tool vendors for Cortex M3-based microcontrollers. For further details on SWJ-DP see the Cortex
M3 technical reference manual.

Figure 11-4. Debug Architecture

DWT

4 watchpoints

FPB
PC sampler SWJ-DP

6 breakpoints

data address sampler
SWD/JTAG
data sampler ™
software trace SWO trace
32 channels
interrupt trace TPIU

time stamping

CPU statistics

SAM3S8 /| SAM3SDS8 [DATASHEET 205
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

11.5.3 Serial Wire/JTAG Debug Port (SWJ-DP)

The Cortex-M3 embeds a SWJ-DP Debug port which is the standard CoreSight™ debug port. It combines Serial
Wire Debug Port (SW-DP), from 2 to 3 pins and JTAG debug Port (JTAG-DP), 5 pins.

By default, the JTAG Debug Port is active. If the host debugger wants to switch to the Serial Wire Debug Port, it
must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables JTAG-DP and
enables SW-DP.

When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace. The asynchronous TRACE
output (TRACESWO) is multiplexed with TDO. The asynchronous trace can only be used with SW-DP, not JTAG-

DP.

Table 11-2. SWJ-DP Pin List
Pin Name JTAG Port Serial Wire Debug Port
TMS/SWDIO T™MS SWDIO
TCK/SWCLK TCK SWCLK
TDI TDI -
TDO/TRACESWO TDO TRACESWO (optional: trace)

SW-DP or JTAG-DP mode is selected when JTAGSEL is low. It is not possible to switch directly between SWJ-DP
and JTAG boundary scan operations. A chip reset must be performed after JTAGSEL is changed.

11.5.3.1 SW-DP and JTAG-DP Selection Mechanism
Debug port selection mechanism is done by sending specific SWDIOTMS sequence. The JTAG-DP is selected by
default after reset.
e Switch from JTAG-DP to SW-DP. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
— Send the 16-bit sequence on SWDIOTMS = 0111100111100111 (Ox79E7 MSB first)
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
e Switch from SWD to JTAG. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
— Send the 16-bit sequence on SWDIOTMS = 0011110011100111 (0x3CE7 MSB first)
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1

11.5.4 FPB (Flash Patch Breakpoint)

The FPB:
e Implements hardware breakpoints
e Patches code and data from code space to system space.

The FPB unit contains:
e Two literal comparators for matching against literal loads from Code space, and remapping to a
corresponding area in System space.
e Six instruction comparators for matching against instruction fetches from Code space and remapping to a
corresponding area in System space.

e Alternatively, comparators can also be configured to generate a Breakpoint instruction to the processor core
on a match.

206 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

11.5.5 DWT (Data Watchpoint and Trace)

The DWT contains four comparators which can be configured to generate the following:
e PC sampling packets at set intervals
e PC or Data watchpoint packets
e Watchpoint event to halt core
The DWT contains counters for the items that follow:
e Clock cycle (CYCCNT)
Folded instructions
Load Store Unit (LSU) operations
Sleep Cycles
CPI (all instruction cycles except for the first cycle)
Interrupt overhead

11.5.6 ITM (Instrumentation Trace Macrocell)

The ITM is an application driven trace source that supports printf style debugging to trace Operating System (OS)
and application events, and emits diagnostic system information. The ITM emits trace information as packets
which can be generated by three different sources with several priority levels:

e Software trace: Software can write directly to ITM stimulus registers. This can be done thanks to the “printf”
function. For more information, refer to Section 11.5.6.1 “How to Configure the ITM”.

e Hardware trace: The ITM emits packets generated by the DWT.

Time stamping: Timestamps are emitted relative to packets. The ITM contains a 21-bit counter to generate
the timestamp.

11.5.6.1 How to Configure the ITM

The following example describes how to output trace data in asynchronous trace mode.

e Configure the TPIU for asynchronous trace mode (refer to Section 11.5.6.3 “5.4.3. How to Configure the
TPIU")

e Enable the write accesses into the ITM registers by writing “OXC5ACCES5” into the Lock Access Register
(Address: 0XEOOOOFBO)

e Write 0x00010015 into the Trace Control Register:
— Enable ITM
— Enable Synchronization packets
— Enable SWO behavior
— Fixthe ATBID to 1
e Write Ox1 into the Trace Enable Register:
— Enable the Stimulus port O
e Write Ox1 into the Trace Privilege Register:

— Stimulus port 0 only accessed in privileged mode (Clearing a bit in this register will result in the
corresponding stimulus port being accessible in user mode.)

e Write into the Stimulus port O register: TPIU (Trace Port Interface Unit)
The TPIU acts as a bridge between the on-chip trace data and the Instruction Trace Macrocell (ITM).

The TPIU formats and transmits trace data off-chip at frequencies asynchronous to the core.

SAM3S8 /| SAM3SDS8 [DATASHEET 207
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

11.5.6.2 Asynchronous Mode

The TPIU is configured in asynchronous mode, trace data are output using the single TRACESWO pin. The
TRACESWO signal is multiplexed with the TDO signal of the JTAG Debug Port. As a consequence, asynchronous
trace mode is only available when the Serial Wire Debug mode is selected since TDO signal is used in JTAG
debug mode.
Two encoding formats are available for the single pin output:

e Manchester encoded stream. This is the reset value.

e NRZ_based UART byte structure

11.5.6.35.4.3. How to Configure the TPIU

This example only concerns the asynchronous trace mode.
e Setthe TRCENA bit to 1 into the Debug Exception and Monitor Register (OXEOOOEDFC) to enable the use of
trace and debug blocks.

e Write Ox2 into the Selected Pin Protocol Register
— Select the Serial Wire Output — NRZ
e Write 0x100 into the Formatter and Flush Control Register

e Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the baud rate of the
asynchronous output (this can be done automatically by the debugging tool).

11.5.7 |EEE® 1149.1 JTAG Boundary Scan
IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when TST is tied to low, while JTAGSEL is high during power-up,
and must be kept in this state during the whole boundary scan operation. The SAMPLE, EXTEST and BYPASS
functions are implemented. In SWD/JTAG debug mode, the ARM processor responds with a non-JTAG chip ID
that identifies the processor. This is not IEEE 1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port operations. A chip reset
must be performed after JTAGSEL is changed.

A Boundary-scan Descriptor Language (BSDL) file is provided on Atmel’s web site to set up the test.

11.5.7.1 JTAG Boundary-scan Register

The Boundary-scan Register (BSR) contains a number of bits which correspond to active pins and associated
control signals.

Each SAM3 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit contains data that can be
forced on the pad. The INPUT bit facilitates the observability of data applied to the pad. The CONTROL bit selects
the direction of the pad.

For more information, please refer to BDSL files available for the SAM3 Series.

208 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

11.5.8 ID Code Register

Access: Read-only

31 30 29 28 27

26 25

24

| VERSION

PART NUMBER

23 22 21 20 19

18 17

16

| PART NUMBER

15 14 13 12 11

10 9

| PART NUMBER

MANUFACTURER IDENTITY

7 6 5 4 3 2 1 0
| MANUFACTURER IDENTITY 1
* VERSION[31:28]: Product Version Number
Set to 0x0.
* PART NUMBER[27:12]: Product Part Number
Chip Name Chip ID
SAM3S8 0x05B2D
* MANUFACTURER IDENTITY[11:1]
Set to Ox01F.
» Bit[0] Required by IEEE Std. 1149.1
Set to Ox1.
Chip Name JTAG ID Code
SAM3S8 0x05B2D03F

Atmel

SAM3S8 / SAM3SD8 [DATASHEET]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

209

12. Reset Controller (RSTC)

12.1 Description

The Reset Controller (RSTC), based on power-on reset cells, handles all the resets of the system without any
external components. It reports which reset occurred last.

The Reset Controller also drives independently or simultaneously the external reset and the peripheral and
processor resets.

12.2 Embedded Characteristics
e Manages all resets of the system, Including
— External devices through the NRST pin
— Processor reset
— Peripheral set reset
e Based on embedded power-on cell
e Reset source status
— Status of the last reset
— Either software reset, user reset, watchdog reset
e External reset signal shaping

210 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

12.3 Block Diagram

Figure 12-1. Reset Controller Block Diagram

Reset Controller

core_backup_reset

vddcore_nreset

NRST

[H

nrst_out

Reset
user_reset State
Manager
NRST
Manager

exter_nreset

WDRPROC

wd_fault

A\

Atmel

SLCK

rstc_irq

proc_nreset

periph_nreset

SAM3S8 / SAM3SD8 [DATASHEET] 211

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

12.4 Functional Description

12.4.1 Reset Controller Overview
The Reset Controller is made up of an NRST Manager and a Reset State Manager. It runs at Slow Clock and
generates the following reset signals:
e proc_nreset: Processor reset line. It also resets the Watchdog Timer.
e periph_nreset: Affects the whole set of embedded peripherals.
e nrst_out: Drives the NRST pin.
These reset signals are asserted by the Reset Controller, either on external events or on software action. The

Reset State Manager controls the generation of reset signals and provides a signal to the NRST Manager when an
assertion of the NRST pin is required.

The NRST Manager shapes the NRST assertion during a programmable time, thus controlling external device
resets.

The Reset Controller Mode Register (RSTC_MR), allowing the configuration of the Reset Controller, is powered
with VDDIO, so that its configuration is saved as long as VDDIO is on.

12.4.2 NRST Manager

After power-up, NRST is an output during the ERSTL time period defined in the RSTC_MR. When ERSTL has
elapsed, the pin behaves as an input and all the system is held in reset if NRST is tied to GND by an external
signal.

The NRST Manager samples the NRST input pin and drives this pin low when required by the Reset State
Manager. Figure 12-2 shows the block diagram of the NRST Manager.

Figure 12-2. NRST Manager

RSTC_MR

RSTC SR URSTIEN

URSTS
ﬁ)—» rstc_irq
NRSTL | rsTC_MR Other [2

URSTEN interrupt
sources
I > user_reset

NRST | RSTC_MR
T
| nrst_out

I External Reset Timer fje«———— exter_nreset

12.4.2.1NRST Signal or Interrupt

The NRST Manager samples the NRST pin at Slow Clock speed. When the line is detected low, a User Reset is
reported to the Reset State Manager.

However, the NRST Manager can be programmed to not trigger a reset when an assertion of NRST occurs.
Writing the bit URSTEN at 0 in RSTC_MR disables the User Reset trigger.

The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in RSTC_SR. As soon as the pin
NRST is asserted, the bit URSTS in RSTC_SR is set. This bit clears only when RSTC_SR is read.

The Reset Controller can also be programmed to generate an interrupt instead of generating a reset. To do so, the
bit URSTIEN in RSTC_MR must be written at 1.

212 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

12.4.2.2 NRST External Reset Control

The Reset State Manager asserts the signal ext_nreset to assert the NRST pin. When this occurs, the “nrst_out”
signal is driven low by the NRST Manager for a time programmed by the field ERSTL in RSTC_MR. This assertion
duration, named EXTERNAL_RESET_LENGTH, lasts 2ERSTH+1) glow Clock cycles. This gives the approximate
duration of an assertion between 60 us and 2 seconds. Note that ERSTL at 0 defines a two-cycle duration for the
NRST pulse.

This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that the NRST line is
driven low for a time compliant with potential external devices connected on the system reset.

As the ERSTL field is within RSTC_MR register, which is backed-up, it can be used to shape the system power-up
reset for devices requiring a longer startup time than the Slow Clock Oscillator.

12.4.3 Brownout Manager
The Brownout manager is embedded within the Supply Controller, please refer to the product Supply Controller
section for a detailed description.

12.4.4 Reset States

The Reset State Manager handles the different reset sources and generates the internal reset signals. It reports
the reset status in the field RSTTYP of the Status Register (RSTC_SR). The update of the field RSTTYP is
performed when the processor reset is released.

12.4.4.1 General Reset

A general reset occurs when a Power-on-reset is detected, a Brownout or a Voltage regulation loss is detected by
the Supply controller. The vddcore_nreset signal is asserted by the Supply Controller when a general reset occurs.

All the reset signals are released and the field RSTTYP in RSTC_SR reports a General Reset. As the RSTC_MR
is reset, the NRST line rises 2 cycles after the vddcore_nreset, as ERSTL defaults at value 0x0.

Figure 12-3 shows how the General Reset affects the reset signals.

Figure 12-3. General Reset State

soc e UL L L L L L L LT

backup_nreset

=2 cycles
proc_nreset

RSTTYP XXX 0x0 = General Reset XXX

periph_nreset

NRST
(nrst_out)

]
|
P Start SS
!
]
i
]

EXTERNAL RESET LENGTH
=2 cycles

SAM3S8 / SAM3SDS8 [DATASHEET 213
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

12.4.4.2 Backup Reset

A Backup reset occurs when the chip returns from Backup mode. The core_backup_reset signal is asserted by the
Supply Controller when a Backup reset occurs.

The field RSTTYP in RSTC_SR is updated to report a Backup Reset.

12.4.4.3 User Reset

The User Reset is entered when a low level is detected on the NRST pin and the bit URSTEN in RSTC_MR is at 1.
The NRST input signal is resynchronized with SLCK to insure proper behavior of the system.

The User Reset is entered as soon as a low level is detected on NRST. The Processor Reset and the Peripheral
Reset are asserted.

The User Reset is left when NRST rises, after a two-cycle resynchronization time and a 3-cycle processor startup.
The processor clock is re-enabled as soon as NRST is confirmed high.

When the processor reset signal is released, the RSTTYP field of the Status Register (RSTC_SR) is loaded with
the value 0x4, indicating a User Reset.

The NRST Manager guarantees that the NRST line is asserted for EXTERNAL_RESET_LENGTH Slow Clock
cycles, as programmed in the field ERSTL. However, if NRST does not rise after EXTERNAL_RESET_LENGTH
because it is driven low externally, the internal reset lines remain asserted until NRST actually rises.

Figure 12-4. User Reset State

SLCK |

MCK

NRST

proc_nreset

RSTTYP

periph_nreset

NRST
(nrst_out)

L L

L L LY

Any
Freq.

L L

L LU UL Y

-\

pEpEREEE

/

Resynch. Resynch. Processor Startup
2 cycles 2 cycles =2 cycles
Any XXX 0x4 = User Reset

>= EXTERNAL RESET LENGTH

214 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

12.4.4.4 Software Reset

The Reset Controller offers several commands used to assert the different reset signals. These commands are
performed by writing the Control Register (RSTC_CR) with the following bits at 1:

PROCRST: Writing PROCRST at 1 resets the processor and the watchdog timer.

PERRST: Writing PERRST at 1 resets all the embedded peripherals, including the memory system, and, in
particular, the Remap Command. The Peripheral Reset is generally used for debug purposes.

Except for debug purposes, PERRST must always be used in conjunction with PROCRST (PERRST and
PROCRST set both at 1 simultaneously).

EXTRST: Writing EXTRST at 1 asserts low the NRST pin during a time defined by the field ERSTL in the
Mode Register (RSTC_MR).

The software reset is entered if at least one of these bits is set by the software. All these commands can be
performed independently or simultaneously. The software reset lasts 3 Slow Clock cycles.

The internal reset signals are asserted as soon as the register write is performed. This is detected on the Master
Clock (MCK). They are released when the software reset is left, i.e.; synchronously to SLCK.

If EXTRST is set, the nrst_out signal is asserted depending on the programming of the field ERSTL. However, the
resulting falling edge on NRST does not lead to a User Reset.

If and only if the PROCRST bit is set, the Reset Controller reports the software status in the field RSTTYP of the
Status Register (RSTC_SR). Other Software Resets are not reported in RSTTYP.

As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Progress) is set in the
Status Register (RSTC_SR). It is cleared as soon as the software reset is left. No other software reset can be
performed while the SRCMP bit is set, and writing any value in RSTC_CR has no effect.

Figure 12-5.

SRCMP in RSTC_SR

Atmel

Software Reset
see | LI L L L L
vex __in JEpEpEREREREREREEE
Freq.
Write RSTC_CR ‘\
Resynch)Processor Startup)
1 cycle =2 cycles
proc_nreset /
if PROCRST=1
RSTTYP Any XXX 0x3 = Software Reset

periph_nreset
if PERRST=1

S X o~

NRST
(nrst_out)
if EXTRST=1

EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

N /

SAM3S8 / SAM3SD8 [DATASHEET] 215

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

12.4.4.5 Watchdog Reset

The Watchdog Reset is entered when a watchdog fault occurs. This state lasts 3 Slow Clock cycles.

When in Watchdog Reset, assertion of the reset signals depends on the WDRPROC bit in WDT_MR:

e If WDRPROC is 0, the Processor Reset and the Peripheral Reset are asserted. The NRST line is also
asserted, depending on the programming of the field ERSTL. However, the resulting low level on NRST
does not result in a User Reset state.

e If WDRPROC =1, only the processor reset is asserted.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a processor reset if
WDRSTEN is set, the Watchdog Timer is always reset after a Watchdog Reset, and the Watchdog is enabled by
default and with a period set to a maximum.

When the WDRSTEN in WDT_MR bit is reset, the watchdog fault has no impact on the reset controller.

Figure 12-6. Watchdog Reset

216

see L L LD WL L L
MK) J L U U
wd_fault /] N

Procgssor Startup)
2 cycles

proc_nreset

RSTTYP Any XXX 0x2 = Watchdog Reset

periph_nreset

Only if
WDRPROC = 0

NRST
(nrst_out)

I EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

12.4.5 Reset State Priorities
The Reset State Manager manages the following priorities between the different reset sources, given in
descending order:
e General Reset
Backup Reset
Watchdog Reset
Software Reset
User Reset

Particular cases are listed below:

e When in User Reset:
— Awatchdog event is impossible because the Watchdog Timer is being reset by the proc_nreset signal.
— A software reset is impossible, since the processor reset is being activated.

e When in Software Reset:
— A watchdog event has priority over the current state.
— The NRST has no effect.

e When in Watchdog Reset:
— The processor reset is active and so a Software Reset cannot be programmed.
— A User Reset cannot be entered.

12.4.6 Reset Controller Status Register

The Reset Controller status register (RSTC_SR) provides several status fields:

e RSTTYP field: This field gives the type of the last reset, as explained in previous sections.

e SRCMP bit: This field indicates that a Software Reset Command is in progress and that no further software
reset should be performed until the end of the current one. This bit is automatically cleared at the end of the
current software reset.

e NRSTL bit: The NRSTL bit of the Status Register gives the level of the NRST pin sampled on each MCK
rising edge.

e URSTS bit: A high-to-low transition of the NRST pin sets the URSTS bit of the RSTC_SR register. This
transition is also detected on the Master Clock (MCK) rising edge (see Figure 12-7). If the User Reset is
disabled (URSTEN = 0) and if the interruption is enabled by the URSTIEN bit in the RSTC_MR register, the
URSTS bit triggers an interrupt. Reading the RSTC_SR status register resets the URSTS bit and clears the
interrupt.

SAM3S8 / SAM3SDS8 [DATASHEET 217
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 12-7. Reset Controller Status and Interrupt

Peripheral Access RSrTlgdSR
2 cycle 2 cycle

resync¢hronizatipn resynchronization

NRST _\/’_\ ﬁ
NRSTL

URSTS /
if (URSTEN :r?)t)C E:g / -1
(URSTIEN = 1)
218 SAM3S8 / SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

12.5 Reset Controller (RSTC) User Interface

Table 12-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register RSTC_CR Write-only -

0x04 Status Register RSTC_SR Read-only 0x0000_0000
0x08 Mode Register RSTC_MR Read-write 0x0000 0001

SAM3S8 / SAM3SDS8 [DATASHEET 219
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

12.5.1 Reset Controller Control Register

Name: RSTC_CR

Address: 0x400E1400

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I I - |
7 6 5 4 3 2 1 0

| — | — | - | - | EXTRST | PERRST | - | PROCRST |

* PROCRST: Processor Reset
0 = No effect.

1 = IfKEY is correct, resets the processor.

e PERRST: Peripheral Reset
0 = No effect.
1 =If KEY is correct, resets the peripherals.

 EXTRST: External Reset
0 = No effect.
1 =If KEY is correct, asserts the NRST pin.

» KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

220 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

12.5.2 Reset Controller Status Register

Name: RSTC_SR

Address: 0x400E1404

Access: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - rr - ¢ - [-]}
23 22 21 20 19 18 17 16

| - | - | - | - | - | — | SRCMP | NRSTL |
15 14 13 12 11 10 9 8

. - r - r - & - [- /] RSTTYP |
7 6 5 4 3 2 1 0

. - r - - ¢ - [- [- - URSTS |

* URSTS: User Reset Status
0 = No high-to-low edge on NRST happened since the last read of RSTC_SR.
1 = At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.

* RSTTYP: Reset Type
Reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.

RSTTYP Reset Type Comments
0 0 0 General Reset First power-up Reset
0 0 1 Backup Reset Return from Backup mode
0 1 0 Watchdog Reset Watchdog fault occurred
0 1 1 Software Reset Processor reset required by the software
1 0 0 User Reset NRST pin detected low

* NRSTL: NRST Pin Level
Registers the NRST Pin Level at Master Clock (MCK).

» SRCMP: Software Reset Command in Progress
0 = No software command is being performed by the reset controller. The reset controller is ready for a software command.

1 = A software reset command is being performed by the reset controller. The reset controller is busy.

SAM3S8 / SAM3SDS8 [DATASHEET 221
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

12.5.3 Reset Controller Mode Register

Name: RSTC_MR

Address: 0x400E1408

Access: Read-write
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

- [- T - T - T = - - —
15 14 13 12 11 10 9 8

I - I - I - I - I ERSTL |
7 6 5 4 3 2 1 0

| — | - | | URSTIEN | - | — - URSTEN |

* URSTEN: User Reset Enable
0 = The detection of a low level on the pin NRST does not generate a User Reset.
1 = The detection of a low level on the pin NRST triggers a User Reset.

» URSTIEN: User Reset Interrupt Enable
0 = USRTS bit in RSTC_SR at 1 has no effect on rstc_irg.
1 =USRTS bitin RSTC_SR at 1 asserts rstc_irq if URSTEN = 0.

» ERSTL: External Reset Length

This field defines the external reset length. The external reset is asserted during a time of 2ERSTH*1 Slow Clock cycles.
This allows assertion duration to be programmed between 60 pus and 2 seconds.

» KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

222 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

13. Real-time Timer (RTT)

13.1 Description

The Real-time Timer is built around a 32-bit counter used to count roll-over events of the programmable 16-bit
prescaler which enables counting elapsed seconds from a 32 kHz slow clock source. It generates a periodic
interrupt and/or triggers an alarm on a programmed value.

13.2 Embedded Characteristics
e 32-bit Free-running back-up counter
e Integrates a 16-bit programmable prescaler running on slow clock
e Alarm Register capable to generate a wake-up of the system through the Shut Down Controller

13.3 Block Diagram

Figure 13-1. Real-time Timer

RTT_MR RTT_MR
RTTRSTl | RTPRES

RTT_MR
reload RTTINCIEN
SRS 16bit
Divider
0 set

RTT_MR l RTT_SR | RTTINC ||

RTTRST |—A\1 0 / reset
|
rtt_int
32-bit D—>
> Counter

read ——e RTT_MR

RTT_SR
ALMIEN

RTT VR | CRTV | reset
RTT_SR | ALMS

> set
RTT_AR ALMV

i

i

rtt_alarm

SAM3S8 / SAM3SDS8 [DATASHEET 223
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

13.4 Functional Description

The Real-time Timer can be used to count elapsed seconds. It is built around a 32-bit counter fed by Slow Clock
divided by a programmable 16-bit value. The value can be programmed in the field RTPRES of the Real-time
Mode Register (RTT_MR).

Programming RTPRES at 0x00008000 corresponds to feeding the real-time counter with a 1 Hz signal (if the Slow
Clock is 32.768 kHz). The 32-bit counter can count up to 232 seconds, corresponding to more than 136 years, then
roll over to 0.

The Real-time Timer can also be used as a free-running timer with a lower time-base. The best accuracy is
achieved by writing RTPRES to 3. Programming RTPRES to 1 or 2 is possible, but may result in losing status
events because the status register is cleared two Slow Clock cycles after read. Thus if the RTT is configured to
trigger an interrupt, the interrupt occurs during 2 Slow Clock cycles after reading RTT_SR. To prevent several
executions of the interrupt handler, the interrupt must be disabled in the interrupt handler and re-enabled when the
status register is clear.

The Real-time Timer value (CRTV) can be read at any time in the register RTT_VR (Real-time Value Register). As
this value can be updated asynchronously from the Master Clock, it is advisable to read this register twice at the
same value to improve accuracy of the returned value.

The current value of the counter is compared with the value written in the alarm register RTT_AR (Real-time Alarm
Reqgister). If the counter value matches the alarm, the bit ALMS in RTT_SR is set. The alarm register is set to its
maximum value, corresponding to OxFFFF_FFFF, after a reset.

The bit RTTINC in RTT_SR is set each time the Real-time Timer counter is incremented. This bit can be used to
start a periodic interrupt, the period being one second when the RTPRES is programmed with 0x8000 and Slow
Clock equal to 32.768 Hz.

Reading the RTT_SR status register resets the RTTINC and ALMS fields.

Writing the bit RTTRST in RTT_MR immediately reloads and restarts the clock divider with the new programmed
value. This also resets the 32-bit counter.
Note: Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK):
1) The restart of the counter and the reset of the RTT_VR current value register is effective only 2 slow clock cycles
after the write of the RTTRST bit in the RTT_MR register.
2) The status register flags reset is taken into account only 2 slow clock cycles after the read of the RTT_SR (Status
Register).

224 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 13-2. RTT Counting

RTPRES - 1

Prescaler

0

RTT

RTTINC (RTT_SR)

ALMS (RTT_SR)

APB Interface

Atmel

APB cycle

<>

=

U UUUuit

APB cycle
<>

/

/ e

ALMV-

1

ALMV

ALMV+1 ALMV+2 <ALM +3

/

read RTT_SR

SAM3S8 / SAM3SD8 [DATASHEET] 225

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

13.5 Real-time Timer (RTT) User Interface

Table 13-1. Register Mapping

Offset Register Name Access Reset

0x00 Mode Register RTT_MR Read-write 0x0000_8000

0x04 Alarm Register RTT_AR Read-write OxFFFF_FFFF

0x08 Value Register RTT_VR Read-only 0x0000_0000

0x0C Status Register RTT_SR Read-only 0x0000_0000
226 SAM3S8 / SAM3SD8 [DATASHEET] AtmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

13.5.1 Real-time Timer Mode Register

Name: RTT_MR

Address: 0x400E1430

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | — | - | - | - | RTTRST | RTTINCIEN | ALMIEN |
15 14 13 12 11 10 9 8

| RTPRES |
7 6 5 4 3 2 1 0

| RTPRES |

» RTPRES: Real-time Timer Prescaler Value

Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows:
RTPRES = 0: The prescaler period is equal to 2'¢ * SCLK period.

RTPRES # 0: The prescaler period is equal to RTPRES * SCLK period.

e ALMIEN: Alarm Interrupt Enable
0 = The bit ALMS in RTT_SR has no effect on interrupt.
1 =The bit ALMS in RTT_SR asserts interrupt.

» RTTINCIEN: Real-time Timer Increment Interrupt Enable
0 =The bit RTTINC in RTT_SR has no effect on interrupt.
1 =The bit RTTINC in RTT_SR asserts interrupt.

e RTTRST: Real-time Timer Restart
0 = No effect.

1 = Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter.

SAM3S8 / SAM3SDS8 [DATASHEET 227
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

13.5.2 Real-time Timer Alarm Register

Name: RTT_AR

Address: 0x400E1434

Access: Read-write
31 30 29 28 27 26 25 24

| ALMV |
23 22 21 20 19 18 17 16

| ALMV |
15 14 13 12 11 10 9 8

| ALMV |
7 6 5 4 3 2 1 0

| ALMV |

« ALMV: Alarm Value
Defines the alarm value (ALMV+1) compared with the Real-time Timer.

228 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

13.5.3 Real-time Timer Value Register

Name: RTT_VR

Address: 0x400E1438

Access: Read-only
31 30 29 28 27 26 25 24

| CRTV |
23 22 21 20 19 18 17 16

| CRTV |
15 14 13 12 11 10 9 8

| CRTV |
7 6 5 4 3 2 1 0

| CRTV |

e CRTV: Current Real-time Value
Returns the current value of the Real-time Timer.

SAM3S8 / SAM3SDS8 [DATASHEET 229
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

13.5.4 Real-time Timer Status Register

Name: RTT_SR

Address: 0x400E143C

Access: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - rr - ¢ - [-]}
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

. - r - ¢ - - - rr - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - [RTTINC | ALMS |

* ALMS: Real-time Alarm Status
0 = The Real-time Alarm has not occurred since the last read of RTT_SR.
1 = The Real-time Alarm occurred since the last read of RTT_SR.

e RTTINC: Real-time Timer Increment
0 = The Real-time Timer has not been incremented since the last read of the RTT_SR.
1 = The Real-time Timer has been incremented since the last read of the RTT_SR.

230 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

14. Real Time Clock (RTC)

14.1 Description
The Real-time Clock (RTC) peripheral is designed for very low power consumption.

It combines a complete time-of-day clock with alarm and a two-hundred-year Gregorian or Persian calendar,
complemented by a programmable periodic interrupt. The alarm and calendar registers are accessed by a 32-bit
data bus.

The time and calendar values are coded in binary-coded decimal (BCD) format. The time format can be 24-hour
mode or 12-hour mode with an AM/PM indicator.

Updating time and calendar fields and configuring the alarm fields are performed by a parallel capture on the 32-bit
data bus. An entry control is performed to avoid loading registers with incompatible BCD format data or with an
incompatible date according to the current month/year/century.

A clock divider calibration circuitry enables to compensate crystal oscillator frequency inaccuracy.

An RTC output can be programmed to generate several waveforms, including a prescaled clock derived from
32.768 kHz.

14.2 Block Diagram

Figure 14-1. RTC Block Diagram

! }
Slow Clock: SLCK 32768 Divider Ti Dat Wave > RTCOUTO
ime ate Generator —» RTCOUT1

T P 1
; b4

Entry Interrupt
APB === User Interface Control Alarm Control RTC Interrupt

14.3 Product Dependencies

14.3.1 Power Management

The Real-time Clock is continuously clocked at 32768 Hz. The Power Management Controller has no effect on
RTC behavior.

14.3.2 Interrupt

RTC interrupt line is connected on one of the internal sources of the interrupt controller. RTC interrupt requires the
interrupt controller to be programmed first.

SAM3S8 / SAM3SDS8 [DATASHEET 231
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

14.4 Functional Description

The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year (with leap years),
month, date, day, hours, minutes and seconds.

The valid year range is 1900 to 2099 in Gregorian mode, a two-hundred-year calendar. (Or 1300 to 1499 in
Persian mode.)

The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.

Corrections for leap years are included (all years divisible by 4 being leap years). This is correct up to the year
2099.

14.4.1 Reference Clock
The reference clock is Slow Clock (SLCK). It can be driven internally or by an external 32.768 kHz crystal.

During low power modes of the processor, the oscillator runs and power consumption is critical. The crystal
selection has to take into account the current consumption for power saving and the frequency drift due to
temperature effect on the circuit for time accuracy.

14.4.2 Timing

The RTC is updated in real time at one-second intervals in normal mode for the counters of seconds, at one-
minute intervals for the counter of minutes and so on.

Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be certain that the value read
in the RTC registers (century, year, month, date, day, hours, minutes, seconds) are valid and stable, it is
necessary to read these registers twice. If the data is the same both times, then it is valid. Therefore, a minimum of
two and a maximum of three accesses are required.

14.4.3 Alarm
The RTC has five programmable fields: month, date, hours, minutes and seconds.

Each of these fields can be enabled or disabled to match the alarm condition:

e If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted and an interrupt
generated if enabled) at a given month, date, hour/minute/second.

e Ifonly the “seconds” field is enabled, then an alarm is generated every minute.

Depending on the combination of fields enabled, a large number of possibilities are available to the user ranging
from minutes to 365/366 days.

14.4.4 Error Checking

Verification on user interface data is performed when accessing the century, year, month, date, day, hours,
minutes, seconds and alarms. A check is performed on illegal BCD entries such as illegal date of the month with
regard to the year and century configured.

If one of the time fields is not correct, the data is not loaded into the register/counter and a flag is set in the validity
register. The user can not reset this flag. It is reset as soon as an acceptable value is programmed. This avoids
any further side effects in the hardware. The same procedure is done for the alarm.
The following checks are performed:
1. Century (check ifitisin range 19 - 20 or 13-14 in Persian mode)
Year (BCD entry check)
Date (check range 01 - 31)
Month (check if it is in BCD range 01 - 12, check validity regarding “date”)
Day (check range 1 - 7)

a s N

232 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

6. Hour (BCD checks: in 24-hour mode, check range 00 - 23 and check that AM/PM flag is not set if RTC is set
in 24-hour mode; in 12-hour mode check range 01 - 12)

7. Minute (check BCD and range 00 - 59)

8. Second (check BCD and range 00 - 59)

Note: If the 12-hour mode is selected by means of the RTC_MODE register, a 12-hour value can be programmed and the
returned value on RTC_TIME will be the corresponding 24-hour value. The entry control checks the value of the
AM/PM indicator (bit 22 of RTC_TIME register) to determine the range to be checked.

14.4.5 Updating Time/Calendar

To update any of the time/calendar fields, the user must first stop the RTC by setting the corresponding field in the
Control Register. Bit UPDTIM must be set to update time fields (hour, minute, second) and bit UPDCAL must be
set to update calendar fields (century, year, month, date, day).

Then the user must poll or wait for the interrupt (if enabled) of bit ACKUPD in the Status Register. Once the bit
reads 1, it is mandatory to clear this flag by writing the corresponding bitin RTC_SCCR. The user can now write to
the appropriate Time and Calendar register.

Once the update is finished, the user must reset (0) UPDTIM and/or UPDCAL in the Control

When entering programming mode of the calendar fields, the time fields remain enabled. When entering the
programming mode of the time fields, both time and calendar fields are stopped. This is due to the location of the
calendar logic circuity (downstream for low-power considerations). It is highly recommended to prepare all the
fields to be updated before entering programming mode. In successive update operations, the user must wait at
least one second after resetting the UPDTIM/UPDCAL bit in the RTC_CR (Control Register) before setting these
bits again. This is done by waiting for the SEC flag in the Status Register before setting UPDTIM/UPDCAL bit.
After resetting UPDTIM/UPDCAL, the SEC flag must also be cleared.

SAM3S8 /| SAM3SDS8 [DATASHEET 233
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 14-2. Update Sequence

Begin

Prepare TIme or Calendar Fields

Set UPDTIM and/or UPDCAL
bit(s) in RTC_CR

<€
Read RTC_SR
Polling or
IRQ (if enabled)
ACKUPD No
=17
Yes

Clear ACKUPD bit in RTC_SCCR

Update Time and/or Calendar values in
RTC_TIMR/RTC_CALR

Clear UPDTIM and/or UPDCAL bit in
RTC CR

End

234 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

14.4.6 RTC Accurate Clock Calibration

The crystal oscillator that drives the RTC may not be as accurate as expected mainly due to temperature variation.
The RTC is equipped with circuitry able to correct slow clock crystal drift.

To compensate for possible temperature variations over time, this accurate clock calibration circuitry can be
programmed on-the-fly and also programmed during application manufacturing, in order to correct the crystal
frequency accuracy at room temperature (20-25°C). The typical clock drift range at room temperature is £20 ppm.

In a temperature range of -40°C to +85°C, the 32.768 KHz crystal oscillator clock inaccuracy can be up to -200
ppm.

The RTC clock calibration circuitry allows positive or negative correction in a range of 1.5 ppm to 1950 ppm. After
correction, the remaining crystal drift will be as follows:

below 1 ppm, for an initial crystal drift between 1.5 ppm up to 90 ppm,
below 2 ppm, for an initial crystal drift between 90 ppm up to 130 ppm,
below 5 ppm, for an initial crystal drift between 130 ppm up to 200 ppm.

The calibration circuitry acts by slightly modifying the 1 Hz clock period from time to time. When the period is
modified, depending on the sign of the correction, the 1 Hz clock period increases or reduces by around 4 ms. The
period interval between 2 correction events is programmable in order to cover the possible crystal oscillator clock
variations.

The inaccuracy of a crystal oscillator at typical room temperature (20 ppm at 20-25 degrees Celsius) can be
compensated if a reference clock/signal is used to measure such inaccuracy. This kind of calibration operation can
be set up during the final product manufacturing by means of measurement equipment embedding such a
reference clock. The correcting value must be programmed into the RTC Mode Register (RTC_MR) and this value
will be kept as long as the circuitry is powered (backup area). Removing the backup power supply cancels this
calibration. This room temperature calibration can be further processed by means of the networking capability of
the target application.

To ease the comparison of the inherent crystal accuracy with the reference clock/signal during manufacturing, an
internal prescaled 32.768KHz clock derivative signal can be assigned to drive RTCOUTO, RTCOUTL1 outputs. To
accommodate the measure, several clock frequencies can be selected among 1 Hz, 32 Hz, 64 Hz, 512 Hz.

In any event, this adjustment does not take into account the temperature variation.

The frequency drift (up to -200 ppm) due to temperature variation can be compensated using a reference time if
the application can access such a reference. If a reference time cannot be used, a temperature sensor can be
placed close to the crystal oscillator in order to get the operating temperature of the crystal oscillator. Once
obtained, the temperature may be converted using a lookup table (describing the accuracy/temperature curve of
the crystal oscillator used) and RTC_MR configured accordingly. The calibration can be performed on-the-fly. This
adjustment method is not based on a measurement of the crystal frequency/drift and therefore can be improved by
means of the networking capability of the target application.

If no crystal frequency adjustment has been done during manufacturing, it is still possible to do. In the case where
a reference time of day can be obtained through LAN/WAN network, it is possible to calculate the drift of the
application crystal oscillator by comparing the values read on RTC Time Register (RTC_TIMR) and programming
the HIGHPPM and CORRECTION bitfields on RTC_MR according to the difference measured between the
reference time and those of RTC_TIMR.

SAM3S8 /| SAM3SDS8 [DATASHEET 235
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

14.4.7 Waveform Generation

Up to 2 waveforms can be generated at a time from the RTC in order to take advantage of the RTC inherent
prescalers while the RTC is the only powered circuitry (low power mode of operation, backup mode) or in any
active modes. Going into backup or low power operating modes does not affect the waveform generation outputs.

Both outputs (RTCOUTO, RTCOUT1) can have a source driver selected among 7 possibilities.
RTCOUTO and RTCOUT1 have independent source selection registers.
For each output:

The first selection choice sticks the associated output at 0. (This is the reset value and it can be used at anytime to
disable the waveform generation.)

Selection choices 1 to 4 respectively select 1Hz, 32Hz, 64Hz and 512Hz.

32Hz or 64Hz can drive, for example, a TN LCD backplane signal while 1Hz can be used to drive a blinking
character like “:” for basic time display (hour, minute) on TN LCDs.

Selection choice 5 provides a toggling signal when the RTC alarm is reached.

Selection choice 6 provides a copy of the alarm flag, so the associated output is set high (logical 1) when an alarm
occurs and immediately cleared when software clears the alarm interrupt source.

Selection choice 7 provides a 1Hz periodic high pulse of 15 us duration that can be used to drive external devices
for power consumption reduction or any other purpose.

The PIO lines associated to RTCOUTO0, RTCOUT1 are automatically selecting these waveforms as soon as
RTC_MR register fields OUTO and OUT1 differ from 0.

236 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 14-3. Waveform Generation

0 —> N 0 —> N
1Hz —»|1 1Hz —/»|1
32Hz —»|2 32Hz —»|2
64 Hz —>» (3 64 Hz —>» |3
—» RTCOUTO —» RTCOUT1
512Hz —>» |4 512 Hz —» |4
toggle_alarm —>» |5 toggle_alarm —>» |5
flag_alarm —>» |6 flag_alarm —>» |6
pulse —>» |7 pulse —» |7
RTC_MR(OUTO) RTC_MR(OUT1)
alarm match alarm match
event 1 event 2
flag_alarm
| |
| RTC_SCCR(ALRCLR) | RTC_SCCR(ALRCLR)
toggle_alarm

f N

| | .
ﬁ Thigh / | / |
€ Tperiod)I(Tperiod |

SAM3S8 /| SAM3SDS8 [DATASHEET 237
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

14.5 Real Time Clock (RTC) User Interface

Table 14-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register RTC_CR Read-write 0x0
0x04 Mode Register RTC_MR Read-write 0x0
0x08 Time Register RTC_TIMR Read-write 0x0
0x0C Calendar Register RTC_CALR Read-write 0x01810720
0x10 Time Alarm Register RTC_TIMALR Read-write 0x0
0x14 Calendar Alarm Register RTC_CALALR Read-write 0x01010000
0x18 Status Register RTC_SR Read-only 0x0
0x1C Status Clear Command Register RTC_SCCR Write-only -
0x20 Interrupt Enable Register RTC_IER Write-only -
0x24 Interrupt Disable Register RTC_IDR Write-only -
0x28 Interrupt Mask Register RTC_IMR Read-only 0x0
0x2C Valid Entry Register RTC_VER Read-only 0x0
0x30-0xF8 Reserved Register - - -
OxFC Reserved Register - - -

Note: if an offset is not listed in the table it must be considered as reserved.

238 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

14.5.1 RTC Control Register

Name: RTC_CR

Address: 0x400E1460

Access: Read-write
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - [CALEVSEL |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - [TIMEVSEL |
7 6 5 4 3 2 1 0

| - | - | - | - [- [- [uPDCAL UPDTIM |

« UPDTIM: Update Request Time Register
0 = No effect.
1 = Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and
acknowledged by the bit ACKUPD of the Status Register.

e UPDCAL: Update Request Calendar Register
0 = No effect.
1 = Stops the RTC calendar counting.

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once
this bit is set.

» TIMEVSEL: Time Event Selection
The event that generates the flag TIMEV in RTC_SR (Status Register) depends on the value of TIMEVSEL.

Value Name Description
0 MINUTE Minute change
1 HOUR Hour change
2 MIDNIGHT Every day at midnight
3 NOON Every day at noon

» CALEVSEL: Calendar Event Selection
The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL

Value Name Description
0 WEEK Week change (every Monday at time 00:00:00)
1 MONTH Month change (every 01 of each month at time 00:00:00)
2 YEAR Year change (every January 1 at time 00:00:00)
3 —

SAM3S8 /| SAM3SDS8 [DATASHEET 239
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

14.5.2 RTC Mode Register

Name: RTC_MR

Address: 0x400E1464

Access: Read-write
31 30 29 28 27 26 25 24

| — | — TPERIOD | — | THIGH |
23 22 21 20 19 18 17 16

| — | ouUT1 | — | ouTO |
15 14 13 12 11 10 9 8

[HiIGHPPM | CORRECTION |
7 6 5 4 3 2 1 0

| — | - | - NEGPPM — - PERSIAN HRMOD |

« HRMOD: 12-/24-hour Mode
0 = 24-hour mode is selected.
1 = 12-hour mode is selected.

 PERSIAN: PERSIAN Calendar
0 = Gregorian Calendar.
1 = Persian Calendar.

» NEGPPM: NEGative PPM Correction

0 = positive correction (the divider will be slightly lower than 32768).
1 = negative correction (the divider will be slightly higher than 32768).
Refer to CORRECTION and HIGHPPM field descriptions.

» CORRECTION:
0 = No correction

1..127 = The slow clock will be corrected according to the formula given below in HIGHPPM description.

* HIGHPPM: HIGH PPM Correction
0 = lower range ppm correction with accurate correction.
1 = higher range ppm correction with accurate correction.

If the absolute value of the correction to be applied is lower than 30ppm, it is recommended to clear HIGHPPM. HIGHPPM
set to 1 is recommended for 30 ppm correction and above.

Formula:

If HIGHPPM = 0, then the clock frequency correction range is from 1.5 ppm up to 98 ppm. The RTC accuracy will be
less than 1 ppm for a range correction from 1.5 ppm up to 30 ppm.

The correction field must be programmed according to the required correction in ppm, the formula is as follows:

3906

CORRECTION = z—— -
20 x ppm

240 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

The value obtained must be rounded to the nearest integer prior to being programmed into CORRECTION field.

If HIGHPPM = 1, then the clock frequency correction range is from 30.5 ppm up to 1950 ppm. The RTC accuracy will
be less than 1 ppm for a range correction from 30.5 ppm up to 90 ppm.

The correction field must be programmed according to the required correction in ppm, the formula is as follows:
3906

CORRECTION = =—-1

ppm
The value obtained must be rounded to the nearest integer prior to be programmed into CORRECTION field.

If NEGPPM is set to 1, the ppm correction is negative.

« OUTO: RTCOUTO Output Source Selection

Value Name Description
0 NO_WAVE no waveform, stuck at ‘0’
1 FREQ1HZ 1 Hz square wave
2 FREQ32HZ 32 Hz square wave
3 FREQ64HZ 64 Hz square wave
4 FREQ512HZ 512 Hz square wave
5 ALARM_TOGGLE output toggles when alarm flag rises
6 ALARM_FLAG output is a copy of the alarm flag
7 PROG_PULSE duty cycle programmable pulse
« OUT1: RTCOUT1 Output Source Selection
Value Name Description
0 NO_WAVE no waveform, stuck at ‘0’
1 FREQ1HZ 1 Hz square wave
2 FREQ32HZ 32 Hz square wave
3 FREQ64HZ 64 Hz square wave
4 FREQ512HZ 512 Hz square wave
5 ALARM_TOGGLE output toggles when alarm flag rises
6 ALARM_FLAG output is a copy of the alarm flag
7 PROG_PULSE duty cycle programmable pulse
¢ THIGH: High Duration of the Output Pulse
Value Name Description
0 H_31MS 31.2ms
1 H_16MS 15.6 ms
2 H_4MS 3.91 ms
3 H_967US 967 us
4 H_488US 488 us
5 H_122US 122 us
6 H_30US 30.5 s
7 H_15US 15.2 pys

Atmel

SAM3S8 / SAM3SD8 [DATASHEET] 241

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

¢« TPERIOD: Period of the Output Pulse

Value Name Description
0 P_1S 1 second
1 P_500MS 500 ms
2 P_250MS 250 ms
3 P_125MS 125 ms

242 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

14.5.3 RTC Time Register

Name: RTC_TIMR

Address: 0x400E1468

Access: Read-write
31 30 29 28 27 26 25 24

1 T - - - -]
23 22 21 20 19 18 17 16

| - | Avem] HOUR |
15 14 13 12 11 10 9 8

| - | MIN |
7 6 5 4 3 2 1 0

| - | SEC |

» SEC: Current Second
The range that can be set is 0 - 59 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

* MIN: Current Minute
The range that can be set is 0 - 59 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

* HOUR: Current Hour
The range that can be setis 1 - 12 (BCD) in 12-hour mode or 0 - 23 (BCD) in 24-hour mode.

* AMPM: Ante Meridiem Post Meridiem Indicator
This bit is the AM/PM indicator in 12-hour mode.
0=AM.

1=PM.

All non-significant bits read zero.

SAM3S8 / SAM3SDS8 [DATASHEET 243
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

14.5.4 RTC Calendar Register

Name: RTC_CALR

Address: 0x400E146C

Access: Read-write
31 30 29 28 27 26 25 24

| - | - DATE |
23 22 21 20 19 18 17 16

| DAY MONTH |
15 14 13 12 11 10 9 8

| YEAR |
7 6 5 4 3 2 1 0

| - | CENT |

* CENT: Current Century
The range that can be setis 19 - 20 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

* YEAR: Current Year
The range that can be set is 00 - 99 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

* MONTH: Current Month
The range that can be setis 01 - 12 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

* DAY: Current Day in Current Week
The range that can be setis 1 - 7 (BCD).
The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.

e DATE: Current Day in Current Month
The range that can be set is 01 - 31 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

All non-significant bits read zero.

244 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

14.5.5 RTC Time Alarm Register

Name: RTC_TIMALR

Address: 0x400E1470

Access: Read-write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

[HOUREN [Awpm | HOUR |
15 14 13 12 11 10 9 8

[MINEN | MIN |
7 6 5 4 3 2 1 0

| SECEN | SEC |

» SEC: Second Alarm
This field is the alarm field corresponding to the BCD-coded second counter.

» SECEN: Second Alarm Enable
0 = The second-matching alarm is disabled.
1 = The second-matching alarm is enabled.

* MIN: Minute Alarm
This field is the alarm field corresponding to the BCD-coded minute counter.

* MINEN: Minute Alarm Enable
0 = The minute-matching alarm is disabled.
1 = The minute-matching alarm is enabled.

* HOUR: Hour Alarm
This field is the alarm field corresponding to the BCD-coded hour counter.

* AMPM: AM/PM Indicator
This field is the alarm field corresponding to the BCD-coded hour counter.

* HOUREN: Hour Alarm Enable
0 = The hour-matching alarm is disabled.
1 = The hour-matching alarm is enabled.

SAM3S8 / SAM3SDS8 [DATASHEET 245
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

14.5.6 RTC Calendar Alarm Register

Name: RTC_CALALR

Address: 0x400E1474

Access: Read-write
31 30 29 28 27 26 25 24

| DATEEN | — | DATE |
23 22 21 20 19 18 17 16

[MTHEN | — | — | MONTH |
15 14 13 12 11 10 9 8

. - rr - ¢ - - r - r - ¢ - [- 1}
7 6 5 4 3 2 1 0

* MONTH: Month Alarm
This field is the alarm field corresponding to the BCD-coded month counter.

* MTHEN: Month Alarm Enable
0 = The month-matching alarm is disabled.
1 = The month-matching alarm is enabled.

» DATE: Date Alarm
This field is the alarm field corresponding to the BCD-coded date counter.

« DATEEN: Date Alarm Enable
0 = The date-matching alarm is disabled.
1 = The date-matching alarm is enabled.

246 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

14.5.7 RTC Status Register

Name: RTC_SR

Address: 0x400E1478

Access: Read-only
31 30 29 28 27 26 25 24

. - rr - ¢ - - r - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - rr - ¢ - - r - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

. - rr - ¢ - - r - r - ¢ - [- 1}
7 6 5 4 3 2 1 0

| _ [— | - | caev. | TmimMmev | sec | ALARM | ACKuPD |

» ACKUPD: Acknowledge for Update
0 = Time and calendar registers cannot be updated.
1 = Time and calendar registers can be updated.

 ALARM: Alarm Flag
0 = No alarm matching condition occurred.
1 = An alarm matching condition has occurred.

 SEC: Second Event
0 = No second event has occurred since the last clear.
1 = At least one second event has occurred since the last clear.

TIMEV: Time Event
0 = No time event has occurred since the last clear.
1 = At least one time event has occurred since the last clear.

The time event is selected in the TIMEVSEL field in RTC_CR (Control Register) and can be any one of the following
events: minute change, hour change, noon, midnight (day change).

» CALEV: Calendar Event
0 = No calendar event has occurred since the last clear.
1 = At least one calendar event has occurred since the last clear.

The calendar event is selected in the CALEVSEL field in RTC_CR and can be any one of the following events: week
change, month change and year change.

SAM3S8 / SAM3SDS8 [DATASHEET 247
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

14.5.8 RTC Status Clear Command Register

Name: RTC_SCCR

Address: 0x400E147C

Access: Write-only
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - | - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - | - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | - | - |
7 6 5 4 3 2 1 0

| - | — | - | caictR | TmMCLR | secctR | ALRCIR | ACKCLR |

* ACKCLR: Acknowledge Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).

* ALRCLR: Alarm Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).

e SECCLR: Second Clear
0 = No effect.

1 = Clears corresponding status flag in the Status Register (RTC_SR).

e TIMCLR: Time Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).

» CALCLR: Calendar Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).

248 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

14.5.9 RTC Interrupt Enable Register

Name: RTC_IER

Address: 0x400E1480

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | - I - I - I - I - |
7 6 5 4 3 2 1 0

| _ [— | - | caen | TIMEN | seCceN | ALREN | ACKEN |

» ACKEN: Acknowledge Update Interrupt Enable
0 = No effect.
1 = The acknowledge for update interrupt is enabled.

e ALREN: Alarm Interrupt Enable
0 = No effect.
1 = The alarm interrupt is enabled.

» SECEN: Second Event Interrupt Enable
0 = No effect.

1 = The second periodic interrupt is enabled.

TIMEN: Time Event Interrupt Enable
0 = No effect.
1 = The selected time event interrupt is enabled.

CALEN: Calendar Event Interrupt Enable
0 = No effect.
» 1 =The selected calendar event interrupt is enabled.

SAM3S8 / SAM3SDS8 [DATASHEET 249
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

14.5.10 RTC Interrupt Disable Register

Name: RTC_IDR

Address: 0x400E1484

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | - I - I - I - I - |
7 6 5 4 3 2 1 0

| — [— | - | cabis | TiMDis | secpis | ALRDIS | ACKDIS |

* ACKDIS: Acknowledge Update Interrupt Disable
0 = No effect.
1 = The acknowledge for update interrupt is disabled.

e ALRDIS: Alarm Interrupt Disable
0 = No effect.
1 = The alarm interrupt is disabled.

» SECDIS: Second Event Interrupt Disable
0 = No effect.

1 = The second periodic interrupt is disabled.

» TIMDIS: Time Event Interrupt Disable
0 = No effect.
1 = The selected time event interrupt is disabled.

e CALDIS: Calendar Event Interrupt Disable
0 = No effect.
1 = The selected calendar event interrupt is disabled.

250 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

14.5.11 RTC Interrupt Mask Register

Name: RTC_IMR

Address: 0x400E1488

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | - I - I - I - I - |
7 6 5 4 3 2 1 0

| _ [— | - | caa | 1™ | sec [AR | Ack |

* ACK: Acknowledge Update Interrupt Mask
0 = The acknowledge for update interrupt is disabled.
1 = The acknowledge for update interrupt is enabled.

e ALR: Alarm Interrupt Mask
0 = The alarm interrupt is disabled.
1 = The alarm interrupt is enabled.

» SEC: Second Event Interrupt Mask
0 = The second periodic interrupt is disabled.
1 = The second periodic interrupt is enabled.

e TIM: Time Event Interrupt Mask
0 = The selected time event interrupt is disabled.
1 = The selected time event interrupt is enabled.

CAL: Calendar Event Interrupt Mask
0 = The selected calendar event interrupt is disabled.
1 = The selected calendar event interrupt is enabled.

SAM3S8 / SAM3SDS8 [DATASHEET 251
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

14.5.12 RTC Valid Entry Register

Name: RTC_VER

Address: 0x400E148C

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | - | - | — | NvcalALR [NvTIMALR [Nveal | nvTiv |

* NVTIM: Non-valid Time
0 = No invalid data has been detected in RTC_TIMR (Time Register).
1 =RTC_TIMR has contained invalid data since it was last programmed.

NVCAL: Non-valid Calendar
0 = No invalid data has been detected in RTC_CALR (Calendar Register).
1 = RTC_CALR has contained invalid data since it was last programmed.

* NVTIMALR: Non-valid Time Alarm
0 = No invalid data has been detected in RTC_TIMALR (Time Alarm Register).
1 =RTC_TIMALR has contained invalid data since it was last programmed.

* NVCALALR: Non-valid Calendar Alarm
0 = No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).
1 =RTC_CALALR has contained invalid data since it was last programmed.

252 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

15. Watchdog Timer (WDT)

15.1 Description

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in a deadlock. It
features a 12-bit down counter that allows a watchdog period of up to 16 seconds (slow clock at 32.768 kHz). It
can generate a general reset or a processor reset only. In addition, it can be stopped while the processor is in
debug mode or idle mode.

15.2 Embedded Characteristics
e 16-bit key-protected only-once-Programmable Counter
e Windowed, prevents the processor to be in a dead-lock on the watchdog access.

SAM3S8 /| SAM3SDS8 [DATASHEET 253
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

15.3 Block Diagram

Figure 15-1.

WDT_CR

| WDRSTT |

Watchdog Timer Block Diagram

write WDT_MR

WDT_MR
WDV

reload A
Nt o/

A

12-bit Down
Counter
WDT_MR reload
WDD Current
|_J Value < 1128 SLCK

<=WDD

254

-

WDT_MR

WDRSTEN
wdt_fault

set

| WD
read WDT_SR L
or

set

A,

|WDUNF

hreset E

),

wdt_int

=

H

reset

reset

SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

N (to Reset Controller)
WDFIEN

WDT_MR

Atmel

15.4 Functional Description

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in a deadlock. It is
supplied with VDDCORE. It restarts with initial values on processor reset.

The Watchdog is built around a 12-bit down counter, which is loaded with the value defined in the field WDV of the
Mode Register (WDT_MR). The Watchdog Timer uses the Slow Clock divided by 128 to establish the maximum
Watchdog period to be 16 seconds (with a typical Slow Clock of 32.768 kHz).

After a Processor Reset, the value of WDV is OxFFF, corresponding to the maximum value of the counter with the
external reset generation enabled (field WDRSTEN at 1 after a Backup Reset). This means that a default
Watchdog is running at reset, i.e., at power-up. The user must either disable it (by setting the WDDIS bit in
WDT_MR) if he does not expect to use it or must reprogram it to meet the maximum Watchdog period the
application requires.

The Watchdog Mode Register (WDT_MR) can be written only once. Only a processor reset resets it. Writing the
WDT_MR register reloads the timer with the newly programmed mode parameters.

In normal operation, the user reloads the Watchdog at regular intervals before the timer underflow occurs, by
writing the Control Register (WDT_CR) with the bit WDRSTT to 1. The Watchdog counter is then immediately
reloaded from WDT_MR and restarted, and the Slow Clock 128 divider is reset and restarted. The WDT_CR
register is write-protected. As a result, writing WDT_CR without the correct hard-coded key has no effect. If an
underflow does occur, the “wdt_fault” signal to the Reset Controller is asserted if the bit WDRSTEN is set in the
Mode Register (WDT_MR). Moreover, the bit WDUNF is set in the Watchdog Status Register (WDT_SR).

To prevent a software deadlock that continuously triggers the Watchdog, the reload of the Watchdog must occur
while the Watchdog counter is within a window between 0 and WDD, WDD is defined in the WatchDog Mode
Register WDT_MR.

Any attempt to restart the Watchdog while the Watchdog counter is between WDV and WDD results in a
Watchdog error, even if the Watchdog is disabled. The bit WDERR is updated in the WDT_SR and the “wdt_fault”
signal to the Reset Controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the WDV value. In
such a configuration, restarting the Watchdog Timer is permitted in the whole range [0; WDV] and does not
generate an error. This is the default configuration on reset (the WDD and WDV values are equal).

The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an interrupt, provided the bit
WDFIEN is set in the mode register. The signal “wdt_fault” to the reset controller causes a Watchdog reset if the
WDRSTEN bit is set as already explained in the reset controller programmer Datasheet. In that case, the
processor and the Watchdog Timer are reset, and the WDERR and WDUNF flags are reset.

If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared, and the “wdt_fault”
signal to the reset controller is deasserted.

Writing the WDT_MR reloads and restarts the down counter.

While the processor is in debug state or in idle mode, the counter may be stopped depending on the value
programmed for the bits WDIDLEHLT and WDDBGHLT in the WDT_MR.

SAM3S8 /| SAM3SDS8 [DATASHEET 255
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 15-2. Watchdog Behavior

FFF

Watchdog Error

Watchdog Underflow —

if WDRSTEN is 1

WDV

Normal behavior

ifWDRSTEN is 0

Forbidden
Window

ad

WDD

Permitted
Window

NN
\

N

N

/

o Watchdog
Fault

WDT_CR = WDRSTT

256 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

15.5 Watchdog Timer (WDT) User Interface

Table 15-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register WDT_CR Write-only -
0x04 Mode Register WDT_MR Read-write Once Ox3FFF_2FFF
0x08 Status Register WDT_SR Read-only 0x0000_0000
SAM3S8 / SAM3SD8 [DATASHEET 257
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

15.5.1 Watchdog Timer Control Register

Name: WDT_CR

Address: 0x400E1440

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - - - I - I - - I - |
15 14 13 12 11 10 9 8

. - r - ¢ - - - rr - ¢ - [-]}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - [WORSTT |

« WDRSTT: Watchdog Restart
0: No effect.

1: Restarts the Watchdog.

« KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

258 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

15.5.2 Watchdog Timer Mode Register

Name: WDT_MR

Address: 0x400E1444

Access: Read-write Once
31 30 29 28 27 26 25 24

| [[WDIDLEHLT | WDDBGHLT WDD |
23 22 21 20 19 18 17 16

| WDD |
15 14 13 12 1 10 9 8

[wDDIS WDRPROC | WDRSTEN WDFIEN WDV |
7 6 5 4 3 2 1 0

| WDV |

* WDV: Watchdog Counter Value
Defines the value loaded in the 12-bit Watchdog Counter.

« WDFIEN: Watchdog Fault Interrupt Enable
0: A Watchdog fault (underflow or error) has no effect on interrupt.
1: A Watchdog fault (underflow or error) asserts interrupt.

« WDRSTEN: Watchdog Reset Enable
0: A Watchdog fault (underflow or error) has no effect on the resets.

1: A Watchdog fault (underflow or error) triggers a Watchdog reset.

» WDRPROC: Watchdog Reset Processor
0: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates all resets.
1: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates the processor reset.

« WDD: Watchdog Delta Value

Defines the permitted range for reloading the Watchdog Timer.

If the Watchdog Timer value is less than or equal to WDD, writing WDT_CR with WDRSTT = 1 restarts the timer.
If the Watchdog Timer value is greater than WDD, writing WDT_CR with WDRSTT = 1 causes a Watchdog error.

WDDBGHLT: Watchdog Debug Halt
: The Watchdog runs when the processor is in debug state.

= O

: The Watchdog stops when the processor is in debug state.

WDIDLEHLT: Watchdog Idle Halt
: The Watchdog runs when the system is in idle mode.

= O

: The Watchdog stops when the system is in idle state.

SAM3S8 /| SAM3SDS8 [DATASHEET 259
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

« WDDIS: Watchdog Disable
0: Enables the Watchdog Timer.
1: Disables the Watchdog Timer.

260 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

15.5.3 Watchdog Timer Status Register

Name: WDT_SR

Address: 0x400E1448

Access: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - rr - ¢ - [-]}
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

. - r - ¢ - - - rr - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | WDERR | WDUNF |

WDUNF: Watchdog Underflow
: No Watchdog underflow occurred since the last read of WDT_SR.

o

1: At least one Watchdog underflow occurred since the last read of WDT_SR.

WDERR: Watchdog Error
: No Watchdog error occurred since the last read of WDT_SR.

= O

: At least one Watchdog error occurred since the last read of WDT_SR.

SAM3S8 / SAM3SDS8 [DATASHEET 261
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

16. SAMS3 Supply Controller (SUPC)

16.1 Description

The Supply Controller (SUPC) controls the supply voltage of the Core of the system and manages the Backup Low
Power Mode. In this mode, the current consumption is reduced to a few microamps for Backup power retention.
Exit from this mode is possible on multiple wake-up sources including events on WKUP pins, or a Clock alarm. The
SUPC also generates the Slow Clock by selecting either the Low Power RC oscillator or the Low Power Crystal
oscillator.

16.2 Embedded Characteristics

e Manages the Core Power Supply VDDCORE and the Backup Low Power Mode by Controlling the
Embedded Voltage Regulator

e Generates the Slow Clock SLCK, by Selecting Either the 22-42 kHz Low Power RC Oscillator or the 32 kHz
Low Power Crystal Oscillator
e Supports Multiple Wake Up Sources, for Exit from Backup Low Power Mode
— Force Wake Up Pin, with Programmable Debouncing
— 16 Wake Up Inputs, with Programmable Debouncing
— Real Time Clock Alarm
— Real Time Timer Alarm
— Supply Monitor Detection on VDDIO, with Programmable Scan Period and Voltage Threshold
A Supply Monitor Detection on VDDIO or a Brownout Detection on VDDCORE can Trigger a Core Reset
e Embeds:
— One 22 to 42 kHz Low Power RC Oscillator
— One 32 kHz Low Power Crystal Oscillator
— One Zero-Power Power-On Reset Cell
— One Software Programmable Supply Monitor, on VDDIO Located in Backup Section
— One Brownout Detector on VDDCORE Located in the Core

262 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

16.3 Block Diagram

Figure 16-1. Supply Controller Block Diagram

VDDIO VDDOUT :
[] I
1
1
1
vr_on 1
vr_mo G Software Controlled 1
Voltage Regulator D VDDIN 1
1
1
VDDIO 1
Zero-Power Supply 1
Controller 1
PIOA/B/C !
ON Input/Output Buffers PlOx 1
Supply 1
Monitor out 1
(Backup) 1
1 > Analog 1
WKUPO - WKUP15 [J > re— Comparator ‘_l 1
1
General Purpose ADC Analog @ D ADx I
Backup Registers rm— Circui
ircuitry 1
| ¢ | Aovrer I
rtc_nreset DAC Anal
SLCK RTC — -~ Analog 1
—> ric_alarm Circuitry D DACx 1
1
VDDIO 1
rtt_nreset 1
SLCK
S RTT rtt_alarm :
32k_xtal USB oo !
0SCosk Xta,_en Transceivers | | DDM 1
1
XTALSEL vddcore_nreset 1
XIN32 tal 32 kHz :
YOUT32 Oscillator Ibod_csre_On B[)rggr;?;t _L__|" -
core_brown_out
(Core) VDDCORE
Embedded
32 kHz RC 0sc32k_rc_en
Oscillator |« == | SRV L
Backup Power Supply vddcore_nreset Peripherals |
L.)
Reset proT.:_nreset Matrix
Controller —> periph_nreset > Peripheral
NRST D —> ice_nreset Bridge
‘ l Cortex-M e
Processor
FsTT0-FsTT15 [} >
SLCK —>»
Embedded
<P Flash fm
12/8/4 MHz N as
RC Main Clock
Oscillator MAINCK Power
XIN Management Master Clock
3-20MHz | | Controller MCK
XOUT XTAL Oscillator
MAINCK PLLACK
PLLA
SLCK Wat_chdog
VDDIO U Timer
MAINCK PLLBCK
> PLLB
Core Power Supply

FSTTO - FSTT15 are possible Fast Startup Sources, generated by WKUPO-WKUP15 Pins,
but are not physical pins.

SAM3S8 /| SAM3SDS8 [DATASHEET 263
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

16.4 Supply Controller Functional Description

16.4.1 Supply Controller Overview

The device can be divided into two power supply areas:

e The VDDIO Power Supply: including the Supply Controller, a part of the Reset Controller, the Slow Clock
switch, the General Purpose Backup Registers, the Supply Monitor and the Clock which includes the Real
Time Timer and the Real Time Clock

e The Core Power Supply: including the other part of the Reset Controller, the Brownout Detector, the
Processor, the SRAM memory, the FLASH memory and the Peripherals

The Supply Controller (SUPC) controls the supply voltage of the core power supply. The SUPC intervenes when
the VDDIO power supply rises (when the system is starting) or when the Backup Low Power Mode is entered.

The SUPC also integrates the Slow Clock generator which is based on a 32 kHz crystal oscillator and an
embedded 32 kHz RC oscillator. The Slow Clock defaults to the RC oscillator, but the software can enable the
crystal oscillator and select it as the Slow Clock source.

The Supply Controller and the VDDIO power supply have a reset circuitry based on a zero-power power-on reset
cell. The zero-power power-on reset allows the SUPC to start properly as soon as the VDDIO voltage becomes
valid.

At startup of the system, once the voltage VDDIO is valid and the embedded 32 kHz RC oscillator is stabilized, the
SUPC starts up the core by sequentially enabling the internal Voltage Regulator, waiting that the core voltage
VDDCORE is valid, then releasing the reset signal of the core “vddcore_nreset” signal.

Once the system has started, the user can program a supply monitor and/or a brownout detector. If the supply
monitor detects a voltage on VDDIO that is too low, the SUPC can assert the reset signal of the core
“vddcore_nreset” signal until VDDIO is valid. Likewise, if the brownout detector detects a core voltage VDDCORE
that is too low, the SUPC can assert the reset signal “vddcore_nreset” until VDDCORE is valid.

When the Backup Low Power Mode is entered, the SUPC sequentially asserts the reset signal of the core power
supply “vddcore_nreset” and disables the voltage regulator, in order to supply only the VDDIO power supply. In
this mode the current consumption is reduced to a few microamps for Backup part retention. Exit from this mode is
possible on multiple wake-up sources including an event on WKUP pins, or a Clock alarm. To exit this mode, the
SUPC operates in the same way as system startup.

264 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

16.4.2 Slow Clock Generator

The Supply Controller embeds a slow clock generator that is supplied with the VDDIO power supply. As soon as
the VDDIO is supplied, both the crystal oscillator and the embedded RC oscillator are powered up, but only the
embedded RC oscillator is enabled. This allows the slow clock to be valid in a short time (about 100 pus).

The user can select the crystal oscillator to be the source of the slow clock, as it provides a more accurate
frequency. The command is made by writing the Supply Controller Control Register (SUPC_CR) with the
XTALSEL bit at 1.This results in a sequence which first configures the PIO lines multiplexed with XIN32 and
XOUT32 to be driven by the oscillator, then enables the crystal oscillator. then waits for 32,768 slow clock cycles,
then switches the slow clock on the output of the crystal oscillator and then disables the RC oscillator to save
power. The switch of the slow clock source is glitch free. The OSCSEL bit of the Supply Controller Status Register
(SUPC_SR) allows knowing when the switch sequence is done.

Coming back on the RC oscillator is only possible by shutting down the VDDIO power supply.
If the user does not need the crystal oscillator, the XIN32 and XOUT32 pins should be left unconnected.

The user can also set the crystal oscillator in bypass mode instead of connecting a crystal. In this case, the user
has to provide the external clock signal on XIN32. The input characteristics of the XIN32 pin are given in the
product electrical characteristics section. In order to set the bypass mode, the OSCBYPASS bit of the Supply
Controller Mode Register (SUPC_MR) needs to be set at 1.

16.4.3 Voltage Regulator Control/Backup Low Power Mode
The Supply Controller can be used to control the embedded 1.8V voltage regulator.

The voltage regulator automatically adapts its quiescent current depending on the required load current. Please
refer to the electrical characteristics section.

The programmer can switch off the voltage regulator, and thus put the device in Backup mode, by writing the
Supply Controller Control Register (SUPC_CR) with the VROFF bit at 1.

This can be done also by using WFE (Wait for Event) Cortex-M processor instruction with the deep mode bit set to
1.

The Backup mode can also be entered by executing the WFI (Wait for Interrupt) or WFE (Wait for Event) Cortex-M
Processir instructions. To select the Backup mode entry mechanism, two options are available, depending on the
SLEEPONEXIT bit in the Cortex-M processor System Control register:

e Sleep-now: if the SLEEPONEXIT bit is cleared, the device enters Backup mode as soon as the WFI or WFE
instruction is executed.

e Sleep-on-exit: if the SLEEPONEXIT bit is set when the WFI instruction is executed, the device enters
Backup mode as soon as it exits the lowest priority ISR.

This asserts the vddcore_nreset signal after the write resynchronization time which lasts, in the worse case, two
slow clock cycles. Once the vddcore_nreset signal is asserted, the processor and the peripherals are stopped one
slow clock cycle before the core power supply shuts off.

When the user does not use the internal voltage regulator and wants to supply VDDCORE by an external supply, it
is possible to disable the voltage regulator. Note that it is different from the Backup mode. Depending on the
application, disabling the voltage regulator can reduce power consumption as the voltage regulator input (VDDIN)
is shared with the ADC and DAC. This is done through ONREG bit in SUPC_MR.

SAM3S8 /| SAM3SDS8 [DATASHEET 265
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

16.4.4 Supply Monitor

The Supply Controller embeds a supply monitor which is located in the VDDIO Power Supply and which monitors
VDDIO power supply.
The supply monitor can be used to prevent the processor from falling into an unpredictable state if the Main power
supply drops below a certain level.
The threshold of the supply monitor is programmable. It can be selected from 1.9V to 3.4V by steps of 100 mV.
This threshold is programmed in the SMTH field of the Supply Controller Supply Monitor Mode Register
(SUPC_SMMR).
The supply monitor can also be enabled during one slow clock period on every one of either 32, 256 or 2048 slow
clock periods, according to the choice of the user. This can be configured by programming the SMSMPL field in
SUPC_SMMR.
Enabling the supply monitor for such reduced times allows to divide the typical supply monitor power consumption
respectively by factors of 32, 256 or 2048, if the user does not need a continuous monitoring of the VDDIO power
supply.
A supply monitor detection can either generate a reset of the core power supply or a wake up of the core power
supply. Generating a core reset when a supply monitor detection occurs is enabled by writing the SMRSTEN bit to
1in SUPC_SMMR.
Waking up the core power supply when a supply monitor detection occurs can be enabled by programming the
SMEN bit to 1 in the Supply Controller Wake Up Mode Register (SUPC_WUMR).
The Supply Controller provides two status bits in the Supply Controller Status Register for the supply monitor
which allows to determine whether the last wake up was due to the supply monitor:

e The SMOS bit provides real time information, which is updated at each measurement cycle or updated at

each Slow Clock cycle, if the measurement is continuous.
e The SMS bit provides saved information and shows a supply monitor detection has occurred since the last
read of SUPC_SR.

The SMS bit can generate an interrupt if the SMIEN bit is set to 1 in the Supply Controller Supply Monitor Mode
Register (SUPC_SMMR).

Figure 16-2. Supply Monitor Status Bit and Associated Interrupt
Continuous Sampling (SMSMPL = 1)

A& L
Supply Monitor ON ! | | | |k Periodic Sampling | |

|

|

|

T

3.3V

|
Threshold 'r\

|
|
:
oV —
|
|
|
|
|
|

SMS and SUPC interrupt

266 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

16.4.5 Power Supply Reset

16.4.5.1 Raising the Power Supply

As soon as the voltage VDDIO rises, the RC oscillator is powered up and the zero-power power-on reset cell
maintains its output low as long as VDDIO has not reached its target voltage. During this time, the Supply
Controller is entirely reset. When the VDDIO voltage becomes valid and zero-power power-on reset signal is
released, a counter is started for 5 slow clock cycles. This is the time it takes for the 32 kHz RC oscillator to
stabilize.

After this time, the voltage regulator is enabled. The core power supply rises and the brownout detector provides
the bodcore_in signal as soon as the core voltage VDDCORE is valid. This results in releasing the vddcore_nreset
signal to the Reset Controller after the bodcore_in signal has been confirmed as being valid for at least one slow
clock cycle.

Figure 16-3. Raising the VDDIO Power Supply

7 x Slow Clock Cycles TovVoltage 3 x Slow Clock 3 x Slow Clock 6.5 x Slow Clock
Regulator Cycles Cycles Cycles

I I

l

I

I

Zero-Power POR
Backup Power Supply

JENERE NN SRR RN R ERERE SN

Zero-Power Power-On
Reset Cell output A

I R

22 -42 kHz RC

Oscillator output .

|

I Il
— Il
Il

T I

i I

vr_on

Core Power Supply

Fast RC
Oscillator output

bodcore_in

vddcore_nreset

| Il

al

NRST

periph_nreset

%

proc_nreset

Note: After “proc_nreset” rising, the core starts fecthing instructions from Flash at 4 MHz.

SAM3S8 /| SAM3SDS8 [DATASHEET 267
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

16.4.6 Core Reset

The Supply Controller manages the vddcore_nreset signal to the Reset Controller, as described previously in
Section 16.4.3. The vddcore_nreset signal is normally asserted before shutting down the core power supply and
released as soon as the core power supply is correctly regulated.
There are two additional sources which can be programmed to activate vddcore_nreset:

e a supply monitor detection

e abrownout detection

16.4.6.1 Supply Monitor Reset

The supply monitor is capable of generating a reset of the system. This can be enabled by setting the SMRSTEN
bit in the Supply Controller Supply Monitor Mode Register (SUPC_SMMR).

If SMRSTEN is set and if a supply monitor detection occurs, the vddcore_nreset signal is immediately activated for
a minimum of 1 slow clock cycle.

16.4.6.2 Brownout Detector Reset

The brownout detector provides the bodcore_in signal to the SUPC which indicates that the voltage regulation is
operating as programmed. If this signal is lost for longer than 1 slow clock period while the voltage regulator is
enabled, the Supply Controller can assert vddcore_nreset. This feature is enabled by writing the bit, BODRSTEN
(Brownout Detector Reset Enable) to 1 in the Supply Controller Mode Register (SUPC_MR).

If BODRSTEN is set and the voltage regulation is lost (output voltage of the regulator too low), the vddcore_nreset
signal is asserted for a minimum of 1 slow clock cycle and then released if bodcore_in has been reactivated. The
BODRSTS bit is set in the Supply Controller Status Register (SUPC_SR) so that the user can know the source of
the last reset.

Until bodcore_in is deactivated, the vddcore_nreset signal remains active.

16.4.7 Wake Up Sources

The wake up events allow the device to exit backup mode. When a wake up event is detected, the Supply
Controller performs a sequence which automatically reenables the core power supply.

268 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 16-4. Wake Up Sources

EEn I
smout _ ——— |)
e
rtc_alarm)
Core
riialarm - Restart
[wkupPeNo| [wiupiso
Falling/Rising I—
WKUPO D— Edge
Detector
SLCK
WKUPTL [wkuPeN1| | wkupist | NS
I L
Falling/Rising D_l; Debouncer ®
WKUP1 D— Edge
\ Detector
1
1
: [wkupPEN1s| | wKuPIS15|
1
! Falling/Rising L
WKUP15 D— Edge
Detector

16.4.7.1 Wake Up Inputs

The wake up inputs, WKUPO to WKUP15, can be programmed to perform a wake up of the core power supply.
Each input can be enabled by writing to 1 the corresponding bit, WKUPENO to WKUPEN 15, in the Wake Up
Inputs Register (SUPC_WUIR). The wake up level can be selected with the corresponding polarity bit, WKUPPLO
to WKUPPL15, also located in SUPC_WUIR.

All the resulting signals are wired-ORed to trigger a debounce counter, which can be programmed with the
WKUPDBC field in the Supply Controller Wake Up Mode Register (SUPC_WUMR). The WKUPDBC field can
select a debouncing period of 3, 32, 512, 4,096 or 32,768 slow clock cycles. This corresponds respectively to
about 100 ps, about 1 ms, about 16 ms, about 128 ms and about 1 second (for a typical slow clock frequency of 32
kHz). Programming WKUPDBC to 0x0 selects an immediate wake up, i.e., an enabled WKUP pin must be active
according to its polarity during a minimum of one slow clock period to wake up the core power supply.

If an enabled WKUP pin is asserted for a time longer than the debouncing period, a wake up of the core power
supply is started and the signals, WKUPO to WKUP15 as shown in Figure 16-4, are latched in the Supply
Controller Status Register (SUPC_SR). This allows the user to identify the source of the wake up, however, if a
new wake up condition occurs, the primary information is lost. No new wake up can be detected since the primary
wake up condition has disappeared.

16.4.7.2 Low Power Debouncer Inputs

It is possible to generate a waveform (RTCOUTO and RTCOUT1) in all modes (including backup mode). It can be
useful to control an external sensor and/or tampering function without waking up the processor. Please refer to the
RTC section.

Two separate debouncers are embedded for WKUPO and WKUPL1 inputs.

The WKUPO and/or WKUP1 inputs can be programmed to perform a wake up of the core power supply with a
debouncing done by RTCOUTO. This can be enabled by setting LPDBCO bit and/or LPDBC1 bit in SUPC_WUMR.

In this mode of operation, WKUPO and/or WKUP1 must not be configured to also act as debouncing source for the
WKUPDBC counter (WKUPENO and/or WKUPEN1 must be cleared in SUPC_WUIR). Refer to Figure 16-5.

SAM3S8 /| SAM3SDS8 [DATASHEET 269
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

270

This mode of operation requires the RTC Output (RTCOUTO) to be configured to generate a square waveform (i.e.
OUTO0 = 0x1, 0x2, 0x3, 0x4 in RTC_MR) in order to create the sampling points of both debouncers. The sampling
point is the falling edge of the RTCOUTO waveform.

Figure 16-5 shows an example of an application where two tamper switches are used. RTCOUTOO powers the

external pullup used by the tampers.

Figure 16-5. Low Power Debouncer (Push-to-Make switch, pull-up resistors)

|

AT91SAM

RTGOUTO

Pull-Up
Resistor

Pull-Up
Resistor

i»

GND

»| WKUPO

Figure 16-6. Low Power Debouncer (Push-to-Break switch, pull-down resistors)

AT91SAM
J-l ” RTCOUTO
<_ —_—
»| WKUPO
<_ —_—
WKUWPL
Pull-Down J_
Resistors GND
GND GND

The debouncing parameters can be adjusted and are shared (except the wake up input polarity) by both
debouncers. The number of successive identical samples to wake up the core can be configured from 2 up to 8 in
the LPDBC field of SUPC_WUMR. The period of time between 2 samples can be configured by programming the

TPERIOD field in the RTC_MR register.

Power parameters can be adjusted by modifying the period of time in the THIGH field in RTC_MR.

The wake up polarity of the inputs can be independently configured by writing WKUPTO and WKUPT1 fields in

SUPC_WUMR.

SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

In order to determine which wake up pin triggers the core wake up or simply which debouncer triggers an event, a
status flag is associated for each low power debouncer. These 2 flags can be read in the SUPC_SR.

A debounce event can perform an immediate clear (O delay) on first half the general purpose backup registers
(GPBR). The LPDBCCLR hit must be setto 1 in SUPC_MR.

16.4.7.3 Clock Alarms
The RTC and the RTT alarms can generate a wake up of the core power supply. This can be enabled by writing
respectively, the bits RTCEN and RTTEN to 1 in the Supply Controller Wake Up Mode Register (SUPC_WUMR).
The Supply Controller does not provide any status as the information is available in the User Interface of either the
Real Time Timer or the Real Time Clock.

16.4.7.4 Supply Monitor Detection
The supply monitor can generate a wakeup of the core power supply. See Section 16.4.4 “Supply Monitor”.

SAM3S8 / SAM3SD8 [DATASHEET] 271

/I t ' I .eL Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

16.5 Supply Controller (SUPC) User Interface

The User Interface of the Supply Controller is part of the System Controller User Interface.

16.5.1 System Controller (SYSC) User Interface

Table 16-1. System Controller Registers

Offset System Controller Peripheral Name
0x00-0x0c Reset Controller RSTC
0x10-0x2C Supply Controller SUPC
0x30-0x3C Real Time Timer RTT
0x50-0x5C Watchdog Tiler WDT
0x60-0x7C Real Time Clock RTC
0x90-0xDC General Purpose Backup Register GPBR

16.5.2 Supply Controller (SUPC) User Interface

Table 16-2. Register Mapping

Offset Register Name Access Reset
0x00 Supply Controller Control Register SUPC_CR Write-only N/A
0x04 Supply Controller Supply Monitor Mode Register SUPC_SMMR Read-write 0x0000_0000
0x08 Supply Controller Mode Register SUPC_MR Read-write 0x0000_5A00
0x0C Supply Controller Wake Up Mode Register SUPC_WUMR Read-write 0x0000_0000
0x10 Supply Controller Wake Up Inputs Register SUPC_WUIR Read-write 0x0000_0000
0x14 Supply Controller Status Register SUPC_SR Read-only 0x0000_0800
0x18 Reserved

272 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

16.5.3 Supply Controller Control Register

Name: SUPC_CR

Address: 0x400E1410

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - | - - I - I - | I - |
7 6 5 4 3 2 1 0

| - | - | - | - | XTALSEL | VROFF | - | - |

» VROFF: Voltage Regulator Off
0 (NO_EFFECT) = no effect.
1 (STOP_VREG) = if KEY is correct, asserts vddcore_nreset and stops the voltage regulator.

e XTALSEL: Crystal Oscillator Select
0 (NO_EFFECT) = no effect.
1 (CRYSTAL_SEL) = if KEY is correct, switches the slow clock on the crystal oscillator output.

* KEY: Password
Should be written to value OxA5. Writing any other value in this field aborts the write operation.

SAM3S8 / SAM3SDS8 [DATASHEET 273
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

16.5.4 Supply Controller Supply Monitor Mode Register

Name: SUPC_SMMR

Address: 0x400E1414

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | - | SMIEN |SMRSTEN| — | SMSMPL |
7 6 5 4 3 2 1 0

I - I - I - I - I SMTH |

* SMTH: Supply Monitor Threshold

Value Name Description
0x0 19v 19V
0x1 2_0v 20V
0x2 2_1v 21V
0x3 2.2V 22V
0x4 2 3V 23V
0x5 2 4V 24V
0x6 2 5V 25V
0x7 2 6V 26V
0x8 2_7V 27V
0x9 2.8V 28V
OxA 2 9v 29V
0xB 3 oV 3.0V
0xC 3 1V 31V
0xD 3.2v 3.2V
OxE 3.3V 3.3V
OxF 3_4v 34V

274 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

* SMSMPL: Supply Monitor Sampling Period

Value Name Description
0x0 SMD Supply Monitor disabled
0x1 CSM Continuous Supply Monitor
0x2 32SLCK Supply Monitor enabled one SLCK period every 32 SLCK periods
0x3 256SLCK Supply Monitor enabled one SLCK period every 256 SLCK periods
0x4 2048SLCK Supply Monitor enabled one SLCK period every 2,048 SLCK periods
0x5-0x7 Reserved Reserved

* SMRSTEN: Supply Monitor Reset Enable
0 (NOT_ENABLE) = the core reset signal “vddcore_nreset” is not affected when a supply monitor detection occurs.

1 (ENABLE) = the core reset signal, vddcore_nreset is asserted when a supply monitor detection occurs.

* SMIEN: Supply Monitor Interrupt Enable

0 (NOT_ENABLE) = the SUPC interrupt signal is not affected when a supply monitor detection occurs.

1 (ENABLE) = the SUPC interrupt signal is asserted when a supply monitor detection occurs.

Atmel

SAM3S8 / SAM3SD8 [DATASHEET] 275

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

16.5.5 Supply Controller Mode Register

Name: SUPC_MR

Address: 0x400E1418

Access: Read-write
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

| - | - | - | OSCBYPASS | - | - | - | - |
15 14 13 12 11 10 9 8

| - | ONREG | BODDIS | BODRSTEN | - | - | - | — |
7 6 5 4 3 2 1 0

« BODRSTEN: Brownout Detector Reset Enable
0 (NOT_ENABLE) = the core reset signal “vddcore_nreset” is not affected when a brownout detection occurs.

1 (ENABLE) = the core reset signal, vddcore_nreset is asserted when a brownout detection occurs.

+ BODDIS: Brownout Detector Disable
0 (ENABLE) = the core brownout detector is enabled.
1 (DISABLE) = the core brownout detector is disabled.

* ONREG: Voltage Regulator enable
0 (ONREG_UNUSED) = Voltage Regulator is not used
1 (ONREG_USED) = Voltage Regulator is used

» OSCBYPASS: Oscillator Bypass
0 (NO_EFFECT) = no effect. Clock selection depends on XTALSEL value.
1 (BYPASS) = the 32-KHz XTAL oscillator is selected and is put in bypass mode.

» KEY: Password Key
Should be written to value 0xA5. Writing any other value in this field aborts the write operation.

276 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

16.5.6 Supply Controller Wake Up Mode Register

Name: SUPC_WUMR

Address: 0x400E141C

Access: Read-write
31 30 29 28 27 26 25 24

- T - T - T - T =T - - —]
23 22 21 20 19 18 17 16

I - I - I - I - I - I LPDBC |
15 14 13 12 11 10 9 8

| - | WKUPDBC | — | - | - | - |
7 6 5 4 3 2 1 0

| LPDBCCLR | LPDBCEN1 | LPDBCENO | - | RTCEN | RTTEN | SMEN | - |

* SMEN: Supply Monitor Wake Up Enable
0 (NOT_ENABLE) = the supply monitor detection has no wake up effect.
1 (ENABLE) = the supply monitor detection forces the wake up of the core power supply.

e RTTEN: Real Time Timer Wake Up Enable
0 (NOT_ENABLE) =the RTT alarm signal has no wake up effect.
1 (ENABLE) = the RTT alarm signal forces the wake up of the core power supply.

» RTCEN: Real Time Clock Wake Up Enable
0 (NOT_ENABLE) = the RTC alarm signal has no wake up effect.
1 (ENABLE) = the RTC alarm signal forces the wake up of the core power supply.

» LPDBCENO: Low power Debouncer ENable WKUPO
0 (NOT_ENABLE) = the WKUPO input pin is not connected with low power debouncer.
1 (ENABLE) = the WKUPO input pin is connected with low power debouncer and can force a core wake up.

e LPDBCENL1: Low power Debouncer ENable WKUP1
0 (NOT_ENABLE) = the WKUP1linput pin is not connected with low power debouncer.

1 (ENABLE) = the WKUPL1 input pin is connected with low power debouncer and can force a core wake up.

* LPDBCCLR: Low power Debouncer Clear
0 (NOT_ENABLE) = a low power debounce event does not create an immediate clear on first half GPBR registers.

1 (ENABLE) = a low power debounce event on WKUPO or WKUPL1 generates an immediate clear on first half GPBR
registers.

SAM3S8 / SAM3SDS8 [DATASHEET 277
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

+ WKUPDBC: Wake Up Inputs Debouncer Period

Value Name Description
0 IMMEDIATE Immediate, no debouncing, detected active at least on one Slow Clock edge.
1 3_SCLK WKUPXx shall be in its active state for at least 3 SLCK periods
2 32_SCLK WKUPXx shall be in its active state for at least 32 SLCK periods
3 512_SCLK WKUPXx shall be in its active state for at least 512 SLCK periods
4 4096_SCLK WKUPX shall be in its active state for at least 4,096 SLCK periods
5 32768_SCLK WKUPX shall be in its active state for at least 32,768 SLCK periods
6 Reserved Reserved
7 Reserved Reserved

 LPDBC: Low Power DeBounCer Period

Value Name Description

0 DISABLE Disable the low power debouncer.

1 2_RTCOUTO WKUPO/1 in its active state for at least 2 RTCOUTO periods
2 3_RTCOUTO WKUPO/1 in its active state for at least 3 RTCOUTO periods
3 4 RTCOUTO WKUPO/1 in its active state for at least 4 RTCOUTO periods
4 5_RTCOUTO WKUPO/1 in its active state for at least 5 RTCOUTO periods
5 6_RTCOUTO WKUPO/1 in its active state for at least 6 RTCOUTO periods
6 7_RTCOUTO WKUPO/1 in its active state for at least 7 RTCOUTO periods
7 8 RTCOUTO WKUPO/1 in its active state for at least 8 RTCOUTO periods

278 SAM3S8/SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

16.5.7 System Controller Wake Up Inputs Register

Name: SUPC_WUIR

Address: 0x400E1420

Access: Read-write
31 30 29 28 27 26 25 24

| WKUPT15 | WKUPT14 | WKUPT13 | WKUPT12 | WKUPT11 | WKUPT10 | WKUPT9 | WKUPTS8 |
23 22 21 20 19 18 17 16

| WKUPT7 | WKUPT6 | WKUPT5 | WKUPT4 | WKUPT3 | WKUPT2 | WKUPT1 | WKUPTO |
15 14 13 12 11 10 9 8

| WKUPEN15 | WKUPEN14 | WKUPEN13 | WKUPEN12 | WKUPEN11 | WKUPEN10 | WKUPEN9 | WKUPENS8 |

7 6 5 4 3 2 1 0
| WKUPEN7 | WKUPENG6 | WKUPEN5 | WKUPEN4 | WKUPEN3 | WKUPEN2 | WKUPEN1 | WKUPENO |

« WKUPENO - WKUPEN15: Wake Up Input Enable 0 to 15
0 (DISABLE) = the corresponding wake-up input has no wake up effect.
1 (ENABLE) = the corresponding wake-up input forces the wake up of the core power supply.

« WKUPTO - WKUPT15: Wake Up Input Type 0 to 15

0 (LOW) = a low level for a period defined by WKUPDBC on the corresponding wake-up input forces the wake up of the
core power supply.

1 (HIGH) = a high levelfor a period defined by WKUPDBC on the corresponding wake-up input forces the wake up of the
core power supply.

SAM3S8 / SAM3SDS8 [DATASHEET 279
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

16.5.8 Supply Controller Status Register

Name: SUPC_SR

Address: 0x400E1424

Access: Read-write
31 30 29 28 27 26 25 24

| WKUPIS15 | WKUPIS14 | WKUPIS13 | WKUPIS12 | WKUPIS11 | WKUPIS10 | WKUPIS9 | WKUPIS8 |
23 22 21 20 19 18 17 16

| WKUPIS7 | WKUPIS6 | WKUPIS5 | WKUPIS4 | WKUPIS3 | WKUPIS2 | WKUPIS1 | WKUPISO |
15 14 13 12 11 10 9 8

| - | LPDBCS1 | LPDBCSO0 | - | - | - | - | - |
7 6 5 4 3 2 1 0

| OSCSEL | SMOS | SMS | SMRSTS | BODRSTS | SMWS | WKUPS | - |

Note: Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK), the status register flag reset is taken
into account only 2 slow clock cycles after the read of the SUPC_SR.

 WKUPS: WKUP Wake Up Status

0 (NO) = no wake up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to the assertion of the WKUP pins has occurred since the last read of
SUPC_SR.

* SMWS: Supply Monitor Detection Wake Up Status
0 (NO) = no wake up due to a supply monitor detection has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to a supply monitor detection has occurred since the last read of SUPC_SR.

« BODRSTS: Brownout Detector Reset Status
0 (NO) = no core brownout rising edge event has been detected since the last read of the SUPC_SR.
1 (PRESENT) = at least one brownout output rising edge event has been detected since the last read of the SUPC_SR.

When the voltage remains below the defined threshold, there is no rising edge event at the output of the brownout detec-
tion cell. The rising edge event occurs only when there is a voltage transition below the threshold.

* SMRSTS: Supply Monitor Reset Status
0 (NO) = no supply monitor detection has generated a core reset since the last read of the SUPC_SR.
1 (PRESENT) = at least one supply monitor detection has generated a core reset since the last read of the SUPC_SR.

e SMS: Supply Monitor Status
0 (NO) = no supply monitor detection since the last read of SUPC_SR.
1 (PRESENT) = at least one supply monitor detection since the last read of SUPC_SR.

» SMOS: Supply Monitor Output Status
0 (HIGH) = the supply monitor detected VDDIO higher than its threshold at its last measurement.
1 (LOW) = the supply monitor detected VDDIO lower than its threshold at its last measurement.

280 SAM3S8 / SAM3SD8 [DATASHEET)] AtmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

* OSCSEL: 32-kHz Oscillator Selection Status
0 (RC) = the slow clock, SLCK is generated by the embedded 32-kHz RC oscillator.
1 (CRYST) = the slow clock, SLCK is generated by the 32-kHz crystal oscillator.

« LPDBCSO0: Low Power Debouncer Wake Up Status on WKUPO
0 (NO) = no wake up due to the assertion of the WKUPO pin has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to the assertion of the WKUPO pin has occurred since the last read of
SUPC_SR.

 LPDBCS1: Low Power Debouncer Wake Up Status on WKUP1
0 (NO) = no wake up due to the assertion of the WKUP1 pin has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake up due to the assertion of the WKUP1 pin has occurred since the last read of
SUPC_SR.

« WKUPISO-WKUPIS15: WKUP Input Status 0 to 15

0 (DIS) = the corresponding wake-up input is disabled, or was inactive at the time the debouncer triggered a wake up
event.

1 (EN) = the corresponding wake-up input was active at the time the debouncer triggered a wake up event.

SAM3S8 / SAM3SDS8 [DATASHEET 281
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

17. General Purpose Backup Registers (GPBR)

17.1 Description

The System Controller embeds Eight general-purpose backup registers.

17.2 Embedded Characteristics
e Eight 32-bit backup general-purpose registers

282 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

17.3 General Purpose Backup Registers (GPBR) User Interface

Table 17-1. Register Mapping

Offset Register Name Access Reset
0x0 General Purpose Backup Register 0 SYS_GPBRO Read-write -
0x1C General Purpose Backup Register 7 SYS_GPBR7 Read-write -

SAM3S8 /| SAM3SDS8 [DATASHEET 283
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

17.3.1 General Purpose Backup Register x

Name: SYS_GPBRx

Address: 0x400E1490

Access: Read-write
31 30 29 28 27 26 25 24

| GPBR_VALUE |
23 22 21 20 19 18 17 16

| GPBR_VALUE |
15 14 13 12 11 10 9 8

| GPBR_VALUE |
7 6 5 4 3 2 1 0

| GPBR_VALUE |

« GPBR_VALUE: Value of GPBR x

284 SAM3S8 / SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

18.

18.1

18.2

18.3

18.3.1

18.3.2

Enhanced Embedded Flash Controller (EEFC)

Description

The Enhanced Embedded Flash Controller (EEFC) ensures the interface of the Flash block with the 32-bit internal
bus.

Its 128-bit or 64-bit wide memory interface increases performance. It also manages the programming, erasing,
locking and unlocking sequences of the Flash using a full set of commands. One of the commands returns the
embedded Flash descriptor definition that informs the system about the Flash organization, thus making the
software generic.

Embedded Characteristics

Interface of the Flash Block with the 32-bit Internal Bus
Increases Performance in Thumb2 Mode with 128-bit or -64 bit Wide Memory Interface up to 24 MHz
16 Lock Bits, Each Protecting a Lock Region

GPNVMx General-purpose GPNVM Bits

One-by-one Lock Bit Programming

Commands Protected by a Keyword

Erases the Entire Flash

Erases by Plane

Possibility of Erasing before Programming

Locking and Unlocking Operations

Consecutive Programming and Locking Operations

Product Dependencies

Power Management

The Enhanced Embedded Flash Controller (EEFC) is continuously clocked. The Power Management Controller
has no effect on its behavior.

Interrupt Sources

The Enhanced Embedded Flash Controller (EEFC) interrupt line is connected to the Nested Vectored Interrupt
Controller (NVIC). Using the Enhanced Embedded Flash Controller (EEFC) interrupt requires the NVIC to be
programmed first. The EEFC interrupt is generated only on FRDY bit rising.

Table 18-1. Peripheral IDs

Instance ID
EFC 6

SAM3S8 /| SAM3SDS8 [DATASHEET 285
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

18.4 Functional Description

18.4.1 Embedded Flash Organization

The embedded Flash interfaces directly with the 32-bit internal bus. The embedded Flash is composed of:
e One memory plane organized in several pages of the same size.

Two memory planes organized in several pages of the same size (only for SAM3SD8).

Two 128-bit or 64-bit read buffers used for code read optimization.

One 128-bit or 64-bit read buffer used for data read optimization.

One write buffer that manages page programming. The write buffer size is equal to the page size. This buffer
is write-only and accessible all along the 1 MByte address space, so that each word can be written to its final
address.

e Several lock bits used to protect write/erase operation on several pages (lock region). A lock bit is
associated with a lock region composed of several pages in the memory plane.

e Several bits that may be set and cleared through the Enhanced Embedded Flash Controller (EEFC)
interface, called General Purpose Non Volatile Memory bits (GPNVM bits).

The embedded Flash size, the page size, the lock regions organization and GPNVM bits definition are described in
the product definition section. The Enhanced Embedded Flash Controller (EEFC) returns a descriptor of the Flash
controlled after a get descriptor command issued by the application (see “Getting Embedded Flash Descriptor” on
page 291).

Figure 18-1. Embedded Flash Organization

Memory Plane

Start Address i
Lock Region 0 <—— LockBit0
Page (m-1) X
Lock Region 1 <— LockBitl
Lock Region (n-1) <——— Lock Bit (n-1)
Start Address + Flash size -1 Pae (wm-L)
286 SAM3S8 / SAM3SD8 [DATASHEET]
Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14 /I t m eL

Figure 18-2. Embedded Flash Organization (only for SAM3SD8)

Start Address

Start Address + memory plane size -1

Start Address + memory plane size

Start Address + 2*memory plane size -1

Atmel

Memory Plane 0

Page 0

Lock Region 0 <— LockBit0

Page (m-1)

Lock Region 1 <— LockBit1

Lock Region (n-1) <——— Lock Bit (n-1)

Page (n*m-1)

Memory Plane 1

Page (n*m)

Lock Region n <— Lock Bitn

Page (n*(m+1) - 1)

Lock Region (2*n-1) «—— Lock Bit (2*n - 1)

Page (**m-1) |...N....iiiiiinnnn

SAM3S8 / SAM3SD8 [DATASHEET] 287

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

18.4.2 Read Operations

An optimized controller manages embedded Flash reads, thus increasing performance when the processor is
running in Thumb2 mode by means of the 128- or 64- bit wide memory interface.

The Flash memory is accessible through 8-, 16- and 32-bit reads.

As the Flash block size is smaller than the address space reserved for the internal memory area, the embedded
Flash wraps around the address space and appears to be repeated within it.

The read operations can be performed with or without wait states. Wait states must be programmed in the field
FWS (Flash Read Wait State) in the Flash Mode Register (EEFC_FMR). Defining FWS to be 0 enables the single-
cycle access of the embedded Flash. Refer to the Electrical Characteristics for more details.

18.4.2.1 128-bit or 64-bit Access Mode

By default the read accesses of the Flash are performed through a 128-bit wide memory interface. It enables
better system performance especially when 2 or 3 wait state needed.

For systems requiring only 1 wait state, or to privilege current consumption rather than performance, the user can
select a 64-bit wide memory access via the FAM bit in the Flash Mode Register (EEFC_FMR)

Please refer to the electrical characteristics section of the product datasheet for more details.

18.4.2.2 Code Read Optimization

A system of 2 x 128-bit or 2 x 64-bit buffers is added in order to optimize sequential Code Fetch.
Note: Immediate consecutive code read accesses are not mandatory to benefit from this optimization.

The sequential code read optimization is enabled by default. If the bit SCODIS in Flash Mode Register
(EEFC_FMR) is set to 1, these buffers are disabled and the sequential code read is not optimized anymore.

Figure 18-3. Code Read Optimization for FWS =0

Master Clock J | | | | | | | | | | | | | | | I_
v A N N N N MO M

@Byte 0 @Byte 4 @Byte 8 @Byte 12 @Byte16 @Byte20 @Byte 24 @Byte 28 @Byte 32

Flash Access X Bytes 0-15 X Bytes 16-31 X X X Bytes 32-47 X X X

Buffer 0 (128bits) X XXX X Bytes 0-15 X Bytes 32-47
Buffer 1 (128bits) X XXX X Bytes 16-31
Data To ARM XXX X Bytes 03 X Bytes 4-7 X Bytes 8-11 X Bytes 12-15 X Bytes 16-19 XBytes 20-23 X Bytes 24-27 X Bytes 28-31

Note: When FWS is equal to 0, all the accesses are performed in a single-cycle access.

288 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 18-4. Code Read Optimization for FWS =3

e 1 N N N e N A S A

@Byte 0 @4 @8 @12 @16 @20 @24 @28 @32 @36 @40 @44 @48 @52
Flash Access X Bytes 0-15 X Bytes 16-31 X Bytes 32-47 X Bytes 48-63
Buffer 0 (128bits) XXX X Bytes 0-15 X Bytes 32-47
Buffer 1 (128bits) XXX X Bytes 16-31

Data To ARM X XXX 4-7 X 8-11 X12-15 X16-19X20-23X 24-27X 28-31X32-35X 36-39X 40-43X 44-47X48-51

Note: When FWS is included between 1 and 3, in case of sequential reads, the first access takes (FWS+1) cycles, the other ones only
1 cycle.

18.4.2.3 Data Read Optimization

The organization of the Flash in 128 bits (or 64 bits) is associated with two 128-bit (or 64-bit) prefetch buffers and
one 128-bit (or 64-bit) data read buffer, thus providing maximum system performance. This buffer is added in order
to store the requested data plus all the data contained in the 128-bit (64-bit) aligned data. This speeds up
sequential data reads if, for example, FWS is equal to 1 (see Figure 18-5). The data read optimization is enabled
by default. If the bit SCODIS in Flash Mode Register (EEFC_FMR) is set to 1, this buffer is disabled and the data
read is not optimized anymore.

Note: No consecutive data read accesses are mandatory to benefit from this optimization.

Figure 18-5. Data Read Optimization for FWS =1

wserco ||| L L L L L L L L L
(= N N S N SR N S S S

@Byte 0 @ 4 @8 @12 @16 @20 @24 @28 @32 @ 36
Flash Access xxx X Bytes0-15 X X Bytes 1631 X X Bytes 32-47
Buffer (128bits) X XXX X Bytes 0-15 X Bytes 16-31

Data To ARM X XXX XovesosX 47 X 811 X 1215 X Xi6-19X 20-23 X 24-27 X 2831 X X32:35

SAM3S8 /| SAM3SDS8 [DATASHEET 289
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

18.4.3 Flash Commands

The Enhanced Embedded Flash Controller (EEFC) offers a set of commands such as programming the memory
Flash, locking and unlocking lock regions, consecutive programming and locking and full Flash erasing, etc.

Commands and read operations can be performed in parallel only on different memory planes. Code can be
fetched from one memory plane while a write or an erase operation is performed on another (only for SAM3SD8).

Table 18-2. Set of Commands

Command Value Mnemonic
Get Flash Descriptor 0x00 GETD
Write page 0x01 WP
Write page and lock 0x02 WPL
Erase page and write page 0x03 EWP
Erase page and write page then lock 0x04 EWPL
Erase all 0x05 EA
Erase plane 0x06 EPL
Set Lock Bit 0x08 SLB
Clear Lock Bit 0x09 CLB
Get Lock Bit O0x0A GLB
Set GPNVM Bit 0x0B SGPB
Clear GPNVM Bit 0x0C CGPB
Get GPNVM Bit 0x0D GGPB
Start Read Unique Identifier Ox0E STUI
Stop Read Unique Identifier OxOF SPUI

In order to perform one of these commands, the Flash Command Register (EEFC_FCR) has to be written with the
correct command using the FCMD field. As soon as the EEFC_FCR register is written, the FRDY flag and the
FVALUE field in the EEFC_FRR register are automatically cleared. Once the current command is achieved, then
the FRDY flag is automatically set. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR, the
corresponding interrupt line of the NVIC is activated. (Note that this is true for all commands except for the STUI
Command. The FRDY flag is not set when the STUI command is achieved.)

All the commands are protected by the same keyword, which has to be written in the 8 highest bits of the
EEFC_FCR register.

Writing EEFC_FCR with data that does not contain the correct key and/or with an invalid command has no effect
on the whole memory plane, but the FCMDE flag is set in the EEFC_FSR register. This flag is automatically
cleared by a read access to the EEFC_FSR register.

When the current command writes or erases a page in a locked region, the command has no effect on the whole
memory plane, but the FLOCKE flag is set in the EEFC_FSR register. This flag is automatically cleared by a read
access to the EEFC_FSR register.

290 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 18-6. Command State Chart

Read Status: MC_FSR <

No
Check if FRDY flag Set

Write FCMD and PAGENB in Flash Command Register

y

Read Status: MC_FSR

A

No
Check if FRDY flag Set

Check if FLOCKE flag Set Locking region violation

Check if FCMDE flag Set Bad keyword violation

lNo

Command Successfull

18.4.3.1 Getting Embedded Flash Descriptor

This command allows the system to learn about the Flash organization. The system can take full advantage of this
information. For instance, a device could be replaced by one with more Flash capacity, and so the software is able
to adapt itself to the new configuration.

To get the embedded Flash descriptor, the application writes the GETD command in the EEFC_FCR register. The
first word of the descriptor can be read by the software application in the EEFC_FRR register as soon as the
FRDY flag in the EEFC_FSR register rises. The next reads of the EEFC_FRR register provide the following word
of the descriptor. If extra read operations to the EEFC_FRR register are done after the last word of the descriptor
has been returned, then the EEFC_FRR register value is 0 until the next valid command.

SAM3S8 / SAM3SD8 [DATASHEET] 201

/I t ' I leL Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Table 18-3. Flash Descriptor Definition

Symbol Word Index Description

FL_ID 0 Flash Interface Description

FL_SIZE 1 Flash size in bytes

FL_PAGE_SIZE 2 Page size in bytes
Number of planes. A plane can be erased or written while read

FL_NB_PLANE 3 operations are performed on another plane (only for
SAM3SD8).

FL_PLANEJO0] 4 Number of bytes in the first plane.

FL_PLANE[FL_NB_PLANE-1] | 4+ FL_NB_PLANE -1 | Number of bytes in the last plane.

Number of lock bits. A bit is associated with a lock region. A

FL NB_LOCK 4 + FL_NB_PLANE lock bit is used to prevent write or erase operations in the lock
region.
FL_LOCK]0] 4 + FL_NB_PLANE + 1 | Number of bytes in the first lock region.

18.4.3.2 Write Commands
Several commands can be used to program the Flash.

Flash technology requires that an erase be done before programming. The full memory plane can be erased at the
same time, or several pages can be erased at the same time (refer to Figure 18-7, "Example of Partial Page
Programming”, and the paragraph below the figure.). Also, a page erase can be automatically done before a page
write using EWP or EWPL commands.

After programming, the page (the whole lock region) can be locked to prevent miscellaneous write or erase
sequences. The lock bit can be automatically set after page programming using WPL or EWPL commands.

Data to be written are stored in an internal latch buffer. The size of the latch buffer corresponds to the page size.
The latch buffer wraps around within the internal memory area address space and is repeated as many times as
the number of pages within this address space.
Note: Writing of 8-bit and 16-bit data is not allowed and may lead to unpredictable data corruption.
Write operations are performed in a number of wait states equal to the number of wait states for read operations.
Data are written to the latch buffer before the programming command is written to the Flash Command Register
EEFC_FCR. The sequence is as follows:

e Write the full page, at any page address, within the internal memory area address space.

e Programming starts as soon as the page number and the programming command are written to the Flash
Command Register. The FRDY bit in the Flash Programming Status Register (EEFC_FSR) is automatically
cleared.

e When programming is completed, the FRDY bit in the Flash Programming Status Register (EEFC_FSR)
rises. If an interrupt has been enabled by setting the bit FRDY in EEFC_FMR, the corresponding interrupt
line of the NVIC is activated.

Two errors can be detected in the EEFC_FSR register after a programming sequence:
e Command Error: a bad keyword has been written in the EEFC_FCR register.

e Lock Error: the page to be programmed belongs to a locked region. A command must be previously run to
unlock the corresponding region.

292 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

By using the WP command, a page can be programmed in several steps if it has been erased before (see Figure
18-7 below).

Figure 18-7. Example of Partial Page Programming

32-hit wide 32-hit wide 32-hit wide
L A . L A - g A .
) » - ») »
FF FF FF FF FF FF FF FF FF FF FF FF
X words FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF CA FE CA FE CA FE CA FE
X words FE FF FF FF CA FE CA FE CA FE CA FE
FF FF FF FF CA FE CA FE | _CA FE CA FE _ |
FF FF FF FF FF FF FF FF DE CA DE CA
XwordsI FF FF FF FF FF FF FF FF DE CA DE CA
FF FF FF FF FF FF FF FF | _DE CA_DE CA _ |
FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF
XwordsI FF FF FF FF FF FF FF FF FF_FF FF FF
Step 1. Step 2. Step 3.
Erase All Flash Programming of the second part of PageY Programming of the third part of Page Y

So Page Y erased

The Partial Programming mode works only with 128-bit (or higher) boundaries. It cannot be used with boundaries
lower than 128 bits (8, 16 or 32-bit for example).

18.4.3.3 Erase Commands
Erase commands are allowed only on unlocked regions. Depending on the Flash memory, several commands can
be used to erase the Flash:
e Erase all memory (EA): all memory is erased. The processor must not fetch code from the Flash memory.

e Erase a memory plane (EPL): all pages in the memory plane are erased in parallel. The processor must not
fetch code from the erased Flash memory plane (only for SAM3SD8).

The erase sequence is:

e FErase starts as soon as one of the erase commands and the FARG field are written in the Flash Command
Register.

e When the programming completes, the FRDY bit in the Flash Programming Status Register (EEFC_FSR)
rises. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR, the interrupt line of the NVIC
is activated.

Two errors can be detected in the EEFC_FSR register after a programming sequence:

e Command Error: a bad keyword has been written in the EEFC_FCR register.

e Lock Error: at least one page to be erased belongs to a locked region. The erase command has been
refused, no page has been erased. A command must be run previously to unlock the corresponding region.

18.4.3.4 Lock Bit Protection
Lock bits are associated with several pages in the embedded Flash memory plane. This defines lock regions in the
embedded Flash memory plane. They prevent writing/erasing protected pages.
The lock sequence is:

e The Set Lock command (SLB) and a page number to be protected are written in the Flash Command
Register.

SAM3S8 /| SAM3SDS8 [DATASHEET 293
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

e When the locking completes, the FRDY bit in the Flash Programming Status Register (EEFC_FSR) rises. If
an interrupt has been enabled by setting the FRDY bit in EEFC_FMR, the interrupt line of the NVIC is
activated.

e If the lock bit number is greater than the total number of lock bits, then the command has no effect. The
result of the SLB command can be checked running a GLB (Get Lock Bit) command.

One error can be detected in the EEFC_FSR register after a programming sequence:
e Command Error: a bad keyword has been written in the EEFC_FCR register.

It is possible to clear lock bits previously set. Then the locked region can be erased or programmed. The unlock

sequence is:
e The Clear Lock command (CLB) and a page number to be unprotected are written in the Flash Command
Register.

e When the unlock completes, the FRDY bit in the Flash Programming Status Register (EEFC_FSR) rises. If
an interrupt has been enabled by setting the FRDY bit in EEFC_FMR, the interrupt line of the NVIC is
activated.

e If the lock bit number is greater than the total number of lock bits, then the command has no effect.

One error can be detected in the EEFC_FSR register after a programming sequence:

e Command Error: a bad keyword has been written in the EEFC_FCR register.
The status of lock bits can be returned by the Enhanced Embedded Flash Controller (EEFC). The Get Lock Bit
status sequence is:

e The Get Lock Bit command (GLB) is written in the Flash Command Register, FARG field is meaningless.

e Lock hits can be read by the software application in the EEFC_FRR register. The first word read
corresponds to the 32 first lock bits, next reads providing the next 32 lock bits as long as it is meaningful.
Extra reads to the EEFC_FRR register return 0.

For example, if the third bit of the first word read in the EEFC_FRR is set, then the third lock region is locked.

One error can be detected in the EEFC_FSR register after a programming sequence:
e Command Error: a bad keyword has been written in the EEFC_FCR register.
Note: Access to the Flash in read is permitted when a set, clear or get lock bit command is performed.

18.4.3.5 GPNVM Bit

GPNVM bits do not interfere with the embedded Flash memory plane. Refer to the product definition section for
information on the GPNVM Bit Action.
The set GPNVM bit sequence is:

e Start the Set GPNVM Bit command (SGPB) by writing the Flash Command Register with the SGPB
command and the number of the GPNVM bit to be set.

e When the GPVNM bit is set, the bit FRDY in the Flash Programming Status Register (EEFC_FSR) rises. If
an interrupt was enabled by setting the FRDY bit in EEFC_FMR, the interrupt line of the NVIC is activated.

e If the GPNVM bit number is greater than the total number of GPNVM bits, then the command has no effect.
The result of the SGPB command can be checked by running a GGPB (Get GPNVM Bit) command.
One error can be detected in the EEFC_FSR register after a programming sequence:
e Command Error: a bad keyword has been written in the EEFC_FCR register.
It is possible to clear GPNVM bits previously set. The clear GPNVM bit sequence is:

e Start the Clear GPNVM Bit command (CGPB) by writing the Flash Command Register with CGPB and the
number of the GPNVM bit to be cleared.

e When the clear completes, the FRDY bit in the Flash Programming Status Register (EEFC_FSR) rises. If an
interrupt has been enabled by setting the FRDY bit in EEFC_FMR, the interrupt line of the NVIC is activated.

e |f the GPNVM bit number is greater than the total number of GPNVM bits, then the command has no effect.

294 SAM3S8 / SAM3SD8 [DATASHEET)] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

One error can be detected in the EEFC_FSR register after a programming sequence:
e Command Error: a bad keyword has been written in the EEFC_FCR register.

The status of GPNVM bits can be returned by the Enhanced Embedded Flash Controller (EEFC). The sequence
is:

e Start the Get GPNVM bit command by writing the Flash Command Register with GGPB. The FARG field is
meaningless.

e GPNVM bits can be read by the software application in the EEFC_FRR register. The first word read
corresponds to the 32 first GPNVM bits, following reads provide the next 32 GPNVM bits as long as it is
meaningful. Extra reads to the EEFC_FRR register return 0.

For example, if the third bit of the first word read in the EEFC_FRR is set, then the third GPNVM bit is active.
One error can be detected in the EEFC_FSR register after a programming sequence:
e Command Error: a bad keyword has been written in the EEFC_FCR register.
Note: Access to the Flash in read is permitted when a set, clear or get GPNVM bit command is performed.
18.4.3.6 Security Bit Protection
When the security is enabled, access to the Flash, either through the JTAG/SWD interface or through the Fast
Flash Programming Interface, is forbidden. This ensures the confidentiality of the code programmed in the Flash.
The security bit is GPNVMO.

Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash erase is
performed. When the security bit is deactivated, all accesses to the Flash are permitted.

18.4.3.7 Unique Identifier

Each part is programmed with a 128-bit Unique Identifier. It can be used to generate keys for example. For the
SAMB3SD8, the unique ID is accessible on both memory planes.
To read the Unique Identifier the sequence is:

e Send the Start Read unique Identifier command (STUI) by writing the Flash Command Register with the
STUI command.

e When the Unique Identifier is ready to be read, the FRDY bit in the Flash Programming Status Register
(EEFC_FSR) falls.

e The Unique Identifier is located in the first 128 bits of the Flash memory mapping, thus, at the address
0x40000-0x4000F.

e To stop the Unique Identifier mode, the user needs to send the Stop Read unique Identifier command (SPUI)
by writing the Flash Command Register with the SPUI command.

e When the Stop read Unique Identifier command (SPUI) has been performed, the FRDY bit in the Flash
Programming Status Register (EEFC_FSR) rises. If an interrupt was enabled by setting the FRDY bit in
EEFC_FMR, the interrupt line of the NVIC is activated.

Note that during the sequence, the software can not run out of Flash (or the second plane in case of dual plane).

SAM3S8 /| SAM3SDS8 [DATASHEET 295
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

18.5 Enhanced Embedded Flash Controller (EEFC) User Interface

The User Interface of the Enhanced Embedded Flash Controller (EEFC) is integrated within the System Controller with
base address 0x400E0800.

Table 18-4. Register Mapping

Offset Register Name Access Reset State
0x00 EEFC Flash Mode Register EEFC_FMR Read-write 0x0

0x04 EEFC Flash Command Register EEFC_FCR Write-only -

0x08 EEFC Flash Status Register EEFC_FSR Read-only 0x00000001
0x0C EEFC Flash Result Register EEFC_FRR Read-only 0x0

0x10 Reserved - - -

B At S s i 01 Atmel

18.5.1 EEFC Flash Mode Register

Name: EEFC_FMR

Address: 0x400E0A00

Access: Read-write

Offset: 0x00
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I FAM_ |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - | _scop |
15 14 13 12 11 10 9 8

I - I - I - I - I Fws |
7 6 5 4 3 2 1 0

] R I R - - PRV

FRDY: Ready Interrupt Enable
0: Flash Ready does not generate an interrupt.
1: Flash Ready (to accept a new command) generates an interrupt.

FWS: Flash Wait State
This field defines the number of wait states for read and write operations:

Number of cycles for Read/Write operations = FWS+1

» SCOD: Sequential Code Optimization Disable

0: The sequential code optimization is enabled.

1: The sequential code optimization is disabled.

No Flash read should be done during change of this register.

* FAM: Flash Access Mode

0: 128-hit access in read Mode only, to enhance access speed.

1: 64-bit access in read Mode only, to enhance power consumption.
No Flash read should be done during change of this register.

SAM3S8 /| SAM3SDS8 [DATASHEET 297
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

18.5.2 EEFC Flash Command Register

Name: EEFC_FCR

Address: 0x400EQA04

Access: Write-only

Offset: 0x04
31 30 29 28 27 26 25 24

| FKEY |
23 22 21 20 19 18 17 16

| FARG |
15 14 13 12 11 10 9 8

| FARG |
7 6 5 4 3 2 1 0

| FCMD |

 FCMD: Flash Command
This field defines the Flash commands. Refer to “Flash Commands” on page 290.

* FARG: Flash Command Argument

Erase all command Field is meaningless.

FARG must be set with a page number that is in the

Erase plane command
memory plane to be erased.

Programming command FARG defines the page number to be programmed.
Lock command FARG defines the page number to be locked.
GPNVM command FARG defines the GPNVM number.

» FKEY: Flash Writing Protection Key

This field should be written with the value Ox5A to enable the command defined by the bits of the register. If the field is writ-
ten with a different value, the write is not performed and no action is started.

298 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

18.5.3 EEFC Flash Status Register

Name: EEFC_FSR

Address: 0x400E0A08

Access: Read-only

Offset: 0x08
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - [- [- | - | - | FLocke [FcmDE | FRDY |

* FRDY: Flash Ready Status

0: The Enhanced Embedded Flash Controller (EEFC) is busy.

1: The Enhanced Embedded Flash Controller (EEFC) is ready to start a new command.

When it is set, this flags triggers an interrupt if the FRDY flag is set in the EEFC_FMR register.
This flag is automatically cleared when the Enhanced Embedded Flash Controller (EEFC) is busy.

* FCMDE: Flash Command Error Status

0: No invalid commands and no bad keywords were written in the Flash Mode Register EEFC_FMR.

1: Aninvalid command and/or a bad keyword was/were written in the Flash Mode Register EEFC_FMR.
This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written.

* FLOCKE: Flash Lock Error Status

0: No programming/erase of at least one locked region has happened since the last read of EEFC_FSR.
1: Programming/erase of at least one locked region has happened since the last read of EEFC_FSR.
This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written.

SAM3S8 /| SAM3SDS8 [DATASHEET 299
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

18.5.4 EEFC Flash Result Register

Name: EEFC_FRR

Address: 0x400EOQAQ0C

Access: Read-only

Offset: 0x0C
31 30 29 28 27 26 25 24

| FVALUE |
23 22 21 20 19 18 17 16

| FVALUE |
15 14 13 12 11 10 9 8

| FVALUE |
7 6 5 4 3 2 1 0

| FVALUE |

« FVALUE: Flash Result Value

The result of a Flash command is returned in this register. If the size of the result is greater than 32 bits, then the next
resulting value is accessible at the next register read.

300 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

19. Fast Flash Programming Interface (FFPI)

19.1 Description

The Fast Flash Programming Interface provides parallel high-volume programming using a standard gang
programmer. The parallel interface is fully handshaked and the device is considered to be a standard EEPROM.
Additionally, the parallel protocol offers an optimized access to all the embedded Flash functionalities.

Although the Fast Flash Programming Mode is a dedicated mode for high volume programming, this mode is not
designed for in-situ programming.

19.2 Embedded Characteristics

e Programming Mode for High-volume Flash Programming Using Gang Programmer
— Offers Read and Write Access to the Flash Memory Plane
— Enables Control of Lock Bits and General-purpose NVM Bits
— Enables Security Bit Activation
— Disabled Once Security Bit is Set

e Offers Two Interfaces
— Parallel Fast Flash Programming Interface
« Provides an 16-bit Parallel Interface to Program the Embedded Flash
« Full Handshake Protocol
— Serial Fast Flash Programming Interface

« Provides JTAG Interface to Program the Embedded Flash
¢ Access to All Embedded Flash Standard Commands

SAM3S8 / SAM3SD8 [DATASHEET] 301

/I t ' I leL Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

19.3 Parallel Fast Flash Programming

19.3.1 Device Configuration

In Fast Flash Programming Mode, the device is in a specific test mode. Only a certain set of pins is significant. The
rest of the PIOs are used as inputs with a pull-up. The crystal oscillator is in bypass mode. Other pins must be left
unconnected.

Figure 19-1. Parallel Programming Interface

VvDDIO —>{ TST

VDDIO —>{ PGMENO
VDDIO ——> PGMEN1

GND —— pcMEN2 «—— VDDCORE
NCMD —> pGMNCMD A

RDY <«—]PGMRDY VDDPLL

NOE — | PGMNOE «—— VDDFLASH
NVALID <«—{PGMNVALID GNP

MODE[3:0] ——>| PGMM[3:0]
DATA[15:0] <—> PGMD[15:0]

0-50MHz ——{ XIN

Table 19-1. Signal Description List

Active

Signal Name Function Type Level Comments

Power
VDDIO 1/0 Lines Power Supply Power
VDDCORE Core Power Supply Power
VDDPLL PLL Power Supply Power
GND Ground Ground

Clocks
XIN Main Clock Input. Input ‘ ‘ 32 KHz to 50 MHz

Test

TST Test Mode Select Input High Must be connected to VDDIO
PGMENO Test Mode Select Input High Must be connected to VDDIO
PGMEN1 Test Mode Select Input High Must be connected to VDDIO
PGMEN2 Test Mode Select Input Low Must be connected to GND

302 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Table 19-1. Signal Description List (Continued)

Active
Signal Name Function Type Level Comments
PIO
PGMNCMD Valid command available Input Low Pulled-up input at reset

0: Device is busy))
PGMRDY o Output High Pulled-up input at reset
1: Device is ready for a new command

PGMNOE Output Enable (active high) Input Low Pulled-up input at reset
0: DATA[15:0] is in input mode .

PGMNVALID o Output Low Pulled-up input at reset
1: DATA[15:0] is in output mode

PGMM[3:0] Specifies DATA type (See Table 19-2) Input Pulled-up input at reset

PGMDI[15:0] Bi-directional data bus Input/Output Pulled-up input at reset

19.3.2 Signal Names
Depending on the MODE settings, DATA is latched in different internal registers.

Table 19-2. Mode Coding

MODE[3:0] Symbol Data

0000 CMDE Command Register
0001 ADDRO Address Register LSBs
0010 ADDR1

0011 ADDR2

0100 ADDR3 Address Register MSBs
0101 DATA Data Register

Default IDLE No register

When MODE is equal to CMDE, then a new command (strobed on DATA[15:0] signals) is stored in the command
register.

Table 19-3. Command Bit Coding

DATA[15:0] Symbol Command Executed

0x0011 READ Read Flash

0x0012 WP Write Page Flash

0x0022 WPL Write Page and Lock Flash
0x0032 EWP Erase Page and Write Page
0x0042 EWPL Erase Page and Write Page then Lock
0x0013 EA Erase All

0x0014 SLB Set Lock Bit

0x0024 CLB Clear Lock Bit

0x0015 GLB Get Lock Bit

0x0034 SGPB Set General Purpose NVM bit
0x0044 CGPB Clear General Purpose NVM bit

SAM3S8 /| SAM3SDS8 [DATASHEET 303
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Table 19-3. Command Bit Coding (Continued)

DATA[15:0] Symbol Command Executed

0x0025 GGPB Get General Purpose NVM bit
0x0054 SSE Set Security Bit

0x0035 GSE Get Security Bit

0x001F WRAM Write Memory

0x001E GVE Get Version

19.3.3 Entering Programming Mode

The following algorithm puts the device in Parallel Programming Mode:
e Apply GND, VDDIO, VDDCORE and VDDPLL.
e Apply XIN clock within Tpor reser if @n external clock is available.
e Wait for Tpor rEsET
e Startaread or write handshaking.

Note: After reset, the device is clocked by the internal RC oscillator. Before clearing RDY signal, if an external clock (> 32
kHz) is connected to XIN, then the device switches on the external clock. Else, XIN input is not considered. A higher
frequency on XIN speeds up the programmer handshake.

19.3.4 Programmer Handshaking

An handshake is defined for read and write operations. When the device is ready to start a new operation (RDY
signal set), the programmer starts the handshake by clearing the NCMD signal. The handshaking is achieved once
NCMD signal is high and RDY is high.

304 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

19.3.4.1 Write Handshaking
For details on the write handshaking sequence, refer to Figure 19-2 and Table 19-4.

Figure 19-2. Parallel Programming Timing, Write Sequence

NCMD ﬂ@ /@
RDY ﬁ@) ©ﬁ

NOE

NVALID

®

Table 19-4. Write Handshake

Step Programmer Action Device Action Data I/0
1 Sets MODE and DATA signals Waits for NCMD low Input
2 Clears NCMD signal Latches MODE and DATA Input
3 Waits for RDY low Clears RDY signal Input
4 Releases MODE and DATA signals | Executes command and polls NCMD high | Input
5 Sets NCMD signal Executes command and polls NCMD high | Input
6 Waits for RDY high Sets RDY Input
/ItmeL SAM3S8 / SAM3SD8 [DATASHEET] 305
Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

19.3.4.2 Read Handshaking
For details on the read handshaking sequence, refer to Figure 19-3 and Table 19-5.

Figure 19-3. Parallel Programming Timing, Read Sequence

NCMD ﬂ@ @/_
RDY ﬁ@ @/_
N o

NVALID @wﬁ
® ® ® ©

DATA[15:0] >< Adress IN >< 4 >< Data OUT M
®

Table 19-5. Read Handshake

Step Programmer Action Device Action DATA I/O
1 Sets MODE and DATA signals Waits for NCMD low Input

2 Clears NCMD signal Latch MODE and DATA Input

3 Waits for RDY low Clears RDY signal Input

4 Sets DATA signal in tristate Waits for NOE Low Input

5 Clears NOE signal Tristate
6 Waits for NVALID low SS:SU?SA;AE %;Z}i”cg‘:fe’ftsr@de and Output
7 Clears NVALID signal Output
8 Reads value on DATA Bus Waits for NOE high Output
9 Sets NOE signal Output
10 Waits for NVALID high Sets DATA bus in input mode X

11 Sets DATA in output mode Sets NVALID signal Input
12 Sets NCMD signal Waits for NCMD high Input
13 Waits for RDY high Sets RDY signal Input

19.3.5 Device Operations

Several commands on the Flash memory are available. These commands are summarized in Table 19-3 on page
303. Each command is driven by the programmer through the parallel interface running several read/write
handshaking sequences.

When a new command is executed, the previous one is automatically achieved. Thus, chaining a read command
after a write automatically flushes the load buffer in the Flash.

306 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

19.3.5.1 Flash Read Command

This command is used to read the contents of the Flash memory. The read command can start at any valid
address in the memory plane and is optimized for consecutive reads. Read handshaking can be chained; an
internal address buffer is automatically increased.

Table 19-6. Read Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE READ

2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDR1 Memory Address

4 Read handshaking DATA *Memory Address++
5 Read handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB
n+l Write handshaking ADDR1 Memory Address

n+2 Read handshaking DATA *Memory Address++
n+3 Read handshaking DATA *Memory Address++

19.3.5.2 Flash Write Command
This command is used to write the Flash contents.

The Flash memory plane is organized into several pages. Data to be written are stored in a load buffer that
corresponds to a Flash memory page. The load buffer is automatically flushed to the Flash:

e Dbefore access to any page other than the current one

e when a new command is validated (MODE = CMDE)

The Write Page command (WP) is optimized for consecutive writes. Write handshaking can be chained; an
internal address buffer is automatically increased.

Table 19-7. Write Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE WP or WPL or EWP or EWPL
2 Write handshaking ADDRO Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Write handshaking DATA *Memory Address++

5 Write handshaking DATA *Memory Address++

n Write handshaking ADDRO Memory Address LSB

n+l Write handshaking ADDR1 Memory Address

n+2 Write handshaking DATA *Memory Address++

n+3 Write handshaking DATA *Memory Address++

SAM3S8 /| SAM3SDS8 [DATASHEET 307
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

The Flash command Write Page and Lock (WPL) is equivalent to the Flash Write Command. However, the lock
bit is automatically set at the end of the Flash write operation. As a lock region is composed of several pages, the
programmer writes to the first pages of the lock region using Flash write commands and writes to the last page of
the lock region using a Flash write and lock command.

The Flash command Erase Page and Write (EWP) is equivalent to the Flash Write Command. However, before
programming the load buffer, the page is erased.

The Flash command Erase Page and Write the Lock (EWPL) combines EWP and WPL commands.

19.3.5.3 Flash Full Erase Command
This command is used to erase the Flash memory planes.
All lock regions must be unlocked before the Full Erase command by using the CLB command. Otherwise, the
erase command is aborted and no page is erased.

Table 19-8. Full Erase Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE EA
2 Write handshaking DATA 0

308 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

19.3.5.4 Flash Lock Commands

Lock bits can be set using WPL or EWPL commands. They can also be set by using the Set Lock command (SLB).
With this command, several lock bits can be activated. A Bit Mask is provided as argument to the command. When
bit O of the bit mask is set, then the first lock bit is activated.

Likewise, the Clear Lock command (CLB) is used to clear lock bits.

Table 19-9. Set and Clear Lock Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE SLB or CLB
2 Write handshaking DATA Bit Mask

Lock bits can be read using Get Lock Bit command (GLB). The n'" lock bit is active when the bit n of the bit mask
is set..

Table 19-10. Get Lock Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE GLB
Lock Bit Mask Status
2 Read handshaking DATA 0 = Lock bit is cleared
1 = Lock bit is set

19.3.5.5Flash General-purpose NVM Commands

General-purpose NVM bits (GP NVM bits) can be set using the Set GPNVM command (SGPB). This command
also activates GP NVM bits. A bit mask is provided as argument to the command. When bit 0 of the bit mask is set,
then the first GP NVM bit is activated.

In the same way, the Clear GPNVM command (CGPB) is used to clear general-purpose NVM bits. The general-
purpose NVM bit is deactivated when the corresponding bit in the pattern value is set to 1.

Table 19-11. Set/Clear GP NVM Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE SGPB or CGPB
2 Write handshaking DATA GP NVM bit pattern value

General-purpose NVM bits can be read using the Get GPNVM Bit command (GGPB). The n'" GP NVM bit is
active when bit n of the bit mask is set..

Table 19-12. Get GP NVM Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE GGPB
GP NVM Bit Mask Status
2 Read handshaking DATA 0 = GP NVM bhit is cleared
1 =GP NVM bit is set

SAM3S8 /| SAM3SDS8 [DATASHEET 309
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

19.3.5.6 Flash Security Bit Command

A security bit can be set using the Set Security Bit command (SSE). Once the security bit is active, the Fast Flash
programming is disabled. No other command can be run. An event on the Erase pin can erase the security bit
once the contents of the Flash have been erased.

Table 19-13. Set Security Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE SSE
2 Write handshaking DATA 0

Once the security bit is set, it is not possible to access FFPI. The only way to erase the security bit is to erase the
Flash.

In order to erase the Flash, the user must perform the following:

Power-off the chip

Power-on the chip with TST =0

Assert Erase during a period of more than 220 ms

e Power-off the chip

Then it is possible to return to FFPI mode and check that Flash is erased.

19.3.5.7 Memory Write Command
This command is used to perform a write access to any memory location.
The Memory Write command (WRAM) is optimized for consecutive writes. Write handshaking can be chained; an
internal address buffer is automatically increased.

Table 19-14. Write Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE WRAM

2 Write handshaking ADDRO Memory Address LSB
3 Write handshaking ADDR1 Memory Address

4 Write handshaking DATA *Memory Address++
5 Write handshaking DATA *Memory Address++
n Write handshaking ADDRO Memory Address LSB
n+l Write handshaking ADDR1 Memory Address

n+2 Write handshaking DATA *Memory Address++
n+3 Write handshaking DATA *Memory Address++

19.3.5.8 Get Version Command
The Get Version (GVE) command retrieves the version of the FFPI interface.

Table 19-15. Get Version Command

Step Handshake Sequence MODE[3:0] DATA[15:0]
1 Write handshaking CMDE GVE
2 Write handshaking DATA Version

310 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 19-4. Serial Programming
VDDIO —>| TST
VDDIO —>| PGMENO
VDDIO —>| PGMEN1
GND ——{ PGMEN2 «— VDDCORE
0! . VDDIO
TDO <«— «—— VDDPLL
™S —> <« CGND
TCK —>
0-50MHz —>| XIN
Table 19-16. Signal Description List
Active
Signal Name Function Type Level Comments
Power
VDDIO I/O Lines Power Supply Power
VDDCORE Core Power Supply Power
VDDPLL PLL Power Supply Power
GND Ground Ground
Clocks
Main Clock Input.
XIN This input can bg tied to GND. In t.his Input 32 kHz to 50 MHz
case, the device is clocked by the internal
RC oscillator.
Test
TST Test Mode Select Input High Must be connected to VDDIO
PGMENO Test Mode Select Input High Must be connected to VDDIO
PGMEN1 Test Mode Select Input High Must be connected to VDDIO
PGMEN2 Test Mode Select Input Low Must be connected to GND
JTAG
TCK JTAG TCK Input - Pulled-up input at reset
TDI JTAG Test Data In Input - Pulled-up input at reset
TDO JTAG Test Data Out Output -
T™MS JTAG Test Mode Select Input - Pulled-up input at reset

Atmel

SAM3S8 / SAM3SD8 [DATASHEET] 311

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

ToI—>{riw [4 Address 0 31 Data 0 [—>TDO
5 32
Address —>| Debug Comms Control Register |
Decoder
—>| Debug Comms Data Register |

312 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

20. Cyclic Redundancy Check Calculation Unit (CRCCU)

20.1 Description

The Cyclic Redundancy Check Calculation Unit (CRCCU) has its own DMA which functions as a Master with the
Bus Matrix.

20.2 Embedded Characteristics
e 32-bit cyclic redundancy check automatic calculation
e CRC calculation between two addresses of the memory

20.3 CRCCU Block Diagram

Figure 20-1. Block Diagram

Atmel Host
APB Bus > Interface

Context FSM

AHB Interface

HTRANS
T HSIZE
l AHB-Layer
<
External ash
Bus Interface Flas AHB SRAM

SAM3S8 /| SAM3SDS8 [DATASHEET 313
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.4 Product Dependencies

20.4.1 Power Management

The CRCCU is clocked through the Power Management Controller (PMC), the programmer must first configure the
CRCCU in the PMC to enable the CRCCU clock.

20.4.2 Interrupt Source

The CRCCU has an interrupt line connected to the Interrupt Controller. Handling the CRCCU interrupt requires
programming the Interrupt Controller before configuring the CRCCU.

314 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.5 CRCCU Functional Description

20.5.1 CRC Calculation Unit description

The CRCCU integrates a dedicated Cyclic Redundancy Check (CRC) engine. When configured and activated, this
CRC engine performs a checksum computation on a Memory Area. CRC computation is performed from the LSB
to MSB bit. Three different polynomials are available CCITT802.3, CASTAGNOLI and CCITT16, see the bitfield
description, “PTYPE: Primitive Polynomial” on page 330, for details.

20.5.2 CRC Calculation Unit Operation

The CRCCU has a DMA controller that supports programmable CRC memory checks. When enabled, the DMA
channel reads a programmable amount of data and computes CRC on the fly.

The CRCCU is controlled by two registers, TR_ADDR and TR_CTRL which need to be mapped in the internal
SRAM. The addresses of these two registers are pointed at by the CRCCU_DSCR register.

Table 20-1. CRCCU Descriptor Memory Mapping
SRAM Memory

CRCCU_DSCR+0x0 > TR_ADDR
CRCCU_DSCR+0x4 -——-> TR_CTRL
CRCCU_DSCR+0x8 - Reserved
CRCCU_DSCR+0xC - Reserved
CRCCU_DSCR+0x20 —> TR_CRC

TR_ADDR defines the start address of memory area targeted for CRC calculation.

TR_CTRL defines the buffer transfer size, the transfer width (byte, halfword, word) and the transfer-completed
interrupt enable.

To start the CRCCU, the user needs to set the CRC enable bit (ENABLE) in the CRCCU Mode Register
(CRCCU_MR), then configure it and finally set the DMA enable bit (DMAEN) in the CRCCU DMA Enable Register
(CRCCU_DMA_EN).

When the CRCCU is enabled, the CRCCU reads the predefined amount of data (defined in TR_CTRL) located at
TR_ADDR start address and computes the checksum.

The CRCCU_SR register contains the temporary CRC value.

The BTSIZE field located in the TR_CTRL register (located in memory), is automatically decremented if its value is
different from zero. Once the value of the BTSIZE field is equal to zero, the CRCCU is disabled by hardware. In
this case, the relevant CRCCU DMA Status Register bit, DMASR, is automatically cleared.

If the COMPARE field of the CRCCU_MR register is set to true, the TR_CRC (Transfer Reference Register) is
compared with the last CRC computed. If a mismatch occurs, an error flag is set and an interrupt is raised (if
unmasked).

The CRCCU accesses the memory by single access (TRWIDTH size) in order not to limit the bandwidth usage of
the system, but the DIVIDER field of the CRCCU Mode Register can be used to lower it by dividing the frequency
of the single accesses.

In order to compute the CRC for a memory size larger than 256 Kbytes or for non-contiguous memory area, it is
possible to re-enable the CRCCU on the new memory area and the CRC will be updated accordingly. Use the
RESET field of the CRCCU_CR register to reset the CRCCU Status Register to its default value (OXFFFF_FFFF).

SAM3S8 /| SAM3SDS8 [DATASHEET 315
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.6 Transfer Control Registers Memory Mapping

Table 20-2. Transfer Control Register Memory Mapping

Offset Register Name Access
CRCCU_DSCR + 0x0 CRCCU Transfer Address Register TR_ADDR Read-write
CRCCU_DSCR + 0x4 CRCCU Transfer Control Register TR_CTRL Read-write
CRCCU_DSCR + 0xC - 0x10 Reserved

CRCCU_DSCR+0x20 CRCCU Transfer Reference Register TR_CRC Read-write

Note: These Registers are memory mapped

316 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.6.1 Transfer Address Register

Name: TR_ADDR

Access: Read-write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR |

 ADDR: Transfer Address

SAM3S8 /| SAM3SDS8 [DATASHEET 317
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.6.2 Transfer Control Register

Name: TR_CTRL

Access: Read-write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| - | - | - | - | IEN | - | TRWIDTH |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

| BTSIZE |

7 6 5 4 3 2 1 0

| BTSIZE |

» BTSIZE: Buffer Transfer Size

e TRWIDTH: Transfer Width Register

TRWIDTH Single Transfer Size
00 BYTE
01 HALFWORD
10 WORD

» |EN: Context Done Interrupt Enable
When set to zero, the transfer done status bit is set at the end of the transfer.

318 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.6.3 Transfer Reference Register

Name: TR_CRC

Access: Read-write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| REFCRC |
23 22 21 20 19 18 17 16

| REFCRC |
15 14 13 12 11 10 9 8

| REFCRC |
7 6 5 4 3 2 1 0

| REFCRC |

* REFCRC: Reference CRC
When Compare mode is enabled, the checksum is compared with that register.

SAM3S8 /| SAM3SDS8 [DATASHEET 319
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.7 Cyclic Redundancy Check Calculation Unit (CRCCU) User Interface

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Table 20-3. Register Mapping
Offset Register Name Access Reset

0x00000000 CRCCU Descriptor Base Register CRCCU_DSCR Read-write 0x00000000
0x00000004 Reserved

0x00000008 CRCCU DMA Enable Register CRCCU_DMA_EN Write-only 0x00000000
0x0000000C CRCCU DMA Disable Register CRCCU_DMA_DIs Write-only 0x00000000
0x00000010 CRCCU DMA Status Register CRCCU_DMA_SR Read-only 0x00000000
0x00000014 CRCCU DMA Interrupt Enable Register CRCCU_DMA_IER Write-only 0x00000000
0x00000018 gzgci;; DMA Interrupt Disable CRCCU_DMA_IDR Write-only 0x00000000
0x0000001C CRCCU DMA Interrupt Mask Register CRCCU_DMA_IMR Read-only 0x00000000
0x00000020 CRCCU DMA Interrupt Status Register CRCCU_DMA_ISR Read-only 0x00000000

0x0024-0x0030 | Reserved
0x00000034 CRCCU Control Register CRCCU_CR Write-only 0x00000000
0x00000038 CRCCU Mode Register CRCCU_MR Read-write 0x00000000
0x0000003C CRCCU Status Register CRCCU_SR Read-only OXFFFFFFFF
0x00000040 CRCCU Interrupt Enable Register CRCCU_IER Write-only 0x00000000
0x00000044 CRCCU Interrupt Disable Register CRCCU_IDR Write-only 0x00000000
0x00000048 CRCCU Interrupt Mask Register CRCCU_IMR Read-only 0x00000000
0x0000004C CRCCU Interrupt Status Register CRCCU_ISR Read-only 0x00000000
320 SAM3S8 / SAM3SD8 [DATASHEET]

Atmel

20.7.1 CRCCU Descriptor Base Address Register

Name: CRCCU_DSCR

Address: 0x40044000

Access: Read-write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| DSCR |
23 22 21 20 19 18 17 16

| DSCR |
15 14 13 12 11 10 9 8

| DSCR | - |
7 6 5 4 3 2 1 0

» DSCR: Descriptor Base Address

DSCR needs to be aligned with 512-byte boundaries.

SAM3S8 / SAM3SD8 [DATASHEET 321
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.7.2 CRCCU DMA Enable Register

Name: CRCCU_DMA_EN

Address: 0x40044008

Access: Write-only

Reset: 0x00000000
31 30 29 28 27 26 25 24

. - - - - r - r - ¢ - [- 1]
23 22 21 20 19 18 17 16

. - rr - ¢ - - r - rr - ¢ - [- /]
15 14 13 12 11 10 9 8

. - - - - r - r - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | DMAEN |

« DMAEN: DMA Enable Register
Write one to enable the CRCCU DMA channel.

322 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.7.3 CRCCU DMA Disable Register

Name: CRCCU_DMA DIS

Address: 0x4004400C

Access: Write-only

Reset: 0x00000000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | DMADIS |

-« DMADIS: DMA Disable Register
Write one to disable the DMA channel

SAM3S8 /| SAM3SDS8 [DATASHEET 323
Atmel [I

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.7.4 CRCCU DMA Status Register

Name: CRCCU_DMA SR

Address: 0x40044010

Access: Read-only

Reset: 0x00000000
31 30 29 28 27 26 25 24

. - - - - [- [- | S
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- | - -]
15 14 13 12 11 10 9 8

. - r - - - 1 - [- | - -]
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | DMASR |

« DMASR: DMA Status Register
When set to one, this bit indicates that DMA Channel is enabled.

324 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.7.5 CRCCU DMA Interrupt Enable Register

Name: CRCCU_DMA_IER

Address: 0x40044014

Access: Write-only

Reset: 0x00000000
31 30 29 28 27 26 25 24

. - - - - r - r - ¢ - [- 1]
23 22 21 20 19 18 17 16

. - rr - ¢ - - r - rr - ¢ - [- /]
15 14 13 12 11 10 9 8

. - - - - r - r - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | OMAER |

» DMAIER: Interrupt Enable register
Set bit to one to enable the interrupt.

SAM3S8 /| SAM3SDS8 [DATASHEET 325
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.7.6 CRCCU DMA Interrupt Disable Register

Name: CRCCU_DMA_IDR

Address: 0x40044018

Access: Write-only

Reset: 0x00000000
31 30 29 28 27 26 25 24

. - - - - r - r - ¢ - [- 1]
23 22 21 20 19 18 17 16

. - rr - ¢ - - r - rr - ¢ - [- /]
15 14 13 12 11 10 9 8

. - - - - r - r - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | DMADR |

* DMAIDR: Interrupt Disable register
Set to one to disable the interrupt.

326 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.7.7 CRCCU DMA Interrupt Mask Register

Name: CRCCU_DMA_IMR

Address: 0x4004401C

Access: Write-only

Reset: 0x00000000
31 30 29 28 27 26 25 24

. - - - - r - r - ¢ - [- 1]
23 22 21 20 19 18 17 16

. - rr - ¢ - - r - rr - ¢ - [- /]
15 14 13 12 11 10 9 8

. - - - - r - r - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | DMAMR |

* DMAIMR: Interrupt Mask Register
0: Buffer Transfer Completed interrupt is disabled.
1: Buffer Transfer Completed interrupt is enabled.

SAM3S8 /| SAM3SDS8 [DATASHEET 327
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.7.8 CRCCU DMA Interrupt Status Register

Name: CRCCU_DMA_ISR

Address: 0x40044020

Access: Read-only

Reset: 0x00000000
31 30 29 28 27 26 25 24

. - - - - r - r - ¢ - [- 1]
23 22 21 20 19 18 17 16

. - rr - ¢ - - r - rr - ¢ - [- /]
15 14 13 12 11 10 9 8

. - - - - r - r - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | OMAISR |

¢« DMAISR: Interrupt Status register
When DMAISR is set, DMA buffer transfer has terminated. This flag is reset after read.

328 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.7.9 CRCCU Control Register

Name: CRCCU_CR

Address: 0x40044034

Access: Write-only

Reset: 0x00000000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | RESET |

 RESET: CRC Computation Reset
When set to one, this bit resets the CRCCU_SR register to OxFFFF FFFF.

SAM3S8 /| SAM3SDS8 [DATASHEET 329
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.7.10 CRCCU Mode Register

Name: CRCCU_MR

Address: 0x40044038

Access: Read Write

Reset: 0x00000000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| DIVIDER | PTYPE | COMPARE | ENABLE |

 ENABLE: CRC Enable

« COMPARE: CRC Compare

If set to one, this bit indicates that the CRCCU DMA will compare the CRC computed on the data stream with the value
stored.

in the TR_CRC reference register. If a mismatch occurs, the ERRISR bit in the CRCCU_ISR register is set.

* PTYPE: Primitive Polynomial

Value Name Description

0 CCITT8023 Polynom 0x04C11DB7
1 CASTAGNOLI Polynom Ox1EDC6F41
2 CCITT16 Polynom 0x1021

* DIVIDER: Request Divider

CRCCU DMA performs successive transfers. It is possible to reduce the bandwidth drained by the CRCCU DMA by pro-
gramming the DIVIDER field. The transfer request frequency is divided by 2*(DIVIDER+1).

330 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.7.11 CRCCU Status Register

Name: CRCCU_SR

Address: 0x4004403C

Access: Read-only

Reset: 0x00000000
31 30 29 28 27 26 25 24

| CRC |
23 22 21 20 19 18 17 16

| CRC |
15 14 13 12 11 10 9 8

| CRC |
7 6 5 4 3 2 1 0

| CRC |

» CRC: Cyclic Redundancy Check Value
This register can not be read if the COMPARE field of the CRC_MR register is set to true.

SAM3S8 /| SAM3SDS8 [DATASHEET 331
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.7.12 CRCCU Interrupt Enable Register

Name: CRCCU_IER

Address: 0x40044040

Access: Write-only

Reset: 0x00000000
31 30 29 28 27 26 25 24

. - - - - r - r - ¢ - [- 1]
23 22 21 20 19 18 17 16

. - rr - ¢ - - r - rr - ¢ - [- /]
15 14 13 12 11 10 9 8

. - - - - r - r - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | ERRIER |

¢« ERRIER: CRC Error Interrupt Enable

332 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.7.13 CRCCU Interrupt Disable Register

Name: CRCCU_IDR

Address: 0x40044044

Access: Write-only

Reset: 0x00000000
31 30 29 28 27 26 25 24

. - - - - r - r - ¢ - [- 1]
23 22 21 20 19 18 17 16

. - rr - ¢ - - r - rr - ¢ - [- /]
15 14 13 12 11 10 9 8

. - - - - r - r - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | ERRDR |

» ERRIDR: CRC Error Interrupt Disable

SAM3S8 /| SAM3SDS8 [DATASHEET 333
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.7.14 CRCCU Interrupt Mask Register

Name: CRCCU_IMR

Address: 0x40044048

Access: Write-only

Reset: 0x00000000
31 30 29 28 27 26 25 24

. - - - - r - r - ¢ - [- 1]
23 22 21 20 19 18 17 16

. - rr - ¢ - - r - rr - ¢ - [- /]
15 14 13 12 11 10 9 8

. - - - - r - r - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | ERRIMR |

¢ ERRIMR: CRC Error Interrupt Mask

334 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

20.7.15 CRCCU Interrupt Status Register

Name: CRCCU_ISR

Address: 0x4004404C

Access: Read-only

Reset: 0x00000000
31 30 29 28 27 26 25 24

. - - - - r - r - ¢ - [- 1]
23 22 21 20 19 18 17 16

. - rr - ¢ - - r - rr - ¢ - [- /]
15 14 13 12 11 10 9 8

. - - - - r - r - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | ERRISR |

* ERRISR: CRC Error Interrupt Status

SAM3S8 /| SAM3SDS8 [DATASHEET 335
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

21. SAM3S8/SD8 Boot Program

21.1 Description

The SAM-BA Boot Program integrates an array of programs permitting download and/or upload into the different
memories of the product.

21.2 Hardware and Software Constraints

e SAM-BA Boot uses the first 2048 bytes of the SRAM for variables and stacks. The remaining available size
can be used for user’s code.

e USB Requirements:
— External Crystal or External Clock™ with frequency of:
11.289 MHz
12.000 MHz
16.000 MHz

18.432 MHz
e UARTO requirements: None
Note: 1. Must be 2500 ppm and 1.8V Square Wave Signal.

Table 21-1. Pins Driven during Boot Program Execution

Peripheral Pin PIO Line
UARTO URXDO PA9
UARTO UTXDO PA10

21.3 Flow Diagram

The Boot Program implements the algorithm in Figure 21-1.

Figure 21-1. Boot Program Algorithm Flow Diagram

No

Device
Setup

Character # received
from UARTO?

USB Enumeration
Successful ?

Yes

Run SAM-BA Monitor [Run SAM-BA Monitor|

The SAM-BA Boot program seeks to detect a source clock either from the embedded main oscillator with external
crystal (main oscillator enabled) or from a supported frequency signal applied to the XIN pin (main oscillator in
Bypass mode).

If a clock is found from the two possible sources above, the boot program checks to verify that the frequency is one
of the supported external frequencies. If the frequency is one of the supported external frequencies, USB
activation is allowed, else (no clock or frequency other than one of the supported external frequencies), the internal
12 MHz RC oscillator is used as main clock and USB clock is not allowed due to frequency drift of the 12 MHz RC
oscillator.

336 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

21.4 Device Initialization

Initialization follows the steps described below:
1. Stack setup

2. Setup the Embedded Flash Controller

3. External Clock detection (crystal or external clock on XIN)

4. If external crystal or clock with supported frequency, allow USB activation
5. Else, does not allow USB activation and use internal 12 MHz RC oscillator
6. Main oscillator frequency detection if no external clock detected

7. Switch Master Clock on Main Oscillator

8. C variable initialization

9. PLLA setup: PLLA is initialized to generate a 96 MHz clock

10. Switch Master Clock on PLLA/2

11. Initialization of UARTO (115200 bauds, 8, N, 1)

12. Initialization of the USB Device Port (in case USB activation allowed)

13. Wait for one of the following events

1. Check if USB device enumeration has occurred
2. Check if characters have been received in UARTO
14. Jump to SAM-BA Monitor (see Section 21.5 “SAM-BA Monitor”)

SAM3S8 /| SAM3SDS8 [DATASHEET 337
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

21.5 SAM-BA Monitor

Once the communication interface is identified, the monitor runs in an infinite loop waiting for different commands
as shown in Table 21-2.

Table 21-2. Commands Available through the SAM-BA Boot

Command Action Argument(s) Example

N set Normal mode No argument N#

T set Terminal mode No argument T#

(@] write a byte Address, Value# 0200001,CA#

o read a byte Address,# 0200001 ,#

H write a half word Address, Value# H200002,CAFE#
h read a half word Address # h200002,#

w write a word Address, Value# W200000,CAFEDECA#
w read a word Address,# w200000,#

S send a file Address,# S200000,#

R receive a file Address, NbOfBytes# R200000,1234#
G go Address# G200200#

\% display version No argument V#

Mode commands:
— Normal mode configures SAM-BA Monitor to send/receive data in binary format,
— Terminal mode configures SAM-BA Monitor to send/receive data in ascii format.
e Write commands: Write a byte (O), a halfword (H) or a word (W) to the target.
— Address: Address in hexadecimal.
— Value: Byte, halfword or word to write in hexadecimal.
— Output: >’
e Read commands: Read a byte (0), a halfword (h) or a word (w) from the target.
— Address: Address in hexadecimal
— Output: The byte, halfword or word read in hexadecimal following by *>’
e Send afile (S): Send a file to a specified address
— Address: Address in hexadecimal
— Output: >’

Note: There is a time-out on this command which is reached when the prompt ‘>’ appears before the end of the command
execution.

e Receive afile (R): Receive data into a file from a specified address
— Address: Address in hexadecimal
— NbOfBytes: Number of bytes in hexadecimal to receive
— Output: >’
e Go (G): Jump to a specified address and execute the code
— Address: Address to jump in hexadecimal
— Output: >’
e Get Version (V): Return the SAM-BA boot version
— Output: >’

338 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

21.5.1 UARTO Serial Port
Communication is performed through the UARTO initialized to 115200 Baud, 8, n, 1.

The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal performing this
protocol can be used to send the application file to the target. The size of the binary file to send depends on the
SRAM size embedded in the product. In all cases, the size of the binary file must be lower than the SRAM size
because the Xmodem protocol requires some SRAM memory to work. See Section 21.2 “Hardware and Software
Constraints”.

21.5.2 Xmodem Protocol
The Xmodem protocol supported is the 128-byte length block. This protocol uses a two-character CRC-16 to
guarantee detection of a maximum bit error.
Xmodem protocol with CRC is accurate provided both sender and receiver report successful transmission. Each
block of the transfer looks like:
<SOH><blk #><255-blk #><--128 data bytes--><checksum> in which:
— <SOH> =01 hex
— <blk #> = binary number, starts at 01, increments by 1, and wraps OFFH to O0H (not to 01)
— <255-blk #> = 1's complement of the blk#.
— <checksum> = 2 bytes CRC16

Figure 21-2 shows a transmission using this protocol.

Figure 21-2. Xmodem Transfer Example

Host Device

C

SOH 01 FE Data[128] CRC CRC

ACK

SOH 02 FD Data[128] CRC CRC

ACK

SOH 03 FC Data[100] CRC CRC

ACK

EOT

ACK

21.5.3 USB Device Port

The device uses the USB communication device class (CDC) drivers to take advantage of the installed PC RS-232
software to talk over the USB. The CDC class is implemented in all releases of Windows®, beginning with
Windows 98 SE. The CDC document, available at www.usb.org, describes a way to implement devices such as
ISDN modems and virtual COM ports.

The Vendor ID (VID) is Atmel's vendor ID 0X03EB. The product ID (PID) is 0x6124. These references are used by
the host operating system to mount the correct driver. On Windows systems, the INF files contain the
correspondence between vendor ID and product ID.

SAM3S8 /| SAM3SDS8 [DATASHEET 339
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

For more details about VID/PID for End Product/Systems, please refer to the following FAQ from the USB
Implementers Forum:

http://www.usb.org/developers/usbfag#12

"Unauthorized use of assigned or unassigned USB Vendor ID Numbers and associated Product ID Numbers is
strictly prohibited."

Atmel provides an INF example to see the device as a new serial port and also provides another custom driver
used by the SAM-BA application: atm6124.sys. Refer to the application note “USB Basic Application”, Atmel
literature number 6123, for more details.

21.5.3.1 Enumeration Process

The USB protocol is a master/slave protocol. This is the host that starts the enumeration sending requests to the
device through the control endpoint. The device handles standard requests as defined in the USB Specification.

Table 21-3. Handled Standard Requests

Request Definition

GET_DESCRIPTOR Returns the current device configuration value.
SET_ADDRESS Sets the device address for all future device access.
SET_CONFIGURATION Sets the device configuration.
GET_CONFIGURATION Returns the current device configuration value.
GET_STATUS Returns status for the specified recipient.
SET_FEATURE Set or Enable a specific feature.

CLEAR_FEATURE Clear or Disable a specific feature.

The device also handles some class requests defined in the CDC class.

Table 21-4. Handled Class Requests

Request Definition

SET_LINE_CODING Configures DTE rate, stop bits, parity and number of character bits.
GET_LINE_CODING Requests current DTE rate, stop bits, parity and number of character bits.
SET_CONTROL_LINE_STATE RS-232 signal used to tell the DCE device the DTE device is now present.

Unhandled requests are STALLed.

21.5.3.2 Communication Endpoints

There are two communication endpoints and endpoint 0 is used for the enumeration process. Endpoint 1 is a 64-
byte Bulk OUT endpoint and endpoint 2 is a 64-byte Bulk IN endpoint. SAM-BA Boot commands are sent by the
host through endpoint 1. If required, the message is split by the host into several data payloads by the host driver.

If the command requires a response, the host can send IN transactions to pick up the response.

340 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

21.5.4 In Application Programming (IAP) Feature
The IAP feature is a function located in ROM that can be called by any software application.

When called, this function sends the desired FLASH command to the EEFC and waits for the Flash to be ready
(looping while the FRDY bit is not set in the EEFC_FSR).

Since this function is executed from ROM, this allows Flash programming (such as sector write) to be done by
code running in Flash.

The IAP function entry point is retrieved by reading the NMI vector in ROM (0x00800008).
This function takes one argument in parameter: the command to be sent to the EEFC.
This function returns the value of the EEFC_FSR.

IAP software code example:

(unsigned int) (*IAP_Function)(unsigned |ong);
void main (void){
unsi gned | ong Fl ashSect or Num = 200; //
unsi gned long flash_cnd = 0;
unsi gned | ong flash_status = O;
unsi gned |1 ong EFClndex = 0; // 0:EEFCO, 1: EEFCl

/* Initialize the function pointer (retrieve function address from NM vector)
*/

I AP_Function = ((unsigned long) (*)(unsigned |ong))
0x00800008;

/* Send your data to the sector here */
/* build the command to send to EEFC */

flash_cmd = (Ox5A << 24) | (FlashSectorNum << 8) |
AT91C MC FCND_EWP;

/* Call the I AP function with appropriate command */

flash_status = | AP_Function (EFCl ndex, flash_cnd);

SAM3S8 /| SAM3SDS8 [DATASHEET 341
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

22. Bus Matrix (MATRIX)

22.1 Description

The Bus Matrix implements a multi-layer AHB that enables parallel access paths between multiple AHB masters
and slaves in a system, which increases the overall bandwidth. Bus Matrix interconnects 4 AHB Masters to 5 AHB
Slaves. The normal latency to connect a master to a slave is one cycle except for the default master of the
accessed slave which is connected directly (zero cycle latency).

The Bus Matrix user interface also provides a Chip Configuration User Interface with Registers that allow to
support application specific features.

22.2 Embedded Characteristics

22.2.1 Matrix Masters

The Bus Matrix manages 4 masters, which means that each master can perform an access concurrently with
others, to an available slave.

Each master has its own decoder, which is defined specifically for each master. In order to simplify the addressing,
all the masters have the same decodings.

Table 22-1. List of Bus Matrix Masters

Master O Cortex-M3 Instruction/Data
Master 1 Cortex-M3 System

Master 2 Peripheral DMA Controller (PDC)
Master 3 CRC Calculation Unit

22.2.2 Matrix Slaves

The Bus Matrix manages 5 slaves. Each slave has its own arbiter, allowing a different arbitration per slave.

Table 22-2. List of Bus Matrix Slaves

Slave 0 Internal SRAM

Slave 1 Internal ROM

Slave 2 Internal Flash

Slave 3 External Bus Interface
Slave 4 Peripheral Bridge

342 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

22.2.3 Master to Slave Access

All the Masters can normally access all the Slaves. However, some paths do not make sense, for example
allowing access from the Cortex-M3 S Bus to the Internal ROM. Thus, these paths are forbidden or simply not
wired, and shown as “-” in the following table

Table 22-3. Master to Slave Access
Masters 0 1 2 3
Cortex-M3 Cortex-M3
Slaves /D Bus S Bus PDC CRCCU

0 Internal SRAM - X X X
1 Internal ROM X - X
2 Internal Flash X - - X
3 External Bus Interface - X X X
4 Peripheral Bridge - X X -

22.3 Memory Mapping

Bus Matrix provides one decoder for every AHB Master Interface. The decoder offers each AHB Master several
memory mappings. In fact, depending on the product, each memory area may be assigned to several slaves.
Booting at the same address while using different AHB slaves (i.e. internal ROM or internal Flash) becomes
possible.

22.4 Special Bus Granting Techniques

The Bus Matrix provides some speculative bus granting techniques in order to anticipate access requests from
some masters. This mechanism allows to reduce latency at first accesses of a burst or single transfer. The bus
granting mechanism allows to set a default master for every slave.

At the end of the current access, if no other request is pending, the slave remains connected to its associated
default master. A slave can be associated with three kinds of default masters: no default master, last access
master and fixed default master.

22.4.1 No Default Master

At the end of the current access, if no other request is pending, the slave is disconnected from all masters. No
Default Master suits low power mode.

22.4.2 Last Access Master

At the end of the current access, if no other request is pending, the slave remains connected to the last master that
performed an access request.

22.4.3 Fixed Default Master

At the end of the current access, if no other request is pending, the slave connects to its fixed default master.
Unlike last access master, the fixed master doesn’t change unless the user modifies it by a software action (field
FIXED_DEFMSTR of the related MATRIX_SCFG).

To change from one kind of default master to another, the Bus Matrix user interface provides the Slave
Configuration Registers, one for each slave, that allow to set a default master for each slave. The Slave
Configuration Register contains two fields:

SAM3S8 /| SAM3SDS8 [DATASHEET 343
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

DEFMSTR_TYPE and FIXED_DEFMSTR. The 2-bit DEFMSTR_TYPE field allows to choose the default master
type (no default, last access master, fixed default master) whereas the 4-bit FIXED_DEFMSTR field allows to
choose a fixed default master provided that DEFMSTR_TYPE is set to fixed default master. Please refer to the
Bus Matrix user interface description.

22.5 Arbitration

The Bus Matrix provides an arbitration mechanism that allows to reduce latency when conflict cases occur,
basically when two or more masters try to access the same slave at the same time. One arbiter per AHB slave is
provided, allowing to arbitrate each slave differently.
The Bus Matrix provides to the user the possibility to choose between 2 arbitration types, and this for each slave:
1. Round-Robin Arbitration (the default)
2. Fixed Priority Arbitration

This choice is given through the field ARBT of the Slave Configuration Registers (MATRIX_SCFG).
Each algorithm may be complemented by selecting a default master configuration for each slave.

When a re-arbitration has to be done, it is realized only under some specific conditions detailed in the following
paragraph.

22.5.1 Arbitration Rules

Each arbiter has the ability to arbitrate between two or more different master’s requests. In order to avoid burst
breaking and also to provide the maximum throughput for slave interfaces, arbitration may only take place during
the following cycles:
1. Idle Cycles: when a slave is not connected to any master or is connected to a master which is not currently
accessing it.
2. Single Cycles: when a slave is currently doing a single access.

3. End of Burst Cycles: when the current cycle is the last cycle of a burst transfer. For defined length burst,
predicted end of burst matches the size of the transfer but is managed differently for undefined length burst
(See Section 22.5.1.1 “Undefined Length Burst Arbitration” on page 344“).

4. Slot Cycle Limit: when the slot cycle counter has reached the limit value indicating that the current master
access is too long and must be broken (See Section 22.5.1.2 “Slot Cycle Limit Arbitration” on page 344).

22.5.1.1 Undefined Length Burst Arbitration
In order to avoid too long slave handling during undefined length bursts (INCR), the Bus Matrix provides specific
logic in order to re-arbitrate before the end of the INCR transfer.
A predicted end of burst is used for defined length burst transfer, which is selected between the following:
1. Infinite: no predicted end of burst is generated and therefore INCR burst transfer will never be broken.
2. Four beat bursts: predicted end of burst is generated at the end of each four beat boundary inside INCR
transfer.
3. Eight beat bursts: predicted end of burst is generated at the end of each eight beat boundary inside INCR
transfer.
4. Sixteen beat bursts: predicted end of burst is generated at the end of each sixteen beat boundary inside
INCR transfer.

This selection can be done through the field ULBT of the Master Configuration Registers (MATRIX_MCFG).

22.5.1.2 Slot Cycle Limit Arbitration

The Bus Matrix contains specific logic to break too long accesses such as very long bursts on a very slow slave
(e.g. an external low speed memory). At the beginning of the burst access, a counter is loaded with the value
previously written in the SLOT_CYCLE field of the related Slave Configuration Register (MATRIX_SCFG) and

344 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

decreased at each clock cycle. When the counter reaches zero, the arbiter has the ability to re-arbitrate at the end
of the current byte, half word or word transfer.

22.5.2 Round-Robin Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to the same slave in a
round-robin manner. If two or more master’s requests arise at the same time, the master with the lowest number is
first serviced then the others are serviced in a round-robin manner.

There are three round-robin algorithm implemented:
e Round-Robin arbitration without default master
e Round-Robin arbitration with last access master
e Round-Robin arbitration with fixed default master

22.5.2.1 Round-Robin arbitration without default master

This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch requests from different
masters to the same slave in a pure round-robin manner. At the end of the current access, if no other request is
pending, the slave is disconnected from all masters. This configuration incurs one latency cycle for the first access
of a burst. Arbitration without default master can be used for masters that perform significant bursts.

22.5.2.2 Round-Robin arbitration with last access master

This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to remove the one
latency cycle for the last master that accessed the slave. In fact, at the end of the current transfer, if no other
master request is pending, the slave remains connected to the last master that performs the access. Other non
privileged masters will still get one latency cycle if they want to access the same slave. This technique can be used
for masters that mainly perform single accesses.

22.5.2.3 Round-Robin arbitration with fixed default master

This is another biased round-robin algorithm, it allows the Bus Matrix arbiters to remove the one latency cycle for
the fixed default master per slave. At the end of the current access, the slave remains connected to its fixed default
master. Every request attempted by this fixed default master will not cause any latency whereas other non
privileged masters will still get one latency cycle. This technique can be used for masters that mainly perform
single accesses.

22.5.3 Fixed Priority Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to the same slave by
using the fixed priority defined by the user. If two or more master’s requests are active at the same time, the
master with the highest priority number is serviced first. If two or more master’s requests with the same priority are
active at the same time, the master with the highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority Registers for Slaves
(MATRIX_PRAS and MATRIX_PRBS).

22.6 System I/O Configuration

The System /O Configuration register (CCFG_SYSIO) allows to configure some 1/O lines in System I/O mode
(such as JTAG, ERASE, USB, etc...) or as general purpose I/O lines. Enabling or disabling the corresponding I/O
lines in peripheral mode or in PIO mode (PIO_PER or PIO_PDR registers) in the PIO controller as no effect.
However, the direction (input or output), pull-up, pull-down and other mode control is still managed by the PIO
controller.

SAM3S8 /| SAM3SDS8 [DATASHEET 345
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

22.7 Write Protect Registers

To prevent any single software error that may corrupt MATRIX behavior, the entire MATRIX address space from
address offset 0x000 to Ox1FC can be write-protected by setting the WPEN bit in the MATRIX Write Protect Mode
Register (MATRIX_WPMR).

If a write access to anywhere in the MATRIX address space from address offset 0x000 to Ox1FC is detected, then
the WPVS flag in the MATRIX Write Protect Status Register (MATRIX_WPSR) is set and the field WPVSRC
indicates in which register the write access has been attempted.

The WPVS flag is reset by writing the MATRIX Write Protect Mode Register (MATRIX_WPMR) with the
appropriate access key WPKEY.

346 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

22.8 Bus Matrix (MATRIX) User Interface

Table 22-4. Register Mapping
Offset Register Name Access Reset
0x0000 Master Configuration Register 0 MATRIX_MCFGO Read-write 0x00000000
0x0004 Master Configuration Register 1 MATRIX_MCFG1 Read-write 0x00000000
0x0008 Master Configuration Register 2 MATRIX_MCFG2 Read-write 0x00000000
0x000C Master Configuration Register 3 MATRIX_MCFG3 Read-write 0x00000000
0x0010 - 0x003C | Reserved - - -
0x0040 Slave Configuration Register 0 MATRIX_SCFGO Read-write 0x00010010
0x0044 Slave Configuration Register 1 MATRIX_SCFG1 Read-write 0x00050010
0x0048 Slave Configuration Register 2 MATRIX_SCFG2 Read-write 0x00000010
0x004C Slave Configuration Register 3 MATRIX_SCFG3 Read-write 0x00000010
0x0050 Slave Configuration Register 4 MATRIX_SCFG4 Read-write 0x00000010
0x0054 - 0x007C | Reserved - - -
0x0080 Priority Register A for Slave 0 MATRIX_PRASO Read-write 0x00000000
0x0084 Reserved - - -
0x0088 Priority Register A for Slave 1 MATRIX_PRAS1 Read-write 0x00000000
0x008C Reserved - - -
0x0090 Priority Register A for Slave 2 MATRIX_PRAS2 Read-write 0x00000000
0x0094 Reserved - - -
0x0098 Priority Register A for Slave 3 MATRIX_PRAS3 Read-write 0x00000000
0x009C Reserved - - -
0x00A0 Priority Register A for Slave 4 MATRIX_PRAS4 Read-write 0x00000000
0x00A4 - 0x0110 | Reserved - - -
0x0114 System 1/O Configuration register CCFG_SYSIO Read/Write 0x00000000
0x0118 Reserved - - -
0x011C gz/';sg:ip Select NAND Flash Assignment | or qpenpcs Read/Write 0x00000000
0x0120 - 0x010C | Reserved - - -
Ox1E4 Write Protect Mode Register MATRIX_WPMR Read-write 0x0
Ox1E8 Write Protect Status Register MATRIX_WPSR Read-only 0x0
0x0110 - 0XO1FC | Reserved - - -

Atmel

SAM3S8 / SAM3SD8 [DATASHEET]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

347

22.8.1 Bus Matrix Master Configuration Registers

Name: MATRIX_MCFGO0..MATRIX_MCFG3

Address: 0x400E0200

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I ULBT |

e ULBT: Undefined Length Burst Type

0: Infinite Length Burst

No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken.
1: Single Access

The undefined length burst is treated as a succession of single access allowing rearbitration at each beat of the INCR
burst.

2: Four Beat Burst

The undefined length burst is split into a 4-beat bursts allowing rearbitration at each 4-beat burst end.
3: Eight Beat Burst

The undefined length burst is split into 8-beat bursts allowing rearbitration at each 8-beat burst end.
4: Sixteen Beat Burst

The undefined length burst is split into 16-beat bursts allowing rearbitration at each 16-beat burst end.

348 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

22.8.2 Bus Matrix Slave Configuration Registers

Name: MATRIX_SCFGO..MATRIX_SCFG4

Address: 0x400E0240

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - - - I ARBT |
23 22 21 20 19 18 17 16

| — | - | - | FIXED_DEFMSTR | DEFMSTR_TYPE |
15 14 13 12 11 10 9 8

- T - T - T - - SR S
7 6 5 4 3 2 1 0

| SLOT_CYCLE |

e SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst
When the SLOT_CYCLE limit is reach for a burst it may be broken by another master trying to access this slave.
This limit has been placed to avoid locking very slow slaves when very long bursts are used.

This limit should not be very small though. An unreasonable small value will break every burst and the Bus Matrix will
spend its time to arbitrate without performing any data transfer. 16 cycles is a reasonable value for SLOT_CYCLE.

« DEFMSTR_TYPE: Default Master Type

0: No Default Master

At the end of current slave access, if no other master request is pending, the slave is disconnected from all masters.
This results in having a one cycle latency for the first access of a burst transfer or for a single access.

1: Last Default Master

At the end of current slave access, if no other master request is pending, the slave stays connected to the last master hav-
ing accessed it.

This results in not having the one cycle latency when the last master re-tries access on the slave again.
2: Fixed Default Master

At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the
number that has been written in the FIXED_DEFMSTR field.

This results in not having the one cycle latency when the fixed master re-tries access on the slave again.

* FIXED_DEFMSTR: Fixed Default Master

This is the number of the Default Master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a
master which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.

* ARBT: Arbitration Type
0: Round-Robin Arbitration
1. Fixed Priority Arbitration
2: Reserved
3: Reserved

SAM3S8 /| SAM3SDS8 [DATASHEET 349
Atmel [I

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

22.8.3 Bus Matrix Priority Registers For Slaves

Name: MATRIX_PRASO..MATRIX_PRAS4

Address: 0x400E0280 [0], 0x400E0288 [1], 0x400E0290 [2], 0x400E0298 [3], 0x400E02A0 [4]

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I M4PR |
15 14 13 12 1 10 9 8

| - | - | M3PR | - | - | M2PR |
7 6 5 4 3 2 1 0

| - | - | M1PR | - | - | MOPR |

« MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

350 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

22.8.4 System I/O Configuration Register

Name: CCFG_SYSIO

Address: 0x400E0314

Access Read-write

Reset: 0x0000_0000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 1 10 9 8

| - | - | - | SYSIO12 | SYSIO11 | SYSIO10 | - | - |
7 6 5 4 3 2 1 0

| SYSIO7 | SYSIO6 | SYSIO5 | SYSIO4 | - | - | — | - |

e SYSIO4: PB4 or TDI Assignment
0 = TDI function selected.
1 = PB4 function selected.

* SYSIO5: PB5 or TDO/TRACESWO Assignment
0 = TDO/TRACESWO function selected.
1 = PB5 function selected.

» SYSIO6: PB6 or TMS/SWDIO Assignment
0 = TMS/SWDIO function selected.
1 = PB6 function selected.

e SYSIO7: PB7 or TCK/SWCLK Assignment
0 = TCK/SWCLK function selected.
1 = PB7 function selected.

» SYSIO10: PB10 or DDM Assignment
0 = DDM function selected.
1 = PB10 function selected.

e SYSIO11: PB11 or DDP Assignment
0 = DDP function selected.
1 = PB11 function selected.

» SYSIO12: PB12 or ERASE Assignment
0 = ERASE function selected.
1 = PB12 function selected.

SAM3S8 /| SAM3SDS8 [DATASHEET 351
Atmel [I

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

22.8.5 SMC NAND Flash Chip select Configuration Register

Name: CCFG_SMCNFCS

Address: 0x400E031C

Type: Read-write

Reset: 0x0000_0000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 1 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

[_ [= | — [- | SMC_NFCS3 | SMC_NFCS2 | SMC_NFCS1 | SMC_NFCSO |

« SMC_NFCSO0: SMC NAND Flash Chip Select 0 Assignment
0 = NCSO0 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCSO0)

1 = NCSO is assigned to a NAND Flash (NANDOE and NANWE used for NCSO0)

* SMC_NFCS1: SMC NAND Flash Chip Select 1 Assignment
0 = NCS1 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS1)
1 =NCS1 is assigned to a NAND Flash (NANDOE and NANWE used for NCS1)

* SMC_NFCS2: SMC NAND Flash Chip Select 2 Assignment
0 = NCS2 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS2)
1 = NCS2 is assigned to a NAND Flash (NANDOE and NANWE used for NCS2)

* SMC_NFCS3: SMC NAND Flash Chip Select 3 Assignment
0 = NCS3 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS3)

1 = NCS3 is assigned to a NAND Flash (NANDOE and NANWE used for NCS3)

352 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

22.8.6 Write Protect Mode Register

Name: MATRIX_WPMR

Address: Ox400EO03E4

Access: Read-write
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - WPEN |

For more details on MATRIX_WPMR, refer to Section 22.7 “Write Protect Registers” on page 346.

» WPEN: Write Protect ENable

0 = Disables the Write Protect if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).
1 = Enables the Write Protect if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).
Protects the entire MATRIX address space from address offset 0x000 to Ox1FC.

« WPKEY: Write Protect KEY (Write-only)

Should be written at value 0x4D4154 (“MAT” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

SAM3S8 /| SAM3SDS8 [DATASHEET 353
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

22.8.7 Write Protect Status Register

Name: MATRIX_WPSR

Address: 0x400EO3ES8

Access: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| WPVSRC |
15 14 13 12 1 10 9 8

| WPVSRC |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - wevs |

For more details on MATRIX_WPSR, refer to Section 22.7 “Write Protect Registers” on page 346.

» WPVS: Write Protect Violation Status
0: No Write Protect Violation has occurred since the last write of MATRIX_WPMR.
1: At least one Write Protect Violation has occurred since the last write of MATRIX_WPMR.

« WPVSRC: Write Protect Violation Source

Should be written at value 0x4D4154 (“MAT” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

354 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23. Static Memory Controller (SMC)

23.1 Description

The External Bus Interface is designed to ensure the successful data transfer between several external devices
and the Cortex-M3 based device. The External Bus Interface of the SAM3S consists of a Static Memory Controller
(SMC).

This SMC is capable of handling several types of external memory and peripheral devices, such as SRAM,
PSRAM, PROM, EPROM, EEPROM, LCD Module, NOR Flash and NAND Flash.

The Static Memory Controller (SMC) generates the signals that control the access to the external memory devices
or peripheral devices. It has 4 Chip Selects, a 24-bit address bus, and an 8-bit data bus. Separate read and write
control signals allow for direct memory and peripheral interfacing. Read and write signal waveforms are fully
adjustable.

The SMC can manage wait requests from external devices to extend the current access. The SMC is provided with
an automatic slow clock mode. In slow clock mode, it switches from user-programmed waveforms to slow-rate
specific waveforms on read and write signals. The SMC supports asynchronous burst read in page mode access
for page size up to 32 bytes.

The External Data Bus can be scrambled/unscrambled by means of user keys.

23.2 Embedded Characteristics

Atmel

16-Mbyte Address Space per Chip Select

8- bit Data Bus

Word, Halfword, Byte Transfers

Byte Write or Byte Select Lines

Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select
Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select
Programmable Data Float Time per Chip Select

External Wait Request

Automatic Switch to Slow Clock Mode

Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes
NAND FLASH additional logic supporting NAND Flash with Multiplexed Data/Address buses
Hardware Configurable number of chip selects from 1 to 4

Programmable timing on a per chip select basis

SAM3S8 / SAM3SD8 [DATASHEET] 355

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.3 1/0 Lines Description

Table 23-1. I/O Line Description

Name Description Type Active Level
NCS[3:0] Static Memory Controller Chip Select Lines Output Low
NRD Read Signal Output Low
NWE Write Enable Signal Output Low
A[23:0] Address Bus Output

D[7:0] Data Bus I/O

NWAIT External Wait Signal Input Low
NANDCS NAND Flash Chip Select Line Output Low
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low

23.4 Product Dependencies

23.4.1 1/0O Lines

The pins used for interfacing the Static Memory Controller are multiplexed with the PIO lines. The programmer
must first program the PIO controller to assign the Static Memory Controller pins to their peripheral function. If I/O
Lines of the SMC are not used by the application, they can be used for other purposes by the PIO Controller.

23.4.2 Power Management

The SMC is clocked through the Power Management Controller (PMC), thus the programmer must first configure
the PMC to enable the SMC clock.

23.5 External Memory Mapping

The SMC provides up to 24 address lines, A[23:0]. This allows each chip select line to address up to 16 Mbytes of
memory.

If the physical memory device connected on one chip select is smaller than 16 Mbytes, it wraps around and
appears to be repeated within this space. The SMC correctly handles any valid access to the memory device
within the page (see Figure 23-1).

356 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 23-1. Memory Connections for Four External Devices

NCSI0] - NCSJ[3]
NRD
A[23:0]
D[7:0
f7:0] NCS3 I Memory Enable
NCS2 I Memory Enable
NCS1 I Memory Enable
NCSO0
Memory Enable
Qutput Enable
Write Enable _—
24 A[23:0] [
8 D[7:0] ||

23.6 Connection to External Devices

23.6.1 Data Bus Width
The data bus width is 8 bits.
Figure 23-2 shows how to connect a 512K x 8-bit memory on NCS2.

Figure 23-2. Memory Connection for an 8-bit Data Bus

D[7:0] D[7:0]
A[18:0] A[18:0]
smC
NWE Write Enable
NRD Output Enable
NCY2] Memory Enable

23.6.1.1 NAND Flash Support
The SMC integrates circuitry that interfaces to NAND Flash devices.

The NAND Flash logic is driven by the Static Memory Controller. It depends on the programming of the
SMC_NFCSx field in the CCFG_SMCNFCS Register on the Bus Matrix User Interface. For details on this register,
refer to the Bus Matrix User Interface section. Access to an external NAND Flash device via the address space
reserved to the chip select programmed.

The user can connect up to 4 NAND Flash devices with separated chip select.

The NAND Flash logic drives the read and write command signals of the SMC on the NANDOE and NANDWE
signals when the NCSx programmed is active. NANDOE and NANDWE are disabled as soon as the transfer
address fails to lie in the NCSx programmed address space.

SAM3S8 /| SAM3SDS8 [DATASHEET 357
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 23-3. NAND Flash Signal Multiplexing on SMC Pins

SMC

NAND Flash Logic

NCSx (activated if SMC_NFCSx=1)}* > NN\ NANDOE
(-) 4) b NANDOE
NRD > / J
J‘_\ NANDWE > NANDWE
NWE >)

* in CCFG_SMCNFCS Matrix register

Note: When NAND Flash logic is activated, (SMCNFCSx=1), NWE pin cannot be used i PIO Mode but only in
peripheral mode (NWE function). If NWE function is not used for other external memories (SRAM, LCD), it must be
configured in one of the following modes.

e PIO Input with pull-up enabled (default state after reset)

e PIO Output set at level 1

The address latch enable and command latch enable signals on the NAND Flash device are driven by address bits
A22 and A21of the address bus. Any bit of the address bus can also be used for this purpose. The command,
address or data words on the data bus of the NAND Flash device use their own addresses within the NCSx
address space (configured by CCFG_SMCNFCS Register on the Bus Matrix User Interface). The chip enable (CE)
signal of the device and the ready/busy (R/B) signals are connected to PIO lines. The CE signal then remains
asserted even when NCS3 is not selected, preventing the device from returning to standby mode. The NANDCS
output signal should be used in accordance with the external NAND Flash device type.

Two types of CE behavior exist depending on the NAND flash device:

e Standard NAND Flash devices require that the CE pin remains asserted Low continuously during the read
busy period to prevent the device from returning to standby mode. Since the Static Memory Controller (SMC)
asserts the NCSx signal High, it is necessary to connect the CE pin of the NAND Flash device to a GPIO
line, in order to hold it low during the busy period preceding data read out.

e This restriction has been removed for “CE don’t care” NAND Flash devices. The NCSx signal can be directly
connected to the CE pin of the NAND Flash device.

Figure 23-4 illustrates both topologies: Standard and “CE don't care” NAND Flash.

358 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 23-4. Standard and “CE don’t care” NAND Flash Application Examples

D[7:0] D[7:0
» AD[7:0] — »| AD[7:0]
A[22:21] »| ALc A[22:21] >l ae
|—> CLE I_> CLE
NESX Not Connected NCSx CE
SMC sMeC
NAND Flash “CE don't care”
NAND Flash
NANDOE ol NoE NANDOE
g > NOE
NANDWE o NWE NANDWE e
PIO > CE
PIO [« R/B PIO e RIB

23.7 Application Example

23.7.1 Implementation Examples
Hardware configurations are given for illustration only. The user should refer to the manufacturer web site to check
for memory device availability.

For hardware implementation examples, refer to SAM3S-EK schematics, which show examples of a connection to
an LCD module and NAND Flash.

SAM3S8 /| SAM3SDS8 [DATASHEET 359
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.7.1.1 8-bit NAND Flash

Hardware Configuration

D[0..7]

Ut K9F2G08UOM
CLE 181 cie oo |F22—p9
ALE 2| ALE 1101 = =
NANDOE s RE 1102 - =
NANDWE A we 103 H2—p7
(ANY PIO CE 1104 =72 o]
1105
ANy PIO)<_} T T rRB o6 4277
IBl_AVAVA__EI 1107
3V30 191 wp
R2 10K NG 48
N.C F4L—x
»—{Ne N.C 48—
*—2- N.C N.C 48—
»—34 NC N.C 40—
*—41NC N.C 32— I
»—34NC PRE —15—| .
»—81NC N.C 38—
»—1014 NC N.C 24—
L Ne N.C 33—
141N c N.C 2B
ORETH Hepd NG 2= 3v3
*—204 NC
21 N vee
*—22-N.C vce c2
»—231 N C
»—241 NC
251 N.C vss 100NF
»—284 Nc Vss

7]
100NF

2Gb
TSOP48 PACKAGE

Software Configuration
Perform the following configuration:

e Assign the SMC_NFCSx (for example SMC_NFCS3) field in the CCFG_SMCNFCS Register on the Bus
Matrix User Interface.

e Reserve A21/ A22 for ALE / CLE functions. Address and Command Latches are controlled respectively by
setting to 1 the address bits A21 and A22 during accesses.

e NANDOE and NANDWE signals are multiplexed with PIO lines. Thus, the dedicated PIOs must be
programmed in peripheral mode in the PIO controller.
Configure a PIO line as an input to manage the Ready/Busy signal.

e Configure Static Memory Controller CS3 Setup, Pulse, Cycle and Mode according to NAND Flash timings,
the data bus width and the system bus frequency.

In this example, the NAND Flash is not addressed as a “CE don't care”. To address it as a “CE don't care”, connect
NCS3 (if SMC_NFCS3 is set) to the NAND Flash CE.

360 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.7.1.2NOR Flash
Hardware Configuration
DI[0..7]
A[0..21]

VCCQ
NRST > RESET
NWE > WE
sod—— % vee fGONF
NCSO0 > > %EF
< E
NRD > OE VSS
VSS T

100NF

Software Configuration

Configure the Static Memory Controller CSO Setup, Pulse, Cycle and Mode depending on Flash timings and
system bus frequency.

23.8 Standard Read and Write Protocols

In the following sections, NCS represents one of the NCS[0..3] chip select lines.

23.8.1 Read Waveforms
The read cycle is shown on Figure 23-5.
The read cycle starts with the address setting on the memory address bus.

SAM3S8 /| SAM3SDS8 [DATASHEET 361
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 23-5. Standard Read Cycle

MCK L] | I I
! : | | | | |
| | | | | | |
| | | | | | |
| T T T T t t

A[23:0] | |

N— | | : X

NRD : | NN\ ! v/ | |
| | | | | | |
| | | | | | |

| 1 1 |

NCS | 1\ | : | : /
: : . ;
| | | |

D[7:0] 5 ! ' / \
. £)
|
NRDJI_SETUP NRD_PULSE NRD!HOLD

NCS_RD_PULSE NCS_RD!HOLD

|
|
|
Il
|
|
|
T
|
|
|
|
|
NRD_CYCLE !

|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
| |
|
|
|

23.8.1.1 NRD Waveform

The NRD signal is characterized by a setup timing, a pulse width and a hold timing.
1. NRD_SETUP: the NRD setup time is defined as the setup of address before the NRD falling edge;
2. NRD_PULSE: the NRD pulse length is the time between NRD falling edge and NRD rising edge;
3. NRD_HOLD: the NRD hold time is defined as the hold time of address after the NRD rising edge.

23.8.1.2 NCS Waveform
Similarly, the NCS signal can be divided into a setup time, pulse length and hold time:
1. NCS_RD_SETUP: the NCS setup time is defined as the setup time of address before the NCS falling edge.
2. NCS_RD_PULSE: the NCS pulse length is the time between NCS falling edge and NCS rising edge;
3. NCS_RD_HOLD: the NCS hold time is defined as the hold time of address after the NCS rising edge.
23.8.1.3Read Cycle

The NRD_CYCLE time is defined as the total duration of the read cycle, i.e., from the time where address is set on
the address bus to the point where address may change. The total read cycle time is equal to:

NRD_CYCLE = NRD_SETUP + NRD_PULSE + NRD_HOLD
= NCS_RD_SETUP + NCS_RD_PULSE + NCS_RD_HOLD

All NRD and NCS timings are defined separately for each chip select as an integer number of Master Clock cycles.
To ensure that the NRD and NCS timings are coherent, user must define the total read cycle instead of the hold
timing. NRD_CYCLE implicitly defines the NRD hold time and NCS hold time as:

NRD_HOLD = NRD_CYCLE - NRD SETUP - NRD PULSE
NCS_RD_HOLD = NRD_CYCLE - NCS_RD_SETUP - NCS_RD_PULSE

362 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.8.1.4 Null Delay Setup and Hold

If null setup and hold parameters are programmed for NRD and/or NCS, NRD and NCS remain active continuously
in case of consecutive read cycles in the same memory (see Figure 23-6).

Figure 23-6. No Setup, No Hold on NRD and NCS Read Signals

MK | | |
p{7:0] —.—(§§ §§

NRD_PULSE NRD_PULSE NRD_PULSE

NCS_RD_PULSE

NCS_RD_PULSE NCS_RD_PULSE

NRD_CYCLE NRD_CYCLE NRD_CYCLE

23.8.1.5 Null Pulse

Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to unpredictable
behavior.

23.8.2 Read Mode

As NCS and NRD waveforms are defined independently of one other, the SMC needs to know when the read data
is available on the data bus. The SMC does not compare NCS and NRD timings to know which signal rises first.
The READ_MODE parameter in the SMC_MODE register of the corresponding chip select indicates which signal
of NRD and NCS controls the read operation.

23.8.2.1 Read is Controlled by NRD (READ_MODE = 1):

Figure 23-7 shows the waveforms of a read operation of a typical asynchronous RAM. The read data is available
tppcc after the falling edge of NRD, and turns to ‘Z’ after the rising edge of NRD. In this case, the READ_MODE
must be set to 1 (read is controlled by NRD), to indicate that data is available with the rising edge of NRD. The
SMC samples the read data internally on the rising edge of Master Clock that generates the rising edge of NRD,
whatever the programmed waveform of NCS may be.

SAM3S8 /| SAM3SDS8 [DATASHEET 363
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 23-7. READ_MODE = 1: Data is sampled by SMC before the rising edge of NRD

Data Sampling
|

MCK | | | | |
! : | | | | |
| | | | | | |
| | | | | | |

A[23:0] ' ! : : | | ¢
: ! : : : ; ;
| I | | | : :

NRD : I AN ' . .
S A A U
] | | : |

NCS : \ : : 1/ I

! | :

I

tpacc 4 L !

: >——\ !
D[7:0] y) :
|

I

|

|

|

|

|

23.8.2.2Read is Controlled by NCS (READ_MODE = 0)

Figure 23-8 shows the typical read cycle of an LCD module. The read data is valid t,5¢ after the falling edge of the
NCS signal and remains valid until the rising edge of NCS. Data must be sampled when NCS is raised. In that
case, the READ_MODE must be set to 0 (read is controlled by NCS): the SMC internally samples the data on the
rising edge of Master Clock that generates the rising edge of NCS, whatever the programmed waveform of NRD
may be.

Figure 23-8. READ_MODE = 0: Data is sampled by SMC before the rising edge of NCS

MCK | |

A[23:0] >{
|
|

|
. a
| : 1 |
| | | |
| | | |
| | I I
NCS | | | |
' ' ' ' ' : :
: : : tPAcc\’iﬂ I I
oo} ————+
o o
| : | Data Sampling : :
: : : : | |
| | | | | !
364 SAM3S8 / SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.8.3 Write Waveforms

The write protocol is similar to the read protocol. It is depicted in Figure 23-9. The write cycle starts with the
address setting on the memory address bus.

23.8.3.1 NWE Waveforms

The NWE signal is characterized by a setup timing, a pulse width and a hold timing.
1. NWE_SETUP: the NWE setup time is defined as the setup of address and data before the NWE falling
edge;
2. NWE_PULSE: The NWE pulse length is the time between NWE falling edge and NWE rising edge;
3. NWE_HOLD: The NWE hold time is defined as the hold time of address and data after the NWE rising edge.

23.8.3.2NCS Waveforms
The NCS signal waveforms in write operation are not the same that those applied in read operations, but are
separately defined:
1. NCS_WR_SETUP: the NCS setup time is defined as the setup time of address before the NCS falling edge.
2. NCS_WR_PULSE: the NCS pulse length is the time between NCS falling edge and NCS rising edge;
3. NCS_WR_HOLD: the NCS hold time is defined as the hold time of address after the NCS rising edge.

Figure 23-9. Write Cycle

MCK ! |
I
I
|

A[23:0]

AN

NWE_SETUP
T
! |

NCS,WR_SETUP

NWE_PULSE

NCS_WR_PULSE

NWE_CYCLE

23.8.3.3 Write Cycle

The write_cycle time is defined as the total duration of the write cycle, that is, from the time where address is set
on the address bus to the point where address may change. The total write cycle time is equal to:

NWE_CYCLE = NWE_SETUP + NWE_PULSE + NWE_HOLD
= NCS_WR_SETUP + NCS_WR_PULSE + NCS_WR_HOLD

All NWE and NCS (write) timings are defined separately for each chip select as an integer number of Master Clock
cycles. To ensure that the NWE and NCS timings are coherent, the user must define the total write cycle instead of
the hold timing. This implicitly defines the NWE hold time and NCS (write) hold times as:

SAM3S8 /| SAM3SDS8 [DATASHEET 365
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

NWE_HOLD = NWE_CYCLE - NWE_SETUP - NWE_PULSE
NCS_WR_HOLD = NWE_CYCLE - NCS_WR_SETUP - NCS_WR_PULSE

23.8.3.4 Null Delay Setup and Hold

If null setup parameters are programmed for NWE and/or NCS, NWE and/or NCS remain active continuously in
case of consecutive write cycles in the same memory (see Figure 23-10). However, for devices that perform write
operations on the rising edge of NWE or NCS, such as SRAM, either a setup or a hold must be programmed.

Figure 23-10. Null Setup and Hold Values of NCS and NWE in Write Cycle

wew | L L L L |

A[23:0] D(

YA

X

NWE_PULSE

X

NWE_PULSE

T

NWE_PULSE

NCS_WR_PULSE NCS WR_PULSE | NCS_WR_PULSE

NWE_CYCLE NWE_CYCLE NWE_CYCLE

23.8.3.5Null Pulse

Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to unpredictable
behavior.

23.8.4 Write Mode

The WRITE_MODE parameter in the SMC_MODE register of the corresponding chip select indicates which signal
controls the write operation.

23.8.4.1 Write is Controlled by NWE (WRITE_MODE = 1):

Figure 23-11 shows the waveforms of a write operation with WRITE_MODE set to 1. The data is put on the bus
during the pulse and hold steps of the NWE signal. The internal data buffers are switched to output mode after the
NWE_SETUP time, and until the end of the write cycle, regardless of the programmed waveform on NCS.

366 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 23-11. WRITE_MODE = 1. The write operation is controlled by NWE

MCK |

NWE

AN

|
|
:
Al23:0] :
]
|
|
|
|
|
|
|
|
|

A

23.8.4.2 Write is Controlled by NCS (WRITE_MODE = 0)

Figure 23-12 shows the waveforms of a write operation with WRITE_MODE set to 0. The data is put on the bus
during the pulse and hold steps of the NCS signal. The internal data buffers are switched to output mode after the
NCS_WR_SETUP time, and until the end of the write cycle, regardless of the programmed waveform on NWE.

Figure 23-12. WRITE_MODE = 0. The write operation is controlled by NCS

MCK | |

A[23:0]

NCS

D[7:0]

N

SAM3S8 /| SAM3SDS8 [DATASHEET 367
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.8.5

23.8.6

Write Protected Registers

To prevent any single software error that may corrupt SMC behavior, the registers listed below can be write-
protected by setting the WPEN bit in the SMC Write Protect Mode Register (SMC_WPMR).

If a write access in a write-protected register is detected, then the WPVS flag in the SMC Write Protect Status
Register (SMC_WPSR) is set and the field WPVSRC indicates in which register the write access has been
attempted.

The WPVS flag is automatically reset after reading the SMC Write Protect Status Register (SMC_WPSR).

List of the write-protected registers:
e Section 23.15.1 “SMC Setup Register”
e Section 23.15.2 “SMC Pulse Register”
e Section 23.15.3 “SMC Cycle Register”
e Section 23.15.4 “SMC MODE Register”

Coding Timing Parameters

All timing parameters are defined for one chip select and are grouped together in one SMC_REGISTER according
to their type.

The SMC_SETUP register groups the definition of all setup parameters:
e NRD_SETUP, NCS_RD_SETUP, NWE_SETUP, NCS_WR_SETUP
The SMC_PULSE register groups the definition of all pulse parameters:
e NRD_PULSE, NCS_RD_PULSE, NWE_PULSE, NCS_WR_PULSE
The SMC_CYCLE register groups the definition of all cycle parameters:
e NRD_CYCLE, NWE_CYCLE

Table 23-2 shows how the timing parameters are coded and their permitted range.

Table 23-2. Coding and Range of Timing Parameters

Permitted Range

Coded Value Number of Bits Effective Value Coded Value Effective Value

setup [5:0] 6 128 x setup[5] + setup[4:0] 0<<31 0<<128+31

pulse [6:0] 7 256 x pulse[6] + pulse[5:0] 0<<63 0 <<256+63

0 <<256+127

cycle [8:0] 9 256 x cycle[8:7] + cycle[6:0] 0<<127 0<<512+127
0<<768+127

23.8.7 Reset Values of Timing Parameters

368

Table 23-3 gives the default value of timing parameters at reset.

Table 23-3. Reset Values of Timing Parameters

Register Reset Value
SMC_SETUP 0x01010101 | All setup timings are set to 1
SMC_PULSE 0x01010101 | All pulse timings are setto 1

SMC_CYCLE 0x00030003 | The read and write operation last 3 Master Clock cycles and provide one hold cycle

WRITE_MODE 1 Write is controlled with NWE

READ_MODE 1 Read is controlled with NRD

SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.8.8 Usage Restriction

The SMC does not check the validity of the user-programmed parameters. If the sum of SETUP and PULSE
parameters is larger than the corresponding CYCLE parameter, this leads to unpredictable behavior of the SMC.

For read operations:

Null but positive setup and hold of address and NRD and/or NCS can not be guaranteed at the memory interface
because of the propagation delay of theses signals through external logic and pads. If positive setup and hold
values must be verified, then it is strictly recommended to program non-null values so as to cover possible skews
between address, NCS and NRD signals.

For write operations:

If a null hold value is programmed on NWE, the SMC can guarantee a positive hold of address and NCS signal
after the rising edge of NWE. This is true for WRITE_MODE = 1 only. See “Early Read Wait State” on page 370.

For read and write operations: a null value for pulse parameters is forbidden and may lead to unpredictable
behavior.

In read and write cycles, the setup and hold time parameters are defined in reference to the address bus. For
external devices that require setup and hold time between NCS and NRD signals (read), or between NCS and
NWE signals (write), these setup and hold times must be converted into setup and hold times in reference to the
address bus.

23.9 Scrambling/Unscrambling Function

The external data bus D[7:0] can be scrambled in order to prevent intellectual property data located in off-chip
memories from being easily recovered by analyzing data at the package pin level of either microcontroller or
memory device.

The scrambling and unscrambling are performed on-the-fly without additional wait states.

The scrambling method depends on two user-configurable key registers, SMC_KEY1 and SMC_KEY2. These key
registers are only accessible in write mode.

The key must be securely stored in a reliable non-volatile memory in order to recover data from the off-chip
memory. Any data scrambled with a given key cannot be recovered if the key is lost.

The scrambling/unscrambling function can be enabled or disabled by programming the SMC_OCMS register.

When multiple chip selects are handled, it is possible to configure the scrambling function per chip select using the
OCMS field in the SMC_OCMS registers.

23.10 Automatic Wait States

Under certain circumstances, the SMC automatically inserts idle cycles between accesses to avoid bus contention
or operation conflict.

23.10.1 Chip Select Wait States

The SMC always inserts an idle cycle between 2 transfers on separate chip selects. This idle cycle ensures that
there is no bus contention between the de-activation of one device and the activation of the next one.

During chip select wait state, all control lines are turned inactive: NWR, NCSJ[0..3], NRD lines are all setto 1.
Figure 23-13 illustrates a chip select wait state between access on Chip Select 0 and Chip Select 2.

SAM3S8 /| SAM3SDS8 [DATASHEET 369
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 23-13. Chip Select Wait State between a Read Access on NCSO0 and a Write Access on NCS2

MCK |

A[23:0]

NRD _m
|

NWE

X

NCS0 _,_w
|

NCS2

| | |

| I e e !
| | | |

' | Read to Write; Chip Select | |

| Wait State | Wait State |
| | |

23.10.2 Early Read Wait State

In some cases, the SMC inserts a wait state cycle between a write access and a read access to allow time for the
write cycle to end before the subsequent read cycle begins. This wait state is not generated in addition to a chip
select wait state. The early read cycle thus only occurs between a write and read access to the same memory
device (same chip select).

An early read wait state is automatically inserted if at least one of the following conditions is valid:

e if the write controlling signal has no hold time and the read controlling signal has no setup time (Figure 23-
14).

e in NCS write controlled mode (WRITE_MODE = 0), if there is no hold timing on the NCS signal and the
NCS_RD_SETUP parameter is set to 0, regardless of the read mode (Figure 23-15). The write operation
must end with a NCS rising edge. Without an Early Read Wait State, the write operation could not complete
properly.

e in NWE controlled mode (WRITE_MODE = 1) and if there is no hold timing (NWE_HOLD = 0), the feedback
of the write control signal is used to control address, data, and chip select lines. If the external write control
signal is not inactivated as expected due to load capacitances, an Early Read Wait State is inserted and
address, data and control signals are maintained one more cycle. See Figure 23-16.

370 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 23-14. Early Read Wait State: Write with No Hold Followed by Read with No Setup

1

1 | 1 1 | 1

1 | 1 1 | 1

1 | 1 1 | 1

. I I 1

s W XK ! >

] I I I 1

1 : 1 1 | 1

1 | 1 1 | 1

NWE 1 1 ! J

1 | 1 | 1

1 | | I 1

1 | 1 1 | 1

NRD —1 L : ' | ,
I

1 : [1 I* N\ \/ 1

1 | | I 1

' | nohold | \ | X

1 | ! ! no setup ! !

1 | 1 i 1

. | 1

D[7:0] —I——l—<I : >—l—<| >—I

1 1 1 1

1 1 1 1

1 1 1 1

| e) e ,!

™ gl Dl T gl |

1 write cycle IEarly Read! read cycle 1

: | Wait state : :

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Figure 23-15. Early Read Wait State: NCS Controlled Write with No Hold Followed by a Read with No NCS Setup

MCK

|

I

A[23:0] :
l |
| 1
NCS . .
1 | | 1
1 | | 1
} | I | 1
NRD 1 ! 1 | 1
) | N v
! : no hold : . no setup : :

1
D[7:0] ! : < : >_'_<. > X
: I 1 1 I :
1 1 1 1
1 1 1 1
' »le e ol
|‘ VI‘ T o 1
1 write cycle 1 Early Read read cycle 1
: (WRITE_MODE = 0) : wait state : (READ_MODE = 0 or READ_MODE = 1):
1
: | - |
1 1 ! 1
. ' 1 1
SAM3S8 / SAM3SD8 [DATASHEET 371
Atmel [)

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 23-16. Early Read Wait State: NWE-controlled Write with No Hold Followed by a Read with one Set-up Cycle

MCK

">_<T"_

|
1
:
Al25:2] :>{
1
1
1
1

internal write controlling signal
__T__—__—\\7cii;7/
. . . 1
external write controlling signal ‘ 1

AN N U P S

E

|
|
- ' 1
(NWE) I | | |
1
| | | | !
! 1 o hold ! , read setupl= 1 |
1 1 |
NRD !] : < i :
1
!] | :w
1 | |
D[7:0] :

_.}{_________-

>
L

>
!

write cycle :Early Read, read cycle
(WRITE_MODE = 1) | wait state 1 (READ_MODE = 0 or READ_MODE = 1)
1 1
1
1 1

e

23.10.3 Reload User Configuration Wait State
The user may change any of the configuration parameters by writing the SMC user interface.

When detecting that a new user configuration has been written in the user interface, the SMC inserts a wait state
before starting the next access. The so called “Reload User Configuration Wait State” is used by the SMC to load
the new set of parameters to apply to next accesses.

The Reload Configuration Wait State is not applied in addition to the Chip Select Wait State. If accesses before
and after re-programming the user interface are made to different devices (Chip Selects), then one single Chip
Select Wait State is applied.

On the other hand, if accesses before and after writing the user interface are made to the same device, a Reload
Configuration Wait State is inserted, even if the change does not concern the current Chip Select.

23.10.3.1User Procedure

To insert a Reload Configuration Wait State, the SMC detects a write access to any SMC_MODE register of the
user interface. If the user only modifies timing registers (SMC_SETUP, SMC_PULSE, SMC_CYCLE registers) in
the user interface, he must validate the modification by writing the SMC_MODE, even if no change was made on
the mode parameters.

The user must not change the configuration parameters of an SMC Chip Select (Setup, Pulse, Cycle, Mode) if
accesses are performed on this CS during the modification. Any change of the Chip Select parameters, while
fetching the code from a memory connected on this CS, may lead to unpredictable behavior. The instructions used
to modify the parameters of an SMC Chip Select can be executed from the internal RAM or from a memory
connected to another CS.

372 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.10.3.2Slow Clock Mode Transition

A Reload Configuration Wait State is also inserted when the Slow Clock Mode is entered or exited, after the end of
the current transfer (see “Slow Clock Mode” on page 384).

23.10.4 Read to Write Wait State
Due to an internal mechanism, a wait cycle is always inserted between consecutive read and write SMC accesses.
This wait cycle is referred to as a read to write wait state in this document.

This wait cycle is applied in addition to chip select and reload user configuration wait states when they are to be
inserted. See Figure 23-13 on page 370.

SAM3S8 /| SAM3SDS8 [DATASHEET 373
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.11 Data Float Wait States
Some memory devices are slow to release the external bus. For such devices, it is necessary to add wait states
(data float wait states) after a read access:
e before starting a read access to a different external memory
e Dbefore starting a write access to the same device or to a different external one.
The Data Float Output Time (tpg) for each external memory device is programmed in the TDF_CYCLES field of the
SMC_MODE register for the corresponding chip select. The value of TDF_CYCLES indicates the number of data

float wait cycles (between 0 and 15) before the external device releases the bus, and represents the time allowed
for the data output to go to high impedance after the memory is disabled.

Data float wait states do not delay internal memory accesses. Hence, a single access to an external memory with
long tye will not slow down the execution of a program from internal memory.

The data float wait states management depends on the READ_MODE and the TDF_MODE fields of the
SMC_MODE register for the corresponding chip select.

23.11.1 READ_MODE

Setting the READ_MODE to 1 indicates to the SMC that the NRD signal is responsible for turning off the tri-state
buffers of the external memory device. The Data Float Period then begins after the rising edge of the NRD signal
and lasts TDF_CYCLES MCK cycles.

When the read operation is controlled by the NCS signal (READ_MODE = 0), the TDF field gives the number of
MCK cycles during which the data bus remains busy after the rising edge of NCS.

Figure 23-17 illustrates the Data Float Period in NRD-controlled mode (READ_MODE =1), assuming a data float
period of 2 cycles (TDF_CYCLES = 2). Figure 23-18 shows the read operation when controlled by NCS
(READ_MODE = 0) and the TDF_CYCLES parameter equals 3.

Figure 23-17. TDF Period in NRD Controlled Read Access (TDF = 2)

yreva A I A I B

tpacc

|
TDF = 2 clock cycles !
—————

R P

I
NRD controlled read operation
| |

374 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 23-18. TDF Period in NCS Controlled Read Operation (TDF = 3)

MCK |

| TDF

|

™ 1

NCS con:trolled read Ibperation :
I

23.11.2 TDF Optimization Enabled (TDF_MODE = 1)

When the TDF_MODE of the SMC_MODE register is set to 1 (TDF optimization is enabled), the SMC takes
advantage of the setup period of the next access to optimize the number of wait states cycle to insert.

Figure 23-19 shows a read access controlled by NRD, followed by a write access controlled by NWE, on Chip
Select 0. Chip Select 0 has been programmed with:

NRD_HOLD = 4; READ_MODE = 1 (NRD controlled)
NWE_SETUP = 3; WRITE_MODE = 1 (NWE controlled)
TDF_CYCLES = 6; TDF_MODE = 1 (optimization enabled).

SAM3S8 /| SAM3SDS8 [DATASHEET 375
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 23-19. TDF Optimization: No TDF wait states are inserted if the TDF period is over when the next access begins

=S [I I A Iy
1 |
1
1

S

P

| | | | | 1
| | | | | 1
NRD X
| | | | | 1
| | | | | 1
| | | | | | I
| | | | | | I
| | | | | | |
NWE 1]] | | |
I I I _:_:/_:_
| | | | 1
| | | | |
| | | | |
[[S [
| NWE_SETYP= 3 :
NCS0 | i :
|
I
|
|
|
|
|

D[7:0] —:_I—L<

DIINIIINIINERIMMN:
read ac:cess on:NCSO (IE\IRD cor:ﬂtrolled) i Rzad to WI;te :Write aq'cess on: NCSO0 (I\IWE cohtrolled):
Lo pesme

T T >

23.11.3 TDF Optimization Disabled (TDF_MODE = 0)

When optimization is disabled, tdf wait states are inserted at the end of the read transfer, so that the data float
period is ended when the second access begins. If the hold period of the read1 controlling signal overlaps the data
float period, no additional tdf wait states will be inserted.
Figure 23-20, Figure 23-21 and Figure 23-22 illustrate the cases:

e read access followed by a read access on another chip select,

e read access followed by a write access on another chip select,

e read access followed by a write access on the same chip select,

with no TDF optimization.

376 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 23-20. TDF Optimization Disabled (TDF Mode = 0). TDF wait states between 2 read accesses on different chip selects

oo [L L LT LML rert
1 | | 1 I | | | | 1 |
1 | | 1 I | | | | 1 |
=N G G G | X
A
read1 controlling signal ! ! | : : I I : I I :
(NRD) E : \ :/ eadl hOICi =1 : i i i i E read?2 s%tup =1
! @l Y
read2 controlling signal : I I I i I I I I I I
(NRD) E | 3 ! | TDF_CYCLES=6 | I | E N\
o | R— | : : : . . |
Pl — . IIINIININIINNIINININDY, | <
1 1
|
E I E : 5 TDF WAIT STATES E I
e + o le >l +
X read1 cycle ! I | read 2cycle
! TDF CYCLES =6 Ii—b‘ 1 TDF_MODE =0
1 - IChip SeIectI !(optimizatioh disabled)

: Wait State,

Figure 23-21. TDF Mode = 0: TDF wait states between a read and a write access on different chip selects

youu I I L[| I I I I I L
I | | 1 | 1 1 1 | | 1
1 | | 1 | 1 I 1 | | 1
| ' ' ! ! ! ! ' ' ! !
D GE T N G G S R
I
I O T T D D T R
readl controlling signal ! ! : : ; i } i - : t+
(NRD) wm hold =1 I I I IwriteZ setupI =1 I I
1 | | | I | 1 | | 1
1 | I] ! 1 | [E— | 1
write2 controlling signal ! l ! 1 ! ! ! ! ' ! !
T 1 T T T T T T | 1
(NWE) | | | TDR_CYCLES =4 | | | 1\ | 1/
r— ! t > 1 I
e e
I | 1
1] y ! 1 1 1] 1
D[7:0 1 \ 1 i/ I 1
s e G INNHNN); ; C)
| R E— A
: o I
e p ! L Bt o
|
: read1 cycle ! . | 2 TDF WAIT STATES, write2 cycle |
' TDF CYCLES=4 et : TDF_MODE = 0 :
|Read‘to Write: Chip Select 1 (optimization disabled)
: Wait State | Wait State :
SAM3S8 / SAM3SD8 [DATASHEET 377
Atmel [I

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 23-22. TDF Mode = 0: TDF wait states between read and write accesses on the same chip select

L | N I O O O A O L

MCK

XX

A[23:0]

o

read1 controlling signal

NRD
(NRD) M1 hold =11

N e e Y

: — -
1
write2 controlling signal : : + : 4:
(NWE) X ’ ! TOF_CYCLES =5 R | ,;
1 [1 T > 1 | T
| | 1 | |
: : : ! I | I 1 | |
D[7:0 ! ' ! ' | | — '
M0)))IPIIIINIIIININD) , | |
1 | | I 1 | |
: : : | | I 1 | |
1 1 | | I 1 | |
I
e . 3 | 4 TDF WAIT STATES | ‘:‘ : |
! read1 cycle ! o ! | | 0l | |
1 TDF_CYCLES =5 T ! ! ! ! write2 cycle '
: IRead‘ to erteI . TDF_MODE =0
. , Wait State |

(optimization disabled)

23.12 External Wait

Any access can be extended by an external device using the NWAIT input signal of the SMC. The EXNW_MODE
field of the SMC_MODE register on the corresponding chip select must be set to either to “10” (frozen mode) or
“11” (ready mode). When the EXNW_MODE is set to “00” (disabled), the NWAIT signal is simply ignored on the
corresponding chip select. The NWAIT signal delays the read or write operation in regards to the read or write
controlling signal, depending on the read and write modes of the corresponding chip select.

23.12.1 Restriction

When one of the EXNW_MODE is enabled, it is mandatory to program at least one hold cycle for the read/write
controlling signal. For that reason, the NWAIT signal cannot be used in Page Mode (“Asynchronous Page Mode”
on page 386), or in Slow Clock Mode (“Slow Clock Mode” on page 384).

The NWAIT signal is assumed to be a response of the external device to the read/write request of the SMC. Then
NWAIT is examined by the SMC only in the pulse state of the read or write controlling signal. The assertion of the
NWAIT signal outside the expected period has no impact on SMC behavior.

378 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.12.2 Frozen Mode

When the external device asserts the NWAIT signal (active low), and after internal synchronization of this signal,
the SMC state is frozen, i.e., SMC internal counters are frozen, and all control signals remain unchanged. When
the resynchronized NWAIT signal is deasserted, the SMC completes the access, resuming the access from the
point where it was stopped. See Figure 23-23. This mode must be selected when the external device uses the
NWAIT signal to delay the access and to freeze the SMC.

The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure 23-24.

Figure 23-23. Write Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10)

o | | | | L L L | | |
: ! I I | | | ! : : | |
| : I I | | | : | | | |
| ! I I | | | . | | | |
Az K i : ! | | : ' | ! : >
I T T I I 1 1 T I
! ! : : ! ! |FROZEN STATE : | ! !
1 | | | 1 < I : =: : 1 1
! i 2 B A B A ! !
wE TN L e e
| | | 1 1 1 ’ | | 1 1
| ! | | | | | ! | | | |
| 6 | 5 | 4 | 3 | 2 | 2 | 2 | 2 | 1 | 0 | 1
NCS |\ | | | | | | ! | . 1/ |
A I T
AR S S NN N N AR SR SO I SN SR N
g 1 | | [l [l [' [[l
Y A) o
:					:	:		
I I					I			
						!	.	
war L 0 N L S0								
!					! : :			
!					:			
internally synchronized : : : : : : : ! : ! : :								
NWAIT signal ! i !		: : E/		: :				
L		o						
				¢				
3 ! ! ! !	rite cy: e		!	;				
; ;	. T							
! EXNW_MODE = 10 (Frozen) :								
: WRITE_MODE = 1 (NWE_controlled) :								
' NWE_PULSE = 5
NCS_WR_PULSE =7
SAM3S8 / SAM3SD8 [DATASHEET 379
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

=10)

W_MODE

Figure 23-24. Read Access with NWAIT Assertion in Frozen Mode (EXN

internally synchronized

Read cycle

NWAIT signal

=10 (Frozen)

READ_MODE

EXNW_MODE

0 (NCS_controlled)

Assertion is ignored

6

5, NCS_RD_HOLD

NRD_PULSE

2,NRD_HOLD

NCS_RD_PULSE

=3

Atmel

SAM3S8 / SAM3SD8 [DATASHEET)]

380

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.12.3 Ready Mode

In Ready mode (EXNW_MODE = 11), the SMC behaves differently. Normally, the SMC begins the access by
down counting the setup and pulse counters of the read/write controlling signal. In the last cycle of the pulse
phase, the resynchronized NWAIT signal is examined.

If asserted, the SMC suspends the access as shown in Figure 23-25 and Figure 23-26. After deassertion, the
access is completed: the hold step of the access is performed.

This mode must be selected when the external device uses deassertion of the NWAIT signal to indicate its ability
to complete the read or write operation.

If the NWAIT signal is deasserted before the end of the pulse, or asserted after the end of the pulse of the
controlling read/write signal, it has no impact on the access length as shown in Figure 23-26.

Figure 23-25. NWAIT Assertion in Write Access: Ready Mode (EXNW_MODE = 11)

s O O O B O B
|
|
|

t ; :	:
A3 !	. . ! . I . D
!	
: I I	
I I	
I L4 3 2 1 I o/ ! I I	
T	

NWE : N\ : : : : : l \ | | |
| t t T T T T | | |
| ! | | | | | | | | | |
! 6 ! 5 ' 4 13 o2 1! Tt o0 - -
nes TN\ ! ! | | | | | Y |
: : I I | | | : : X : :
!					!	:			
!					!				
:									

ool : ! : : | : : i -
| | | | | | | | : i | :
| : | | | | | : | | : |
| X | | | | | X | | ! |
- t | | | : - t
NWAIT | ! NS ! ! | : | | : :
| ! | | | | | ! | : | |
| : | | | | | : | | : |
| | | | | | |
internally synchronized ! : I I | ! ! | : : ! I
NWAIT signal ' ' - : , .
T N S
I I I I I I I l | | I I
| | | | | I Write cycle! ! [| : !
< ' : : : ! ! : ! ! ! N
B : ! . ; ' ! g
: EXNW_MODE = 11 (Ready mode) !
| WRITE_MODE = 1 (NWE_controlled) |
| |
! NWE_PULSE =5 '

NCS_WR_PULSE =7
SAM3S8 / SAM3SD8 [DATASHEET 381
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

11)

W_MODE

Figure 23-26. NWAIT Assertion in Read Access: Ready Mode (EXN

Wait STATE

NWAIT

internally synchronized

NWAIT signal

= 11(Ready mode)

READ MODE

EXNW_MODE

Assertion is ignored

)

NCS_controlled

:0(

Assertion is ignored

7

NCS_RD_PULSE

NRD_PULSE

=7

Atmel

SAM3S8 / SAM3SD8 [DATASHEET)]

382

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.12.4 NWAIT Latency and Read/Write Timings

There may be a latency between the assertion of the read/write controlling signal and the assertion of the NWAIT
signal by the device. The programmed pulse length of the read/write controlling signal must be at least equal to
this latency plus the 2 cycles of resynchronization + 1 cycle. Otherwise, the SMC may enter the hold state of the
access without detecting the NWAIT signal assertion. This is true in frozen mode as well as in ready mode. This is
illustrated on Figure 23-27.

When EXNW_MODE is enabled (ready or frozen), the user must program a pulse length of the read and write
controlling signal of at least:

minimal pulse length = NWAIT latency + 2 resynchronization cycles + 1 cycle

Figure 23-27. NWAIT Latency

e | [O S B
| | | | [| | |)
| ! | | | | | | | |
| T T T T T T |

AL23:0] .< ! I I . I ' : I D
T 1 T 1 T
| ! I I | | | : : :
! | ! ! ! ! ! WAIT STATE ! I
| I I | | 1)) |
I ! I I | I I~ | T |
| 4 I 3 I 2 | 1 | 0 ! 0 | 0 T
| ! I I | I | | /1 |

NRD ! ! t t t t T | |
I: 1 1		>		
: I I minimal pulse length	I			
I I				
! I		I	:	:
t T T		T	T	

NWAIT ! ! ! ! N L/ ! . ! |
I I I			
I I I	I		I
e t > t >			

intenally synchronized ! : NWAIT latency ! 2 cycle res:ynchronizatibn ! | ! |
NWAIT signal | i : : , : | ! : ;
| I | I | |\ I I/ | :
I ! | | I I I | I |
| I I I | I | | I |
: : : : : Read cycle : : | | |
" [| | I | I | I 0
| | | | EXNW_MODE=10or 11 | | | |
! | ! : READ_MODE = 1(NRD_controfled) | | |
| |
| ! I I | | | |
| ! I I NRD_PULSE=5 | ! : ! :
!							
! I		I					
: I I	I		I				
I ! | | | ’ I : I
/ItmeL SAM3S8 / SAM3SD8 [DATASHEET] 383

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.13 Slow Clock Mode

The SMC is able to automatically apply a set of “slow clock mode” read/write waveforms when an internal signal
driven by the Power Management Controller is asserted because MCK has been turned to a very slow clock rate
(typically 32kHz clock rate). In this mode, the user-programmed waveforms are ignored and the slow clock mode
waveforms are applied. This mode is provided so as to avoid reprogramming the User Interface with appropriate
waveforms at very slow clock rate. When activated, the slow mode is active on all chip selects.

23.13.1 Slow Clock Mode Waveforms

Figure 23-28 illustrates the read and write operations in slow clock mode. They are valid on all chip selects. Table
23-4 indicates the value of read and write parameters in slow clock mode.

Figure 23-28. Read/Write Cycles in Slow Clock Mode

MCK | |

|
|
AR3:0] ' X

MCK ! |
I
I

A[23:0] X
|
I

I
NWE_CYCLE ='3

‘ [

\4

I
SLOW'CLOCK MODE WRITE

Table 23-4. Read and Write Timing Parameters in Slow Clock Mode

Read Parameters

Duration (cycles)

Write Parameters

Duration (cycles)

NRD_SETUP 1 NWE_SETUP 1
NRD_PULSE 1 NWE_PULSE 1
NCS_RD_SETUP 0 NCS_WR_SETUP 0
NCS_RD_PULSE 2 NCS_WR_PULSE 3
NRD_CYCLE 2 NWE_CYCLE 3

SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

23.13.2 Switching from (to) Slow Clock Mode to (from) Normal Mode

When switching from slow clock mode to the normal mode, the current slow clock mode transfer is completed at
high clock rate, with the set of slow clock mode parameters.See Figure 23-29 on page 385. The external device
may not be fast enough to support such timings.

Figure 23-30 illustrates the recommended procedure to properly switch from one mode to the other.

Figure 23-29. Clock Rate Transition Occurs while the SMC is Performing a Write Operation

Slow Clock Mode |
internal signal from PMC

MCK | | |

A[23:0] }(i
|
|

NWE —'——'_l/

C

I
I
| |
I
1 1, 1 1 1.1 3 2
| | I
| 1 !
1 | | | 1 | | 1
! ! oo ! I [
NCS ! | ! I R R . | Lo
I
N : T N
1 1 {
1 : : ! !
1
X NWE_CYCLE = 3 I Lo NWE_CYCLE = 7 i
- 1 » < >
< VI‘ g} : < L
SLOW CLOCK MODE WRITE SI_OW CLOCK MODE WF%ITE 1 NORMAL MODE WRITE
1 1 :
1
1
1
This write cycle finishes with the slow clock mode set Slow clock mode
of parameters after the clock rate transition transition is detected:

Reload Configuration Wait State

Figure 23-30. Recommended Procedure to Switch from Slow Clock Mode to Normal Mode or from Normal Mode to Slow Clock
Mode

Slow Clock Mode
internal signal from PMC |

MCK

t--s--

II3I | Eli

|

NCS i\ | |
1 |

!]

|

SLOW CI.OCK MODE \INRITE IDLE STATE

-

NQIRMAI}L M(I?DE \):VRITE%

- - —

Reload Iﬁonﬂguration
Wait Sjate

SAM3S8 /| SAM3SDS8 [DATASHEET 385
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.14 Asynchronous Page Mode

The SMC supports asynchronous burst reads in page mode, providing that the page mode is enabled in the
SMC_MODE register (PMEN field). The page size must be configured in the SMC_MODE register (PS field) to 4,
8, 16 or 32 bytes.

The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte page) is always
aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The MSB of data address defines the
address of the page in memory, the LSB of address define the address of the data in the page as detailed in Table
23-5.

With page mode memory devices, the first access to one page (t,,) takes longer than the subsequent accesses to
the page (t,) as shown in Figure 23-31. When in page mode, the SMC enables the user to define different read
timings for the first access within one page, and next accesses within the page.

Table 23-5. Page Address and Data Address within a Page

Page Size Page Address™ Data Address in the Page
4 bytes A[23:2] A[1:0]
8 bytes A[23:3] A[2:0]
16 bytes A[23:4] A[3:0]
32 bytes A[23:5] A[4:0]

Note: 1. “A” denotes the address bus of the memory device.

23.14.1 Protocol and Timings in Page Mode
Figure 23-31 shows the NRD and NCS timings in page mode access.

Figure 23-31. Page Mode Read Protocol (Address MSB and LSB are defined in Table 23-5)

wek | L L1 L] | L | | L | |
! ! I I

AIMSB] ﬁ(i i i
! | |

! | |

tsa tsa

|
NCS — tpa _

PNV R R

2XX 22 XX

LI J— CLLLLLKKKL

NCS_RD_PULSE NRD_PULSE NRD_PULSE

[»olq— > < »

The NRD and NCS signals are held low during all read transfers, whatever the programmed values of the setup
and hold timings in the User Interface may be. Moreover, the NRD and NCS timings are identical. The pulse length
of the first access to the page is defined with the NCS_RD_PULSE field of the SMC_PULSE register. The pulse
length of subsequent accesses within the page are defined using the NRD_PULSE parameter.

386 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

In page mode, the programming of the read timings is described in Table 23-6:

Table 23-6. Programming of Read Timings in Page Mode

Parameter Value Definition

READ_MODE Y No impact

NCS_RD_SETUP X' No impact

NCS_RD_PULSE toa Access time of first access to the page
NRD_SETUP X’ No impact

NRD_PULSE tsa Access time of subsequent accesses in the page
NRD_CYCLE X' No impact

The SMC does not check the coherency of timings. It will always apply the NCS_RD_PULSE timings as page
access timing (t,,) and the NRD_PULSE for accesses to the page (ts,), even if the programmed value for t,, is
shorter than the programmed value for t,.

23.14.2 Page Mode Restriction

The page mode is not compatible with the use of the NWAIT signal. Using the page mode and the NWAIT signal
may lead to unpredictable behavior.

23.14.3 Sequential and Non-sequential Accesses

If the chip select and the MSB of addresses as defined in Table 23-5 are identical, then the current access lies in
the same page as the previous one, and no page break occurs.

Using this information, all data within the same page, sequential or not sequential, are accessed with a minimum
access time (t,). Figure 23-32 illustrates access to an 8-bit memory device in page mode, with 8-byte pages.
Access to D1 causes a page access with a long access time (t,,). Accesses to D3 and D7, though they are not
sequential accesses, only require a short access time (tg,).

If the MSB of addresses are different, the SMC performs the access of a new page. In the same way, if the chip
select is different from the previous access, a page break occurs. If two sequential accesses are made to the page
mode memory, but separated by an other internal or external peripheral access, a page break occurs on the
second access because the chip select of the device was deasserted between both accesses.

SAM3S8 /| SAM3SDS8 [DATASHEET 387
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 23-32. Access to Non-Sequential Data within the Same Page

MCK [N S B S B O
|
|
|
|
|

A[23:3] X Page address

|

|

|

|

|

A2, AL A0 K A1 e A3 X A7
| | X
! |
| |
I
NRD TN\ |
|

|

|

1

|

|

|

|

|

|

DD

|
|
| T

over CCCCam | ,
|
: NCS_RD_PULSE NRD_PULSE : NRD_PULSE :
< >l >l ‘
X I T ':

388 SAM3S8 / SAM3SD8 [DATASHEET] AtmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.15 Static Memory Controller (SMC) User Interface

The SMC is programmed using the registers listed in Table 23-7. For each chip select, a set of 4 registers is used to pro-
gram the parameters of the external device connected on it. In Table 23-7, “CS_number” denotes the chip select number.
16 bytes (0x10) are required per chip select.

The user must complete writing the configuration by writing any one of the SMC_MODE registers.

Table 23-7. Register Mapping

Offset Register Name Access Reset
0x10 x CS_number + 0x00 | SMC Setup Register SMC_SETUP Read-write 0x01010101
0x10 x CS_number + 0x04 | SMC Pulse Register SMC_PULSE Read-write 0x01010101
0x10 x CS_number + 0x08 | SMC Cycle Register SMC_CYCLE Read-write 0x00030003
0x10 x CS_number + 0xOC | SMC Mode Register SMC_MODE Read-write 0x10000003
0x80 SMC OCMS MODE Register SMC_OCMS Read-write 0x00000000
0x84 SMC OCMS KEY1 Register SMC_KEY1 Write once 0x00000000
0x88 SMC OCMS KEY2 Register SMC_KEY2 Write once 0x00000000
OxE4 SMC Write Protect Mode Register SMC_WPMR Read-write 0x00000000
OxE8 SMC Write Protect Status Register SMC_WPSR Read-only 0x00000000
OXEC-0xFC Reserved - - -

SAM3S8 /| SAM3SDS8 [DATASHEET 389
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.15.1 SMC Setup Register

Name: SMC_SETUP[0..4]

Address: 0x400E0000 [0], 0x400E0010 [1], 0x400E0020 [2], 0x400E0030 [3], 0x400E0040 [4]

Access: Read-write
31 30 29 28 27 26 25 24

| — [- | NCS_RD_SETUP |
23 22 21 20 19 18 17 16

| — [— | NRD_SETUP |
15 14 13 12 11 10 9 8

| - | - | NCS_WR_SETUP |
7 6 5 4 3 2 1 0

| - | - | NWE_SETUP |

e NWE_SETUP: NWE Setup Length
The NWE signal setup length is defined as:
NWE setup length = (128* NWE_SETUP[5] + NWE_SETUP[4:0]) clock cycles

* NCS_WR_SETUP: NCS Setup Length in WRITE Access
In write access, the NCS signal setup length is defined as:
NCS setup length = (128* NCS_WR_SETUP[5] + NCS_WR_SETUP[4:0]) clock cycles

 NRD_SETUP: NRD Setup Length
The NRD signal setup length is defined in clock cycles as:
NRD setup length = (128* NRD_SETUP[5] + NRD_SETUP[4:0]) clock cycles

e NCS_RD_SETUP: NCS Setup Length in READ Access
In read access, the NCS signal setup length is defined as:
NCS setup length = (128* NCS_RD_SETUP[5] + NCS_RD_SETUP[4:0]) clock cycles

390 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.15.2 SMC Pulse Register

Name: SMC_PULSE[0..4]

Address: 0x400E0004 [0], 0x400E0014 [1], 0Ox400E0024 [2], 0x400E0034 [3], 0x400E0044 [4]

Access: Read-write
31 30 29 28 27 26 25 24

| — [NCS_RD_PULSE |
23 22 21 20 19 18 17 16

| — [NRD_PULSE |
15 14 13 12 11 10 9 8

| - | NCS_WR_PULSE |
7 6 5 4 3 2 1 0

| - | NWE_PULSE |

« NWE_PULSE: NWE Pulse Length

The NWE signal pulse length is defined as:

NWE pulse length = (256* NWE_PULSE[6] + NWE_PULSE[5:0]) clock cycles
The NWE pulse length must be at least 1 clock cycle.

* NCS_WR_PULSE: NCS Pulse Length in WRITE Access

In write access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_WR_PULSE[6] + NCS_WR_PULSE[5:0]) clock cycles
The NCS pulse length must be at least 1 clock cycle.

e NRD_PULSE: NRD Pulse Length

In standard read access, the NRD signal pulse length is defined in clock cycles as:

NRD pulse length = (256* NRD_PULSE[6] + NRD_PULSE[5:0]) clock cycles

The NRD pulse length must be at least 1 clock cycle.

In page mode read access, the NRD_PULSE parameter defines the duration of the subsequent accesses in the page.

* NCS_RD_PULSE: NCS Pulse Length in READ Access

In standard read access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_RD_PULSE[6] + NCS_RD_PULSE[5:0]) clock cycles

The NCS pulse length must be at least 1 clock cycle.

In page mode read access, the NCS_RD_PULSE parameter defines the duration of the first access to one page.

SAM3S8 /| SAM3SDS8 [DATASHEET 391
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.15.3 SMC Cycle Register

Name: SMC_CYCLE[0..4]

Address: 0x400E0008 [0], 0x400E0018 [1], 0x400E0028 [2], 0x400E0038 [3], 0x400E0048 [4]

Access: Read-write
31 30 29 28 27 26 25 24

| - | - [- - - - - NRD_CYCLE |
23 22 21 20 19 18 17 16

| NRD_CYCLE |
15 14 13 12 11 10 9 8

| - — - - - - - NWE_CYCLE |
7 6 5 4 3 2 1 0

| NWE_CYCLE |

e NWE_CYCLE: Total Write Cycle Length

The total write cycle length is the total duration in clock cycles of the write cycle. It is equal to the sum of the setup, pulse
and hold steps of the NWE and NCS signals. It is defined as:

Write cycle length = (NWE_CYCLE[8:7]*256 + NWE_CYCLE[6:0]) clock cycles

« NRD_CYCLE: Total Read Cycle Length

The total read cycle length is the total duration in clock cycles of the read cycle. It is equal to the sum of the setup, pulse
and hold steps of the NRD and NCS signals. It is defined as:

Read cycle length = (NRD_CYCLE[8:7]*256 + NRD_CYCLE[6:0]) clock cycles

392 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.15.4 SMC MODE Register

Name: SMC_MODE]J0..4]
Address: 0x400E000C [0], 0x400E001C [1], Ox400E002C [2], Ox400E003C [3], 0x400E004C [4]
Access: Read-write
31 30 29 28 27 26 25 24
| — | — PS | — - - PMEN
23 22 21 20 19 18 17 16
| - | - - TDF_MODE | TDF_CYCLES
15 14 13 12 11 10 9 8
I - I - I DBW I - I - I - I - |
7 6 5 4 3 2 1 0
| - | - | EXNW_MODE | - | - | WRITE_MODE | READ_MODE |
« READ_MODE:

=

: The read operation is controlled by the NRD signal.

— If TDF cycles are programmed, the external bus is marked busy after the rising edge of NRD.

— If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NRD.
: The read operation is controlled by the NCS signal.

o

— If TDF cycles are programmed, the external bus is marked busy after the rising edge of NCS.
— If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NCS.

WRITE_MODE
1: The write operation is controlled by the NWE signal.

— If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NWE.
: The write operation is controlled by the NCS signal.

— If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NCS.

o

EXNW_MODE: NWAIT Mode

The NWAIT signal is used to extend the current read or write signal. It is only taken into account during the pulse phase of
the read and write controlling signal. When the use of NWAIT is enabled, at least one cycle hold duration must be pro-
grammed for the read and write controlling signal.

Value Name Description
0 DISABLED Disabled
1 Reserved
2 FROZEN Frozen Mode
3 READY Ready Mode

« Disabled Mode: The NWAIT input signal is ignored on the corresponding Chip Select.

* Frozen Mode: If asserted, the NWAIT signal freezes the current read or write cycle. After deassertion, the read/write
cycle is resumed from the point where it was stopped.

* Ready Mode: The NWAIT signal indicates the availability of the external device at the end of the pulse of the controlling
read or write signal, to complete the access. If high, the access normally completes. If low, the access is extended until
NWAIT returns high.

SAM3S8 / SAM3SD8 [DATASHEET] 393

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

« DBW: Data Bus Width

Value Name Description
0 8 BIT 8-bit bus
1 16 BIT 16-bit bus
2 32_BIT 32-bit bus
3 Reserved

e TDF_CYCLES: Data Float Time

This field gives the integer number of clock cycles required by the external device to release the data after the rising edge
of the read controlling signal. The SMC always provide one full cycle of bus turnaround after the TDF_CYCLES period. The
external bus cannot be used by another chip select during TDF_CYCLES + 1 cycles. From 0 up to 15 TDF_CYCLES can
be set.

TDF_MODE: TDF Optimization
1: TDF optimization is enabled.
— The number of TDF wait states is optimized using the setup period of the next read/write access.
0: TDF optimization is disabled.
— The number of TDF wait states is inserted before the next access begins.

PMEN: Page Mode Enabled
1: Asynchronous burst read in page mode is applied on the corresponding chip select.
0: Standard read is applied.

¢ PS: Page Size
If page mode is enabled, this field indicates the size of the page in bytes.

Value Name Description
0 4 BYTE 4-byte page
1 8 BYTE 8-byte page
2 16_BYTE 16-byte page
3 32_BYTE 32-byte page

394 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.15.5 SMC OCMS Mode Register

Name: SMC_OCMS

Address: 0x400E0080

Access: Read-write

Reset: 0x00000000
31 30 29 28 27 26 25 24

I - I - I - I - - I - I - I - |
23 22 21 20 19 18 17 16

| — | - | - | - CS3SE | CS2SE | CSI1SE | CSOSE |
15 14 13 12 11 10 9 8

I - I - I - I - - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - - I - I : | SMsE |

» CSXSE: Chip Select (x = 0 to 3) Scrambling Enable
: Disable Scrambling for CSx.

= O

: Enable Scrambling for CSx.

SMSE: Static Memory Controller Scrambling Enable

o

: Disable Scrambling for SMC access.

=

: Enable Scrambling for SMC access.

Atmel

SAM3S8 / SAM3SD8 [DATASHEET] 395

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.15.6 SMC OCMS Keyl Register

Name: SMC_KEY1

Address: 0x400E0084

Access: Write Once

Reset: 0x00000000
31 30 29 28 27 26 25 24

| KEY1 |
23 22 21 20 19 18 17 16

| KEY1 |
15 14 13 12 11 10 9 8

| KEY1 |
7 6 5 4 3 2 1 0

| KEY1 |

» KEY1: Off Chip Memory Scrambling (OCMS) Key Part 1

When Off Chip Memory Scrambling is enabled setting the SMC_OCMS and SMC_TIMINGS registers in accordance, the
data scrambling depends on KEY1 and KEY2 values.

396 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.15.7 SMC OCMS Key?2 Register

Name: SMC_KEY2

Address: 0x400E0088

Access: Write Once

Reset: 0x00000000
31 30 29 28 27 26 25 24

| KEY2 |
23 22 21 20 19 18 17 16

| KEY2 |
15 14 13 12 11 10 9 8

| KEY2 |
7 6 5 4 3 2 1 0

| KEY2 |

» KEY2: Off Chip Memory Scrambling (OCMS) Key Part 2

When Off Chip Memory Scrambling is enabled setting the SMC_OCMS and SMC_TIMINGS registers in accordance, the
data scrambling depends on KEY2 and KEY1 values.

SAM3S8 /| SAM3SDS8 [DATASHEET 397
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.15.8 SMC Write Protect Mode Register

Name: SMC_WPMR

Address: 0x400EOOE4

Access: Read-write

Reset: See Table 23-7
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

. - r - r - I = 1T = 1T = | = WPEN |

* WPEN: Write Protect Enable
0 = Disables the Write Protect if WPKEY corresponds to 0x534D43 (“SMC” in ASCII).
1 = Enables the Write Protect if WPKEY corresponds to 0x534D43 (“SMC” in ASCII).
Protects the registers listed below:

e Section 23.15.1 “SMC Setup Register”

e Section 23.15.2 “SMC Pulse Register”

e Section 23.15.3 “SMC Cycle Register”

e Section 23.15.4 “SMC MODE Register”

« WPKEY: Write Protect KEY

Should be written at value 0x534D43 (“SMC” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

398 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

23.15.9 SMC Write Protect Status Register

Name: SMC_WPSR

Address: 0x400EOOES8

Type: Read-only

Value: See Table 23-7
31 30 29 28 27 26 25 24

I N = = = = —]
23 22 21 20 19 18 17 16

| WPVSRC |
15 14 13 12 11 10 9 8

| WPVSRC |
7 6 5 4 3 2 1 0

. - r - r - I = 1T = 1T = | = wevs |

* WPVS: Write Protect Enable
0 = No Write Protect Violation has occurred since the last read of the SMC_WPSR register.

1 = A Write Protect Violation occurred since the last read of the SMC_WPSR register. If this violation is an unauthorized
attempt to write a protected register, the associated violation is reported into field WPVSRC.

« WPVSRC: Write Protect Violation Source

When WPVS is active, this field indicates the write-protected register (through address offset or code) in which a write
access has been attempted.
Note: Reading SMC_WPSR automatically clears all fields.

SAM3S8 /| SAM3SDS8 [DATASHEET 399
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

24. Peripheral DMA Controller (PDC)

24.1 Description

The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals and the on- and/or off-chip
memories. The link between the PDC and a serial peripheral is operated by the AHB to APB bridge.

The user interface of each PDC channel is integrated into the user interface of the peripheral it serves. The user
interface of mono directional channels (receive only or transmit only), contains two 32-bit memory pointers and two
16-bit counters, one set (pointer, counter) for current transfer and one set (pointer, counter) for next transfer. The
bi-directional channel user interface contains four 32-bit memory pointers and four 16-bit counters. Each set
(pointer, counter) is used by current transmit, next transmit, current receive and next receive.

Using the PDC removes processor overhead by reducing its intervention during the transfer. This significantly
reduces the number of clock cycles required for a data transfer, which improves microcontroller performance.

To launch a transfer, the peripheral triggers its associated PDC channels by using transmit and receive signals.
When the programmed data is transferred, an end of transfer interrupt is generated by the peripheral itself.

24.2 Embedded Characteristics
e Handles data transfer between peripherals and memories
e Twenty-one Channels (ATSAM3S 64-pin version and 100-pin version) or Eighteen Channels (ATSAM3S 48-
pin version)
— Two for each USART
— Two for the UART
— Two for each Two Wire Interface
— One for the PWM
— One for each Analog-to-digital Converter
— One for the Digital-to-Analog Converter
— Two for the MCI
— Two for the SPI
— Two for the SSC
e Low bus arbitration overhead
— One Master Clock cycle needed for a transfer from memory to peripheral
— Two Master Clock cycles needed for a transfer from peripheral to memory
e Next Pointer management for reducing interrupt latency requirement

400 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

The Peripheral DMA Controller handles transfer requests from the channel according to the following priorities
(Low to High priorities):

Table 24-1. Peripheral DMA Controller

Instance name Channel T/R
USART2 Transmit
USART2 Receive

PWM Transmit
TWIL1 Transmit
TWIO Transmit
UART1 Transmit
UARTO Transmit
USART1 Transmit
USARTO Transmit
DACC Transmit
SPI Transmit
SSC Transmit
HSMCI Transmit
PIOA Receive
TWIL1 Receive
TWIO Receive
UART1 Receive
UARTO Receive
USART1 Receive
USARTO Receive
ADC Receive
SPI Receive
SSC Receive
HSMCI Receive

Atmel

SAM3S8 / SAM3SD8 [DATASHEET]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

401

24.3 Block Diagram

Figure 24-1. Block Diagram

FULL DUPLEX PDC
PERIPHERAL
THR PDC Channel A
RHR PDC Channel B

Status & Control
Control <€ >

HALF DUPLEX

PERIPHERAL Control
THR
PDC Channel C
RHR
Status & Control
Control |- >

RECEIVE or TRANSMIT

PERIPHERAL
RHR or THR PDC Channel D
Status & Control
Control <€ >

402 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

24.4 Functional Description

24.4.1 Configuration

The PDC channel user interface enables the user to configure and control data transfers for each channel. The
user interface of each PDC channel is integrated into the associated peripheral user interface.

The user interface of a serial peripheral, whether it is full or half duplex, contains four 32-bit pointers (RPR, RNPR,
TPR, TNPR) and four 16-bit counter registers (RCR, RNCR, TCR, TNCR). However, the transmit and receive
parts of each type are programmed differently: the transmit and receive parts of a full duplex peripheral can be
programmed at the same time, whereas only one part (transmit or receive) of a half duplex peripheral can be
programmed at a time.

32-bit pointers define the access location in memory for current and next transfer, whether it is for read (transmit)
or write (receive). 16-bit counters define the size of current and next transfers. It is possible, at any moment, to
read the number of transfers left for each channel.

The PDC has dedicated status registers which indicate if the transfer is enabled or disabled for each channel. The
status for each channel is located in the associated peripheral status register. Transfers can be enabled and/or
disabled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in the peripheral’s Transfer Control Register.

At the end of a transfer, the PDC channel sends status flags to its associated peripheral. These flags are visible in
the peripheral status register (ENDRX, ENDTX, RXBUFF, and TXBUFE). Refer to Section 24.4.3 and to the
associated peripheral user interface.

24.4.2 Memory Pointers

Each full duplex peripheral is connected to the PDC by a receive channel and a transmit channel. Both channels
have 32-bit memory pointers that point respectively to a receive area and to a transmit area in on- and/or off-chip
memory.

Each half duplex peripheral is connected to the PDC by a bidirectional channel. This channel has two 32-bit
memory pointers, one for current transfer and the other for next transfer. These pointers point to transmit or
receive data depending on the operating mode of the peripheral.

Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented respectively by 1,
2 or 4 bytes.

If a memory pointer address changes in the middle of a transfer, the PDC channel continues operating using the
new address.

24.4.3 Transfer Counters

Each channel has two 16-bit counters, one for current transfer and the other one for next transfer. These counters
define the size of data to be transferred by the channel. The current transfer counter is decremented first as the
data addressed by current memory pointer starts to be transferred. When the current transfer counter reaches
zero, the channel checks its next transfer counter. If the value of next counter is zero, the channel stops
transferring data and sets the appropriate flag. But if the next counter value is greater then zero, the values of the
next pointer/next counter are copied into the current pointer/current counter and the channel resumes the transfer
whereas next pointer/next counter get zero/zero as values. At the end of this transfer the PDC channel sets the
appropriate flags in the Peripheral Status Register.

The following list gives an overview of how status register flags behave depending on the counters’ values:
e ENDRX flag is set when the PERIPH_RCR register reaches zero.
e RXBUFF flag is set when both PERIPH_RCR and PERIPH_RNCR reach zero.
e ENDTX flag is set when the PERIPH_TCR register reaches zero.
e TXBUFE flag is set when both PERIPH_TCR and PERIPH_TNCR reach zero.

SAM3S8 /| SAM3SDS8 [DATASHEET 403
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

These status flags are described in the Peripheral Status Register.

24.4.4 Data Transfers

The serial peripheral triggers its associated PDC channels’ transfers using transmit enable (TXEN) and receive
enable (RXEN) flags in the transfer control register integrated in the peripheral’s user interface.

When the peripheral receives an external data, it sends a Receive Ready signal to its PDC receive channel which
then requests access to the Matrix. When access is granted, the PDC receive channel starts reading the
peripheral Receive Holding Register (RHR). The read data are stored in an internal buffer and then written to
memory.

When the peripheral is about to send data, it sends a Transmit Ready to its PDC transmit channel which then
requests access to the Matrix. When access is granted, the PDC transmit channel reads data from memory and
puts them to Transmit Holding Register (THR) of its associated peripheral. The same peripheral sends data
according to its mechanism.

24.4.5 PDC Flags and Peripheral Status Register

Each peripheral connected to the PDC sends out receive ready and transmit ready flags and the PDC sends back
flags to the peripheral. All these flags are only visible in the Peripheral Status Register.

Depending on the type of peripheral, half or full duplex, the flags belong to either one single channel or two
different channels.

24.4.5.1 Receive Transfer End
This flag is set when PERIPH_RCR register reaches zero and the last data has been transferred to memory.
It is reset by writing a non zero value in PERIPH_RCR or PERIPH_RNCR.

24.4.5.2 Transmit Transfer End
This flag is set when PERIPH_TCR register reaches zero and the last data has been written into peripheral THR.
It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.

24.4.5.3 Receive Buffer Full

This flag is set when PERIPH_RCR register reaches zero with PERIPH_RNCR also set to zero and the last data
has been transferred to memory.

It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.

24.4.5.4 Transmit Buffer Empty

This flag is set when PERIPH_TCR register reaches zero with PERIPH_TNCR also set to zero and the last data
has been written into peripheral THR.

It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.

404 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

24.5 Peripheral DMA Controller (PDC) User Interface

Table 24-2. Register Mapping

Offset Register Name Access Reset
0x100 Receive Pointer Register PERIPHY_RPR Read-write 0
0x104 Receive Counter Register PERIPH_RCR Read-write 0
0x108 Transmit Pointer Register PERIPH_TPR Read-write 0
0x10C Transmit Counter Register PERIPH_TCR Read-write 0
0x110 Receive Next Pointer Register PERIPH_RNPR Read-write 0
0x114 Receive Next Counter Register PERIPH_RNCR Read-write 0
0x118 Transmit Next Pointer Register PERIPH_TNPR Read-write 0
0x11C Transmit Next Counter Register PERIPH_TNCR Read-write 0
0x120 Transfer Control Register PERIPH_PTCR Write-only 0
0x124 Transfer Status Register PERIPH_PTSR Read-only 0

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user
according to the function and the desired peripheral.)

SAM3S8 /| SAM3SDS8 [DATASHEET 405
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

24.5.1 Receive Pointer Register

Name: PERIPH_RPR

Access: Read-write
31 30 29 28 27 26 25 24

| RXPTR |
23 22 21 20 19 18 17 16

| RXPTR |
15 14 13 12 11 10 9 8

| RXPTR |
7 6 5 4 3 2 1 0

| RXPTR |

« RXPTR: Receive Pointer Register
RXPTR must be set to receive buffer address.
When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR.

406 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

24.5.2 Receive Counter Register

Name: PERIPH_RCR

Access: Read-write
31 30 29 28 27 26 25 24

I - I - | - - I - I - | - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| RXCTR |
7 6 5 4 3 2 1 0

| RXCTR |

» RXCTR: Receive Counter Register

RXCTR must be set to receive buffer size.

When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR.
0 = Stops peripheral data transfer to the receiver

1 - 65535 = Starts peripheral data transfer if corresponding channel is active

SAM3S8 /| SAM3SDS8 [DATASHEET 407
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

24.5.3 Transmit Pointer Register

Name: PERIPH_TPR

Access: Read-write
31 30 29 28 27 26 25 24

| TXPTR |
23 22 21 20 19 18 17 16

| TXPTR |
15 14 13 12 11 10 9 8

| TXPTR |
7 6 5 4 3 2 1 0

| TXPTR |

¢ TXPTR: Transmit Counter Register
TXPTR must be set to transmit buffer address.
When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR.

408 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

24.5.4 Transmit Counter Register

Name: PERIPH_TCR

Access: Read-write
31 30 29 28 27 26 25 24

I - I - | - - I - I - | - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| TXCTR |
7 6 5 4 3 2 1 0

| TXCTR |

e TXCTR: Transmit Counter Register

TXCTR must be set to transmit buffer size.

When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR.
0 = Stops peripheral data transfer to the transmitter

1- 65535 = Starts peripheral data transfer if corresponding channel is active

SAM3S8 /| SAM3SDS8 [DATASHEET 409
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

24.5.5 Receive Next Pointer Register

Name: PERIPH_RNPR

Access: Read-write
31 30 29 28 27 26 25 24

| RXNPTR |
23 22 21 20 19 18 17 16

| RXNPTR |
15 14 13 12 11 10 9 8

| RXNPTR |
7 6 5 4 3 2 1 0

| RXNPTR |

« RXNPTR: Receive Next Pointer
RXNPTR contains next receive buffer address.
When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

410 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

24.5.6 Receive Next Counter Register

Name: PERIPH_RNCR

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| RXNCTR |
7 6 5 4 3 2 1 0

| RXNCTR |

« RXNCTR: Receive Next Counter
RXNCTR contains next receive buffer size.
When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

SAM3S8 / SAM3SDS8 [DATASHEET 411
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

24.5.7 Transmit Next Pointer Register

Name: PERIPH_TNPR

Access: Read-write
31 30 29 28 27 26 25 24

| TXNPTR |
23 22 21 20 19 18 17 16

| TXNPTR |
15 14 13 12 11 10 9 8

| TXNPTR |
7 6 5 4 3 2 1 0

| TXNPTR |

¢ TXNPTR: Transmit Next Pointer
TXNPTR contains next transmit buffer address.
When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

412 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

24.5.8 Transmit Next Counter Register

Name: PERIPH_TNCR

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| TXNCTR |
7 6 5 4 3 2 1 0

| TXNCTR |

« TXNCTR: Transmit Counter Next
TXNCTR contains next transmit buffer size.
When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

SAM3S8 /| SAM3SDS8 [DATASHEET 413
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

24.5.9 Transfer Control Register

Name: PERIPH_PTCR

Access: Write-only
31 30 29 28 27 26 25 24

I - I - | - - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | TXTDIS [TXTEN |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | RXTDIS [RXTEN |

* RXTEN: Receiver Transfer Enable
0 = No effect.
1 = Enables PDC receiver channel requests if RXTDIS is not set.

When a half duplex peripheral is connected to the PDC, enabling the receiver channel requests automatically disables the
transmitter channel requests. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.

* RXTDIS: Receiver Transfer Disable
0 = No effect.
1 = Disables the PDC receiver channel requests.

When a half duplex peripheral is connected to the PDC, disabling the receiver channel requests also disables the transmit-
ter channel requests.

e TXTEN: Transmitter Transfer Enable
0 = No effect.
1 = Enables the PDC transmitter channel requests.

When a half duplex peripheral is connected to the PDC, it enables the transmitter channel requests only if RXTEN is not
set. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.

e TXTDIS: Transmitter Transfer Disable
0 = No effect.
1 = Disables the PDC transmitter channel requests.

When a half duplex peripheral is connected to the PDC, disabling the transmitter channel requests disables the receiver
channel requests.

414 SAM3S8 / SAM3SD8 [DATASHEET)] AtmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

24.5.10 Transfer Status Register

Name: PERIPH_PTSR

Access: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

I - I - - - I - I - - I - |
15 14 13 12 11 10 9 8

. - r - ¢ - - - [- [- [TXEN]
7 6 5 4 3 2 1 0

. - r - ¢ - - 1 - [- [- [RXEN |

» RXTEN: Receiver Transfer Enable
0 = PDC Receiver channel requests are disabled.

1 = PDC Receiver channel requests are enabled.

e TXTEN: Transmitter Transfer Enable
0 = PDC Transmitter channel requests are disabled.
1 = PDC Transmitter channel requests are enabled.

SAM3S8 /| SAM3SDS8 [DATASHEET 415
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

25. Clock Generator

25.1 Description

The Clock Generator User Interface is embedded within the Power Management Controller and is described in
Section 26.16 “Power Management Controller (PMC) User Interface”. However, the Clock Generator registers are
named CKGR_.

25.2 Embedded Characteristics

The Clock Generator is made up of:
e A Low Power 32,768 Hz Slow Clock Oscillator with bypass mode.
e A Low Power RC Oscillator
e A 3to 20 MHz Crystal or Ceramic Resonator-based Oscillator, which can be bypassed.
[]

A factory programmed Fast RC Oscillator. 3 output frequencies can be selected: 4, 8 or 12 MHz. By default
4MHz is selected.

e Two 60 to 130 MHz programmable PLL (input from 3.5 to 20 MHz), capable of providing the clock MCK to
the processor and to the peripherals.
It provides the following clocks:
e SLCK, the Slow Clock, which is the only permanent clock within the system.

e MAINCK is the output of the Main Clock Oscillator selection: either the Crystal or Ceramic Resonator-based
Oscillator or 4/8/12 MHz Fast RC Oscillator.

e PLLACK is the output of the Divider and 60 to 130 MHz programmable PLL (PLLA).
PLLBCK is the output of the Divider and 60 to 130 MHz programmable PLL (PLLB).

416 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

25.3

254

Atmel

Block Diagram

Figure 25-1. Clock Generator Block Diagram
Clock Gene rator
XTALSEL
(Supply @ntroller)
Embedded
32kHz 0
RC Oscillator
|, SowClocl
SCK
XIN32 | I 32768 Hz
Qrystal 1
XOUT32 | I Oscilbtor
Embedded MOSCSEL
4/8/12 MHz
Fast 0
RC Oscillator
Main do cl
320 MHz MAINCK
XIN | I Crystal
or 1
Ceramic
xout Resonator
Oscillgor
L PLLAand PLLA Cloc
Divider /2 PLLACK
PLLBand PLLB Cloc
Divider /2 PLLBCK
l Satus T Control
Power
Management
Controller
Slow Clock

The Supply Controller embeds a slow clock generator that is supplied with the VDDIO power supply. As soon as
the VDDIO is supplied, both the crystal oscillator and the embedded RC oscillator are powered up, but only the
embedded RC oscillator is enabled. This allows the slow clock to be valid in a short time (about 100 ps).

The Slow Clock is generated either by the Slow Clock Crystal Oscillator or by the Slow Clock RC Oscillator.

The selection between the RC or the crystal oscillator is made by writing the XTALSEL bit in the Supply Controller
Control Register (SUPC_CR).

SAM3S8 / SAM3SD8 [DATASHEET]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

417

25.4.1 Slow Clock RC Oscillator

By default, the Slow Clock RC Oscillator is enabled and selected. The user has to take into account the possible
drifts of the RC Oscillator. More details are given in the section “DC Characteristics” of the product datasheet.

It can be disabled via the XTALSEL bit in the Supply Controller Control Register (SUPC_CR).

25.4.2 Slow Clock Crystal Oscillator

The Clock Generator integrates a 32,768 Hz low-power oscillator. In order to use this oscillator, the XIN32 and
XOUTS32 pins must be connected to a 32,768 Hz crystal. Two external capacitors must be wired as shown in
Figure 25-2. More details are given in the section “DC Characteristics” of the product datasheet.

Note that the user is not obliged to use the Slow Clock Crystal and can use the RC oscillator instead.

Figure 25-2. Typical Slow Clock Crystal Oscillator Connection
XIN32 XOUT32 GND
32,768 Hz

The user can select the crystal oscillator to be the source of the slow clock, as it provides a more accurate
frequency. The command is made by writing the Supply Controller Control Register (SUPC_CR) with the
XTALSEL bit at 1. This results in a sequence which first configures the PIO lines multiplexed with XIN32 and
XOUT32 to be driven by the oscillator, then enables the crystal oscillator and then disables the RC oscillator to
save power. The switch of the slow clock source is glitch free. The OSCSEL bit of the Supply Controller Status
Register (SUPC_SR) tracks the oscillator frequency downstream. It must be read in order to be informed when the
switch sequence, initiated when a new value is written in MOSCSEL bit of CKGR_MOR, is done.

Coming back on the RC oscillator is only possible by shutting down the VDDIO power supply. If the user does not
need the crystal oscillator, the XIN32 and XOUT32 pins can be left unconnected since by default the XIN32 and
XOUT32 system I/O pins are in PIO input mode with pull-up after reset.

The user can also set the crystal oscillator in bypass mode instead of connecting a crystal. In this case, the user
has to provide the external clock signal on XIN32. The input characteristics of the XIN32 pin are given in the
product electrical characteristics section. In order to set the bypass mode, the OSCBYPASS bit of the Supply
Controller Mode Register (SUPC_MR) needs to be set at 1.

The user can set the Slow Clock Crystal Oscillator in bypass mode instead of connecting a crystal. In this case, the
user has to provide the external clock signal on XIN32. The input characteristics of the XIN32 pin under these
conditions are given in the product electrical characteristics section.

The programmer has to be sure to set the OSCBYPASS bit in the Supply Controller Mode Register (SUPC_MR)
and XTALSEL bit in the Supply Controller Control Register (SUPC_CR).

418 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

25.5 Main Clock
Figure 25-3 shows the Main Clock block diagram.

Figure 25-3. Main Clock Block Diagram

[Moscreen| [moscrer |
I

—— | MOSCRCS
4/8/12 MHz
Fast RC MOSCSEL MOSCSELS
Oscillaor
0
MAINCK
MOSCXTEN .
Main Clock
3-20 MH 1
[F——] G
or
XOUT| I Ceramic Rasonator
Oscilldor
MOSCXTCNT
3-20 Mk
Oscilla MOSCXTS
Slow Clock Ozf:mec;r -
| MOSCRCEN I
[moscxTen | | remeas |

Main Clock MAINF
MAINCK Ref, E
; requency
Main Clock Counter MAINRDY

The Main Clock has two sources:
e 4/8/12 MHz Fast RC Oscillator which starts very quickly and is used at startup.
e 3to 20 MHz Crystal or Ceramic Resonator-based Oscillator which can be bypassed.

SAM3S8 /| SAM3SDS8 [DATASHEET 419
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

25.5.1 4/8/12 MHz Fast RC Oscillator

After reset, the 4/8/12 MHz Fast RC Oscillator is enabled with the 4 MHz frequency selected and it is selected as
the source of MAINCK. MAINCK is the default clock selected to start up the system.

The Fast RC Oscillator 8 and 12 MHz frequencies are calibrated in production. Note that is not the case for the 4
MHz frequency.

Please refer to the “DC Characteristics” section of the product datasheet.

The software can disable or enable the 4/8/12 MHz Fast RC Oscillator with the MOSCRCEN bit in the Clock
Generator Main Oscillator Register (CKGR_MOR).

The user can also select the output frequency of the Fast RC Oscillator, either 4 MHz, 8 MHz or 12 MHz are
available. It can be done through MOSCRCF bits in CKGR_MOR. When changing this frequency selection, the
MOSCRCS bit in the Power Management Controller Status Register (PMC_SR) is automatically cleared and
MAINCK is stopped until the oscillator is stabilized. Once the oscillator is stabilized, MAINCK restarts and
MOSCRCS is set.

When disabling the Main Clock by clearing the MOSCRCEN bit in CKGR_MOR, the MOSCRCS bit in the Power
Management Controller Status Register (PMC_SR) is automatically cleared, indicating the Main Clock is off.

Setting the MOSCRCS bit in the Power Management Controller Interrupt Enable Register (PMC_IER) can trigger
an interrupt to the processor.

It is recommended to disable the Main Clock as soon as the processor no longer uses it and runs out of SLCK,
PLLACK or PLLBCK.

The CAL4, CAL8 and CAL12 values in the PMC Oscillator Calibration Register (PMC_OCR) are the default values
set by Atmel during production. These values are stored in a specific Flash memory area different from the main
memory plane. These values cannot be modified by the user and cannot be erased by a Flash erase command or
by the ERASE pin. Values written by the user's application in PMC_OCR are reset after each power up or
peripheral reset.

25.5.2 4/8/12 MHz Fast RC Oscillator Clock Frequency Adjustment

It is possible for the user to adjust the main RC oscillator frequency through PMC_OCR. By default, SEL4/8/12 are
low, so the RC oscillator will be driven with Flash calibration bits which are programmed during chip production.

The user can adjust the trimming of the 4/8/12 MHz Fast RC oscillator through this register in order to obtain more
accurate frequency (to compensate derating factors such as temperature and voltage).

In order to calibrate the 4 MHz oscillator frequency, SEL4 must be set to 1 and a good frequency value must be
configured in CAL4. Likewise, SEL8/12 must be set to 1 and a trim value must be configured in CAL8/12 in order
to adjust the 8/12 MHz frequency oscillator.

It is possible to adjust the oscillator frequency while operating from this clock. For example, when running on 4
MHz it is possible to change the CAL4 value if SEL4 is set in PMC_OCR.

It is possible to restart, at anytime, a measurement of the main frequency by means of the RCMEAS bit in Main
Clock Frequency Register (CKGR_MCFR). Thus, when MAINFRDY flag is set, the MAINF field returns the
frequency of the main clock and software can calculate the error with an expected frequency and correct the CAL4
(or CALB/CAL12) field accordingly. This may be used to compensate frequency drift due to derating factors such
as temperature and/or voltage.

420 SAM3S8 / SAM3SD8 [DATASHEET)] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

25.5.3 3to 20 MHz Crystal or Ceramic Resonator-based Oscillator

After reset, the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator is disabled and it is not selected as the
source of MAINCK.

The user can select the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator to be the source of MAINCK,
as it provides a more accurate frequency. The software enables or disables the main oscillator so as to reduce
power consumption by clearing the MOSCXTEN bit in the Main Oscillator Register (CKGR_MOR).

When disabling the main oscillator by clearing the MOSCXTEN bit in CKGR_MOR, the MOSCXTS bit in PMC_SR
is automatically cleared, indicating the Main Clock is off.

When enabling the main oscillator, the user must initiate the main oscillator counter with a value corresponding to
the startup time of the oscillator. This startup time depends on the crystal frequency connected to the oscillator.

When the MOSCXTEN bit and the MOSCXTCNT are written in CKGR_MOR to enable the main oscillator, the XIN
and XOUT pins are automatically switched into oscillator mode and MOSCXTS bit in the Power Management
Controller Status Register (PMC_SR) is cleared and the counter starts counting down on the slow clock divided by
8 from the MOSCXTCNT value. Since the MOSCXTCNT value is coded with 8 bits, the maximum startup time is
about 62 ms.

When the counter reaches 0, the MOSCXTS bit is set, indicating that the main clock is valid. Setting the
MOSCXTS bit in PMC_IMR can trigger an interrupt to the processor.

25.5.4 Main Clock Oscillator Selection

The user can select either the 4/8/12 MHz Fast RC oscillator or the 3 to 20 MHz Crystal or Ceramic Resonator-
based oscillator to be the source of Main Clock.

The advantage of the 4/8/12 MHz Fast RC oscillator is that it provides fast startup time, this is why it is selected by
default (to start up the system) and when entering Wait Mode.

The advantage of the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator is that it is very accurate.

The selection is made by writing the MOSCSEL bit in the Main Oscillator Register (CKGR_MOR). The switch of
the Main Clock source is glitch free, so there is no need to run out of SLCK, PLLACK or PLLBCK in order to
change the selection. The MOSCSELS bit of the Power Management Controller Status Register (PMC_SR) allows
knowing when the switch sequence is done.

Setting the MOSCSELS bit in PMC_IMR can trigger an interrupt to the processor.

Enabling the Fast RC Oscillator (MOSCRCEN = 1) and changing the Fast RC Frequency (MOSCCRF) at the
same time is not allowed.

The Fast RC must be enabled first and its frequency changed in a second step.

SAM3S8 / SAM3SDS8 [DATASHEET 421
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

25.5.5 Main Clock Frequency Counter
The device features a Main Clock frequency counter that provides the frequency of the Main Clock.

The Main Clock frequency counter is reset and starts incrementing at the Main Clock speed after the next rising
edge of the Slow Clock in the following cases:

e when the 4/8/12 MHz Fast RC oscillator clock is selected as the source of Main Clock and when this
oscillator becomes stable (i.e., when the MOSCRCS bit is set)

e when the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator is selected as the source of Main Clock
and when this oscillator becomes stable (i.e., when the MOSCXTS bhit is set)

e when the Main Clock Oscillator selection is modified
e when the RCMEAS bit of CKGR_MFCR is written to 1.

Then, at the 16th falling edge of Slow Clock, the MAINFRDY bit in the Clock Generator Main Clock Frequency
Register (CKGR_MCFR) is set and the counter stops counting. Its value can be read in the MAINF field of
CKGR_MCEFR and gives the number of Main Clock cycles during 16 periods of Slow Clock, so that the frequency
of the 4/8/12 MHz Fast RC oscillator or 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator can be
determined.

25.6 Divider and PLL Block

The device features two Divider/PLL Blocks that permit a wide range of frequencies to be selected on either the
master clock, the processor clock or the programmable clock outputs. Additionally, they provide a 48 MHz signal to
the embedded USB device port regardless of the frequency of the main clock.

Figure 25-4 shows the block diagram of the dividers and PLL blocks.

Figure 25-4. Dividers and PLL Blocks Diagram

MAINCK P Divider B PLL B > PLLBCK

Divider A PLLA —— > PLLACK

PLLADIV2
PLLBCOUNT

PLL B
Counter LOCKB
PLLACOUNT

PLLA
SLeK ——[__LockA |
Counter Cele

422 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

25.6.1 Divider and Phase Lock Loop Programming

The divider can be set between 1 and 255 in steps of 1. When a divider field (DIV) is set to 0, the output of the
corresponding divider and the PLL output is a continuous signal at level 0. On reset, each DIV field is set to 0, thus
the corresponding PLL input clock is set to 0.

The PLL (PLLA, PLLB) allows multiplication of the divider's outputs. The PLL clock signal has a frequency that
depends on the respective source signal frequency and on the parameters DIV (DIVA, DIVB) and MUL (MULA,
MULB). The factor applied to the source signal frequency is (MUL + 1)/DIV. When MUL is written to O, the PLL is
disabled and its power consumption is saved. Re-enabling the PLL can be performed by writing a value higher
than 0 in the MUL field.

Whenever the PLL is re-enabled or one of its parameters is changed, the LOCK (LOCKA, LOCKB) bit in PMC_SR
is automatically cleared. The values written in the PLLCOUNT field (PLLACOUNT, PLLBCOUNT) in CKGR_PLLR
(CKGR_PLLAR, CKGR_PLLBR) are loaded in the PLL counter. The PLL counter then decrements at the speed of
the Slow Clock until it reaches 0. At this time, the LOCK bit is set in PMC_SR and can trigger an interrupt to the
processor. The user has to load the number of Slow Clock cycles required to cover the PLL transient time into the
PLLCOUNT field.

The PLL clock can be divided by 2 by writing the PLLDIV2 (PLLADIV2, PLLBDIV2) bit in PMC Master Clock
Register (PMC_MCKR).
It is forbidden to change 4/8/12 MHz Fast RC oscillator, or main selection in CKGR_MOR register while Master
clock source is PLL and PLL reference clock is the Fast RC oscillator.
The user must:
e Switch on the Main RC oscillator by writing 1 in CSS field of PMC_MCKR.
Change the frequency (MOSCRCF) or oscillator selection (MOSCSEL) in CKGR_MOR.
Wait for MOSCRCS (if frequency changes) or MOSCSELS (if oscillator selection changes) in PMC_IER.
Disable and then enable the PLL (LOCK in PMC_IDR and PMC_IER).
Wait for PLLRDY.
Switch back to PLL.

SAM3S8 /| SAM3SDS8 [DATASHEET 423
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26. Power Management Controller (PMC)

26.1 Description

The Power Management Controller (PMC) optimizes power consumption by controlling all system and user
peripheral clocks. The PMC enables/disables the clock inputs to many of the peripherals and the Cortex-M3
Processor.

The Supply Controller selects between the 32 kHz RC oscillator or the crystal oscillator. The unused oscillator is
disabled automatically so that power consumption is optimized.

By default, at startup the chip runs out of the Master Clock using the Fast RC oscillator running at 4 MHz.

The user can trim the 8 and 12 MHz RC Oscillator frequencies by software.

26.2 Embedded Characteristics

The Power Management Controller provides the following clocks:

e MCK, the Master Clock, programmable from a few hundred Hz to the maximum operating frequency of the
device. It is available to the modules running permanently, such as the Enhanced Embedded Flash
Controller.

Processor Clock (HCLK) , must be switched off when entering the processor in Sleep Mode.

Free running processor Clock (FCLK)

the Cortex-M3 SysTick external clock

UDP Clock (UDPCK), required by USB Device Port operations.

Peripheral Clocks, typically MCK, provided to the embedded peripherals (USART, SSC, SPI, TWI, TC,
HSMCI, etc.) and independently controllable. In order to reduce the number of clock names in a product, the
Peripheral Clocks are named MCK in the product datasheet.

Programmable Clock Outputs can be selected from the clocks provided by the clock generator and driven on the
PCKXx pins.
The Power Management Controller also provides the following operations on clocks:

e a main crystal oscillator clock failure detector.

e afrequency counter on main clock and an on-the-fly adjustable main RC oscillator frequency.

424 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.3 Block Diagram

Figure 26-1. General Clock Block Diagram

Clock Gene rator
XTALSEL Processor Processor clock
Clock L > HCLK
(Supply @ntroller) Controller
Sleep Node < int
Embedded
32kRC |——> 0
Oscillaor
Divider
Sow Clock —] sTick
ETe 8 S
| I Master Clock Controller .
XINS2 32768 H 1 9K (RC_MCKR) Free running clock
Crysta FCLK
XOUT32 | I Oscilldgor MAINCK
Prescaler
OSCSEL PLLBCK 1112,/3,/4./8, Mas;ﬂeéCK'OCk
Embedded PLLAK 116,/32,/64
4/8/12 MHz -
Fast ——> 0 Peripherals
RCOscillator PRES (;I&%(©ntroller
Main Clock (Pmc) ONIOFF _
3-20 Mz MAINCK periph_clkl..
XIN | I O‘éfal
Geramic [— 1
Resonator
xout | I Oscillgor Programmable Clock Controller
- SLCK ®C_PCKXx)
MAINGC Prescaler ON/OFF
PLLA and PLLBCK| 248, bl 5 pekl]
Divider /2 PLLA Clock PLLAK /16,/32,/64
PLLAK MCK
=
PLLB and PLLB Clock USB Clock @htroller (PMC_USB)
Divider /2 PLLBCK PLLAK ON/OFH USB Clock
Divider a UDPCK
I PLLBCK| 11,12,13,...,116
|
| saus T oontrol UsBS| USBDV
Power
Management
Controller

26.4 Master Clock Controller

The Master Clock Controller provides selection and division of the Master Clock (MCK). MCK is the clock provided
to all the peripherals.

The Master Clock is selected from one of the clocks provided by the Clock Generator. Selecting the Slow Clock
provides a Slow Clock signal to the whole device. Selecting the Main Clock saves power consumption of the PLLs.

The Master Clock Controller is made up of a clock selector and a prescaler.

The Master Clock selection is made by writing the CSS field (Clock Source Selection) in PMC_MCKR (Master
Clock Register). The prescaler supports the division by a power of 2 of the selected clock between 1 and 64, and
the division by 3. The PRES field in PMC_MCKR programs the prescaler.

Each time PMC_MCKR is written to define a new Master Clock, the MCKRDY bit is cleared in PMC_SR. It reads 0
until the Master Clock is established. Then, the MCKRDY bit is set and can trigger an interrupt to the processor.
This feature is useful when switching from a high-speed clock to a lower one to inform the software when the
change is actually done.

SAM3S8 /| SAM3SDS8 [DATASHEET 425
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 26-2. Master Clock Controller

PMC_MCKR PMC_MCKR
PRES

SLCK

MAINCK
Master Clock > MCK
PLLACK Prescaler
PLLBCK
To the Processor

Clock Controller (PCK)

26.5 Processor Clock Controller

The PMC features a Processor Clock Controller (HCLK) that implements the Processor Sleep Mode. The
Processor Clock can be disabled by executing the WFI (WaitForinterrupt) or the WFE (WaitForEvent) processor
instruction while the LPM bit is at 0 in the PMC Fast Startup Mode Register (PMC_FSMR).

The Processor Clock HCLK is enabled after a reset and is automatically re-enabled by any enabled interrupt. The
Processor Sleep Mode is achieved by disabling the Processor Clock, which is automatically re-enabled by any
enabled fast or normal interrupt, or by the reset of the product.

When Processor Sleep Mode is entered, the current instruction is finished before the clock is stopped, but this
does not prevent data transfers from other masters of the system bus.

26.6 SysTick Clock

The SysTick calibration value is fixed to 8000 which allows the generation of a time base of 1 ms with SysTick
clock to the maximum frequency on MCK divided by 8.

26.7 USB Clock Controller

The user can select the PLLA or the PLLB output as the USB Source Clock by writing the USBS bit in PMC_USB.
If using the USB, the user must program the PLL to generate an appropriate frequency depending on the USBDIV
bit in PMC_USB.

When the PLL output is stable, i.e., the LOCK bhit is set:

e The USB device clock can be enabled by setting the UDP bit in PMC_SCER. To save power on this
peripheral when it is not used, the user can set the UDP bit in PMC_SCDR. The UDP bit in PMC_SCSR
gives the activity of this clock. The USB device port requires both the 48 MHz signal and the Master Clock.
The Master Clock may be controlled by means of the Master Clock Controller.

USBDIV

Figure 26-3. USB Clock Controller

USB Divider
UDP Clock (UDPCK
Source 11,/2,/3,...116 (|
Clock uoP

426 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.8 Peripheral Clock Controller

The Power Management Controller controls the clocks of each embedded peripheral by means of the Peripheral
Clock Controller. The user can individually enable and disable the Clock on the peripherals.

The user can also enable and disable these clocks by writing Peripheral Clock Enable 0 (PMC_PCERDO0),
Peripheral Clock Disable 0 (PMC_PCDRO0), Peripheral Clock Enable 1 (PMC_PCER1) and Peripheral Clock
Disable 1 (PMC_PCDR1) registers. The status of the peripheral clock activity can be read in the Peripheral Clock
Status Register (PMC_PCSRO0) and Peripheral Clock Status Register (PMC_PCSR1).

When a peripheral clock is disabled, the clock is immediately stopped. The peripheral clocks are automatically
disabled after a reset.

In order to stop a peripheral, it is recommended that the system software wait until the peripheral has executed its
last programmed operation before disabling the clock. This is to avoid data corruption or erroneous behavior of the
system.

The bit number within the Peripheral Clock Control registers (PMC_PCERO-1, PMC_PCDRO0-1, and
PMC_PCSRO0-1) is the Peripheral Identifier defined at the product level. The bit number corresponds to the
interrupt source number assigned to the peripheral.

26.9 Free Running Processor Clock

The Free Running Processor Clock (FCLK) used for sampling interrupts and clocking debug blocks ensures that
interrupts can be sampled, and sleep events can be traced, while the processor is sleeping. It is connected to
Master Clock (MCK).

26.10 Programmable Clock Output Controller

The PMC controls 3 signals to be output on external pins, PCKx. Each signal can be independently programmed
via the Programmable Clock Registers (PMC_PCKX).

PCKXx can be independently selected between the Slow Clock (SLCK), the Main Clock (MAINCK), the PLLA Clock
(PLLACK), the PLLB Clock (PLLBCK) and the Master Clock (MCK) by writing the CSS field in PMC_PCKx. Each
output signal can also be divided by a power of 2 between 1 and 64 by writing the PRES (Prescaler) field in
PMC_PCKXx.

Each output signal can be enabled and disabled by writing 1 in the corresponding bit, PCKx of PMC_SCER and
PMC_SCDR, respectively. Status of the active programmable output clocks are given in the PCKx bits of
PMC_SCSR (System Clock Status Register).

Moreover, like the PCK, a status bit in PMC_SR indicates that the Programmable Clock is actually what has been
programmed in the Programmable Clock registers.

As the Programmable Clock Controller does not manage with glitch prevention when switching clocks, it is strongly
recommended to disable the Programmable Clock before any configuration change and to re-enable it after the
change is actually performed.

26.11 Fast Startup

The device allows the processor to restart in less than 10 microseconds while the device is in Wait mode. The
system enters Wait mode by executing the WaitForEvent (WFE) instruction of the processor while the LPM bit is
at 1 in the PMC Fast Startup Mode Register (PMC_FSMR).

Important: Prior to asserting any WFE instruction to the processor, the internal sources of wakeup provided by
RTT, RTC and USB must be cleared and verified too, that none of the enabled external wakeup inputs (WKUP)
hold an active polarity.

SAM3S8 / SAM3SDS8 [DATASHEET 427
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

A Fast Startup is enabled upon the detection of a programmed level on one of the 16 wake-up inputs (WKUP) or
upon an active alarm from the RTC, RTT and USB Controller. The polarity of the 16 wake-up inputs is
programmable by writing the PMC Fast Startup Polarity Register (PMC_FSPR).

The Fast Restart circuitry, as shown in Figure 26-4, is fully asynchronous and provides a fast startup signal to the
Power Management Controller. As soon as the fast startup signal is asserted, the embedded 4/8/12 MHz Fast RC
oscillator restarts automatically.

Figure 26-4. Fast Startup Circuitry

FSTTO

WKUPO P
FSTPO FSTT1

WKUP1 P

I

I FSTP1
' [Fstee]
I

I

I

WKUP15 P

FSTP15 RTTAL

RTT Alarm

FSTT15

fast_restart

1%1 NaEbiE
Ly 97

RTCAL

RTC Alarm
USBAL

USB Alarm —— >

Each wake-up input pin and alarm can be enabled to generate a Fast Startup event by writing 1 to the
corresponding bit in the Fast Startup Mode Register PMC_FSMR.

The user interface does not provide any status for Fast Startup, but the user can easily recover this information by
reading the P1O Controller, and the status registers of the RTC, RTT and USB Controller.

12 18

428 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.12 Main Crystal Clock Failure Detector

The clock failure detector monitors the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator to identify an
eventual defect of this oscillator (for example, if the crystal is unconnected).

The clock failure detector can be enabled or disabled by means of the CFDEN bit in the PMC Clock Generator
Main Oscillator Register (CKGR_MOR). After reset, the detector is disabled. However, if the 3 to 20 MHz Crystal or
Ceramic Resonator-based Oscillator is disabled, the clock failure detector is disabled too.

A failure is detected by means of a counter incrementing on the 3 to 20 MHz Crystal oscillator or Ceramic
Resonator-based oscillator clock edge and timing logic clocked on the slow clock RC oscillator controlling the
counter. The counter is cleared when the slow clock RC oscillator signal is low and enabled when the slow clock
RC oscillator is high. Thus the failure detection time is 1 slow clock RC oscillator clock period. If, during the high
level period of the slow clock RC oscillator, less than 8 fast crystal oscillator clock periods have been counted, then
a failure is declared.

If a failure of the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator clock is detected, the CFDEYV flag is
set in the PMC Status Register (PMC_SR), and generates an interrupt if it is not masked. The interrupt remains
active until a read operation in the PMC_SR register. The user can know the status of the clock failure detector at
any time by reading the CFDS bit in the PMC_SR register.

If the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator clock is selected as the source clock of MAINCK
(MOSCSEL = 1), and if the Master Clock Source is PLLACK or PLLBCK (CSS = 2 or 3), a clock failure detection
automatically forces MAINCK to be the source clock for the master clock (MCK).Then, regardless of the PMC
configuration, a clock failure detection automatically forces the 4/8/12 MHz Fast RC oscillator to be the source
clock for MAINCK. If the Fast RC oscillator is disabled when a clock failure detection occurs, it is automatically re-
enabled by the clock failure detection mechanism.

It takes 2 slow clock RC oscillator cycles to detect and switch from the 3 to 20 MHz Crystal, or Ceramic Resonator-
based oscillator, to the 4/8/12 MHz Fast RC Oscillator if the Master Clock source is Main Clock, or 3 slow clock RC
oscillator cycles if the Master Clock source is PLLACK or PLLBCK.

A clock failure detection activates a fault output that is connected to the Pulse Width Modulator (PWM) Controller.
With this connection, the PWM controller is able to force its outputs and to protect the driven device, if a clock
failure is detected. This fault output remains active until the defect is detected and until it is cleared by the bit
FOCLR in the PMC Fault Output Clear Register (PMC_FOCR).

The user can know the status of the fault output at any time by reading the FOS bit in the PMC_SR register.

26.13 Programming Sequence
1. Enabling the Main Oscillator:

The main oscillator is enabled by setting the MOSCXTEN field in the Main Oscillator Register
(CKGR_MOR). The user can define a start-up time. This can be achieved by writing a value in the
MOSCXTST field in CKGR_MOR. Once this register has been correctly configured, the user must wait for
MOSCXTS field in the PMC_SR register to be set. This can be done either by polling the status register, or
by waiting the interrupt line to be raised if the associated interrupt to MOSCXTS has been enabled in the
PMC_IER register.

Start Up Time = 8 * MOSCXTST / SLCK = 56 Slow Clock Cycles.
The main oscillator will be enabled (MOSCXTS bit set) after 56 Slow Clock Cycles.

2. Checking the Main Oscillator Frequency (Optional):

In some situations the user may need an accurate measure of the main clock frequency. This measure can
be accomplished via the Main Clock Frequency Register (CKGR_MCFR).

Once the MAINFRDY field is set in CKGR_MCFR, the user may read the MAINF field in CKGR_MCFR. This
provides the number of main clock cycles within sixteen slow clock cycles.

SAM3S8 /| SAM3SDS8 [DATASHEET 429
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

3. Setting PLL and Divider:
All parameters needed to configure PLL and the divider are located in CKGR_PLLXR.

The DIV field is used to control the divider itself. It must be set to 1 when PLL is used. By default, DIV
parameter is set to 0 which means that the divider is turned off.

The MUL field is the PLL multiplier factor. This parameter can be programmed between 0 and 36. If MUL is
set to 0, PLL will be turned off, otherwise the PLL output frequency is PLL input frequency multiplied by
(MUL + 1).

The PLLCOUNT field specifies the number of slow clock cycles before the LOCK bit is set in PMC_SR, after
CKGR_PLLXR has been written.

Once the CKGR_PLL register has been written, the user must wait for the LOCK bit to be set in the
PMC_SR. This can be done either by polling the status register or by waiting the interrupt line to be raised if
the associated interrupt to LOCK has been enabled in PMC_IER. All parameters in CKGR_PLLXR can be
programmed in a single write operation. If at some stage one of the following parameters, MUL or DIV is
modified, the LOCK bit will go low to indicate that PLL is not ready yet. When PLL is locked, LOCK will be set
again. The user is constrained to wait for LOCK bit to be set before using the PLL output clock.

4. Selection of Master Clock and Processor Clock
The Master Clock and the Processor Clock are configurable via the Master Clock Register (PMC_MCKR).

The CSS field is used to select the Master Clock divider source. By default, the selected clock source is
main clock.

The PRES field is used to control the Master Clock prescaler. The user can choose between different values
(1, 2, 3, 4, 8, 16, 32, 64). Master Clock output is prescaler input divided by PRES parameter. By default,
PRES parameter is set to 1 which means that master clock is equal to main clock.

Once PMC_MCKR has been written, the user must wait for the MCKRDY bit to be setin PMC_SR. This can
be done either by polling the status register or by waiting for the interrupt line to be raised if the associated
interrupt to MCKRDY has been enabled in the PMC_IER register.

The PMC_MCKR must not be programmed in a single write operation. The preferred programming
sequence for PMC_MCKR is as follows:
e |If a new value for CSS field corresponds to PLL Clock,
— Program the PRES field in PMC_MCKR.
— Wait for the MCKRDY bit to be set in PMC_SR.
— Program the CSS field in PMC_MCKR.
— Wait for the MCKRDY bit to be set in PMC_SR.
e If anew value for CSS field corresponds to Main Clock or Slow Clock,
— Program the CSS field in PMC_MCKR.
— Wait for the MCKRDY bit to be set in the PMC_SR.
— Program the PRES field in PMC_MCKR.
— Wait for the MCKRDY bit to be set in PMC_SR.
If at some stage one of the following parameters, CSS or PRES is modified, the MCKRDY bit will go low to

indicate that the Master Clock and the Processor Clock are not ready yet. The user must wait for MCKRDY
bit to be set again before using the Master and Processor Clocks.

Note: IF PLLx clock was selected as the Master Clock and the user decides to modify it by writing in CKGR_PLLR, the
MCKRDY flag will go low while PLL is unlocked. Once PLL is locked again, LOCK goes high and MCKRDY is set.
While PLL is unlocked, the Master Clock selection is automatically changed to Slow Clock. For further information, see
Section 26.14.2 “Clock Switching Waveforms” on page 433.

430 SAM3S8 / SAM3SD8 [DATASHEET)] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Code Example:

write_register(PMC_MKR, 0x00000001)
wai t (MCKRDY=1)
write_register(PMC_MCKR, 0x00000011)
wai t (MCKRDY=1)

The Master Clock is main clock divided by 2.
The Processor Clock is the Master Clock.
5. Selection of Programmable Clocks
Programmable clocks are controlled via registers, PMC_SCER, PMC_SCDR and PMC_SCSR.

Programmable clocks can be enabled and/or disabled via PMC_SCER and PMC_SCDR. 3 Programmable
clocks can be enabled or disabled. The PMC_SCSR provides a clear indication as to which Programmable
clock is enabled. By default all Programmable clocks are disabled.

Programmable Clock Registers (PMC_PCKXx) are used to configure Programmable clocks.

The CSS field is used to select the Programmable clock divider source. Four clock options are available:
main clock, slow clock, PLLACK, PLLBCK. By default, the clock source selected is slow clock.

The PRES field is used to control the Programmable clock prescaler. It is possible to choose between
different values (1, 2, 4, 8, 16, 32, 64). Programmable clock output is prescaler input divided by PRES
parameter. By default, the PRES parameter is set to 0 which means that master clock is equal to slow clock.

Once PMC_PCKXx has been programmed, The corresponding Programmable clock must be enabled and the
user is constrained to wait for the PCKRDYx bit to be set in PMC_SR. This can be done either by polling the
status register or by waiting the interrupt line to be raised, if the associated interrupt to PCKRDYx has been
enabled in the PMC_IER register. All parameters in PMC_PCKx can be programmed in a single write
operation.

If the CSS and PRES parameters are to be modified, the corresponding Programmable clock must be
disabled first. The parameters can then be modified. Once this has been done, the user must re-enable the
Programmable clock and wait for the PCKRDYXx bit to be set.

6. Enabling Peripheral Clocks

Once all of the previous steps have been completed, the peripheral clocks can be enabled and/or disabled
via registers PMC_PCERO0, PMC_PCER, PMC_PCDRO0 and PMC_PCDR.

SAM3S8 /| SAM3SDS8 [DATASHEET 431
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.14 Clock Switching Details

26.14.1 Master Clock Switching Timings

Table 26-1 and Table 26-2 give the worst case timings required for the Master Clock to switch from one selected
clock to another one. This is in the event that the prescaler is de-activated. When the prescaler is activated, an
additional time of 64 clock cycles of the newly selected clock has to be added.

Table 26-1. Clock Switching Timings (Worst Case)

From Main Clock SLCK PLL Clock
To
3 x PLL Clock +
Main Clock - 4 X SLCK +
2.5 x Main Clock 4 X SLCK +
1 x Main Clock
0.5 x Main Clock + 3 x PLL Clock +
SLCK 4.5 x SLCK h 5 x SLCK
05 :)'Z"gfccli'ofk * 2.5 x PLL Clock + 2.5 x PLL Clock +
PLL Clock 5x SLCK + 4 x SLCK +
PLLCOUNT x SLCK +
PLLCOUNT x SLCK PLLCOUNT x SLCK
2.5 x PLLx Clock

Notes: 1. PLL designates either the PLLA or the PLLB Clock.
2. PLLCOUNT designates either PLLACOUNT or PLLBCOUNT.

Table 26-2. Clock Switching Timings between Two PLLs (Worst Case)

From PLLA Clock PLLB Clock
To
2.5 x PLLA Clock + 3 x PLLA Clock +
PLLA Clock 4 x SLCK + 4 x SLCK +
PLLACOUNT x SLCK 1.5 x PLLA Clock
3 x PLLB Clock + 2.5 x PLLB Clock +
PLLB Clock 4 x SLCK + 4 x SLCK +
1.5 x PLLB Clock PLLBCOUNT x SLCK

432 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14 /I t I I I eL

26.14.2 Clock Switching Waveforms

Figure 26-5. Switch Master Clock from Slow Clock to PLLx Clock

SIowCIock||||||||||||||||||||||||||||||||||
PLLxCIock|||

LOCK |

MCKRDY

MasterCIock|||||||||||||||||||||||||||| |||||
Write PMC_MCKR |

Figure 26-6. Switch Master Clock from Main Clock to Slow Clock

Slow Clock | | | | | | | | | | |_

MCKRDY '| |

Write PMC_MCKR |

SAM3S8 /| SAM3SDS8 [DATASHEET 433
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 26-7. Change PLLx Programming

SIowCIock||
PLLx Clock ||| |||||||||||||||||| | | | | | | | | | | | | | | | I ||

LOCKXx

MCKRDY

MasterCIock||||||||||||||||| |||||||||||||||| ||| ||

Slow Clock
Write CKGR_PLLxR | |

Figure 26-8. Programmable Clock Output Programming

PLLx Clock ||

PCKRDY

PCKx Output ||||||||||||||||||||||||

Write PMC_PCKXx |_| PLL Clock is selected

Write PMC_SCER |_| PCKx is enabled

Write PMC_SCDR PCKx is disabled |_|

434 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.15 Write Protection Registers

To prevent any single software error that may corrupt PMC behavior, certain address spaces can be write
protected by setting the WPEN bit in the “PMC Write Protect Mode Register” (PMC_WPMR).

If a write access to the protected registers is detected, then the WPVS flag in the PMC Write Protect Status
Register (PMC_WPSR) is set and the field WPVSRC indicates in which register the write access has been
attempted.

The WPVS flag is reset by writing the PMC Write Protect Mode Register (PMC_WPMR) with the appropriate
access key, WPKEY.

The protected registers are:

“PMC System Clock Enable Register”
“PMC System Clock Disable Register”
“PMC Peripheral Clock Enable Register 0”
“PMC Peripheral Clock Disable Register 0”
“PMC Clock Generator Main Oscillator Register”
“PMC Clock Generator PLLA Register”
“PMC Clock Generator PLLB Register”
“PMC Master Clock Register”

“PMC USB Clock Register”

“PMC Programmable Clock Register”
“PMC Fast Startup Mode Register”

“PMC Fast Startup Polarity Register”
“PMC Peripheral Clock Enable Register 1”
“PMC Peripheral Clock Disable Register 1”
“PMC Oscillator Calibration Register”

SAM3S8 /| SAM3SDS8 [DATASHEET 435
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16 Power Management Controller (PMC) User Interface

Table 26-3. Register Mapping

Offset Register Name Access Reset
0x0000 System Clock Enable Register PMC_SCER Write-only -
0x0004 System Clock Disable Register PMC_SCDR Write-only -
0x0008 System Clock Status Register PMC_SCSR Read-only 0x0000_0001
0x000C Reserved - - -
0x0010 Peripheral Clock Enable Register 0 PMC_PCERO Write-only -
0x0014 Peripheral Clock Disable Register 0 PMC_PCDRO Write-only -
0x0018 Peripheral Clock Status Register 0 PMC_PCSRO Read-only 0x0000_0000
0x001C Reserved - - -
0x0020 Main Oscillator Register CKGR_MOR Read-write 0x0000_0001
0x0024 Main Clock Frequency Register CKGR_MCFR Read-write 0x0000_0000
0x0028 PLLA Register CKGR_PLLAR Read-write 0x0000_3F00
0x002C PLLB Register CKGR_PLLBR Read-write 0x0000_3F00
0x0030 Master Clock Register PMC_MCKR Read-write 0x0000_0001
0x0034 Reserved - - -
0x0038 USB Clock Register PMC_USB Read/Write 0x0000_0000
0x003C Reserved - - -
0x0040 Programmable Clock O Register PMC_PCKO Read-write 0x0000_0000
0x0044 Programmable Clock 1 Register PMC_PCK1 Read-write 0x0000_0000
0x0048 Programmable Clock 2 Register PMC_PCK2 Read-write 0x0000_0000

0x004C - 0x005C | Reserved - - -
0x0060 Interrupt Enable Register PMC_IER Write-only -
0x0064 Interrupt Disable Register PMC_IDR Write-only -
0x0068 Status Register PMC_SR Read-only 0x0001_0008
0x006C Interrupt Mask Register PMC_IMR Read-only 0x0000_0000
0x0070 Fast Startup Mode Register PMC_FSMR Read-write 0x0000_0000
0x0074 Fast Startup Polarity Register PMC_FSPR Read-write 0x0000_0000
0x0078 Fault Output Clear Register PMC_FOCR Write-only -

0x007C- OXO0EO | Reserved - - -
0x00E4 Write Protect Mode Register PMC_WPMR Read-write 0x0
O0x00E8 Write Protect Status Register PMC_WPSR Read-only 0x0

0XOOEC-0Ox00FC | Reserved - - -
0x0100 Peripheral Clock Enable Register 1 PMC_PCER1 Write-only -
0x0104 Peripheral Clock Disable Register 1 PMC_PCDR1 Write-only -
0x0108 Peripheral Clock Status Register 1 PMC_PCSR1 Read-only 0x0000_0000
0x010C Reserved - - -

436 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

Table 26-3. Register Mapping

Offset Register Name Access Reset

0x0110 Oscillator Calibration Register PMC_OCR Read-write 0x0040_4040
Note: If an offset is not listed in the table it must be considered as “reserved”.

SAM3S8 /| SAM3SDS8 [DATASHEET 437
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.1 PMC System Clock Enable Register

Name: PMC_SCER

Address: 0x400E0400

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | — | — | — | — | pck2 | pcki | pcko |
7 6 5 4 3 2 1 0

[__uop | - I - - I - I - I - I - |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

» UDP: USB Device Port Clock Enable
0 = No effect.

1 = Enables the 48 MHz clock (UDPCK) of the USB Device Port.

e PCKx: Programmable Clock x Output Enable
0 = No effect.
1 = Enables the corresponding Programmable Clock output.

438 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.2 PMC System Clock Disable Register

Name: PMC_SCDR

Address: 0x400E0404

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | — | — | — | — | pck2 | pcki | pcko |
7 6 5 4 3 2 1 0

[__uop | - I - - I - I - I - I - |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

» UDP: USB Device Port Clock Disable
0 = No effect.

1 = Disables the 48 MHz clock (UDPCK) of the USB Device Port.

e PCKx: Programmable Clock x Output Disable
0 = No effect.
1 = Disables the corresponding Programmable Clock output.

SAM3S8 /| SAM3SDS8 [DATASHEET 439
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.3 PMC System Clock Status Register

Name: PMC_SCSR

Address: 0x400E0408

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | — | — | — | — | pck2 | pcki | pcko |
7 6 5 4 3 2 1 0

[__uop | - I - - I - I - I - I - |

» UDP: USB Device Port Clock Status
0 = The 48 MHz clock (UDPCK) of the USB Device Port is disabled.
1 = The 48 MHz clock (UDPCK) of the USB Device Port is enabled.

e PCKx: Programmable Clock x Output Status
0 = The corresponding Programmable Clock output is disabled.
1 = The corresponding Programmable Clock output is enabled.

440 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.4 PMC Peripheral Clock Enable Register O

Name: PMC_PCERO

Address: 0x400E0410

Access: Write-only
31 30 29 28 27 26 25 24

[Pp31 | pPp30 | pPD29 | P28 | P27 | pPD26 | PID25 | PID24a |
23 22 21 20 19 18 17 16

[Pp23 | pPp22 | P21 | pPD20 | pPD19 | PIDI8 | - | pPD16 |
15 14 13 12 11 10 9 8

[pPpi5 | pPp14a | pPD13 | pPpi2 | pPD11 | PD1I0 | pPp9 | pPDs |
7 6 5 4 3 2 1 0

[pp7z | pPpe | pPps | pPp4a | pPD3 | pPD2 | - | - |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

* PIDx: Peripheral Clock x Enable
0 = No effect.

1 = Enables the corresponding peripheral clock.

Note: To get PIDx, refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet. Other peripherals can be
enabled in PMC_PCER1 (Section 26.16.23 “PMC Peripheral Clock Enable Register 1”).

Note: Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the PMC.

SAM3S8 / SAM3SDS8 [DATASHEET 441
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.5 PMC Peripheral Clock Disable Register 0

Name: PMC_PCDRO

Address: 0x400E0414

Access: Write-only
31 30 29 28 27 26 25 24

[Pp31 | pPp30 | pPD29 | P28 | P27 | pPD26 | PID25 | PID24a |
23 22 21 20 19 18 17 16

[Pp23 | pPp22 | P21 | pPD20 | pPD19 | PIDI8 | - | pPD16 |
15 14 13 12 11 10 9 8

[pPpi5 | pPp14a | pPD13 | pPpi2 | pPD11 | PD1I0 | pPp9 | pPDs |
7 6 5 4 3 2 1 0

[pp7z | pPpe | pPps | pPp4a | pPD3 | pPD2 | - | - |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

» PIDx: Peripheral Clock x Disable
0 = No effect.

1 = Disables the corresponding peripheral clock.

Note: To get PIDx, refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet. Other peripherals can be
disabled in PMC_PCDR1 (Section 26.16.24 “PMC Peripheral Clock Disable Register 1”).

442 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

26.16.6 PMC Peripheral Clock Status Register 0

Name: PMC_PCSRO

Address: 0x400E0418

Access: Read-only
31 30 29 28 27 26 25 24

[Pp31 | pPp30 | pPD29 | P28 | P27 | pPD26 | PID25 | PID24a |
23 22 21 20 19 18 17 16

[Pp23 | pPp22 | P21 | pPD20 | pPD19 | PIDI8 | - | pPD16 |
15 14 13 12 11 10 9 8

[pPpi5 | pPp14a | pPD13 | pPpi2 | pPD11 | PD1I0 | pPp9 | pPDs |
7 6 5 4 3 2 1 0

[pp7z | pPpe | pPps | pPp4a | pPD3 | pPD2 | — | - |

» PIDx: Peripheral Clock x Status
0 = The corresponding peripheral clock is disabled.

1 = The corresponding peripheral clock is enabled.

Note: To get PIDx, refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet. Other peripherals status
can be read in PMC_PCSR1 (Section 26.16.25 “PMC Peripheral Clock Status Register 17).

SAM3S8 /| SAM3SDS8 [DATASHEET 443
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.7 PMC Clock Generator Main Oscillator Register

Name: CKGR_MOR

Address: 0x400E0420

Access: Read-write
31 30 29 28 27 26 25 24

| - | - - - - - CFDEN MOSCSEL |
23 22 21 20 19 18 17 16

| KEY |
15 14 13 12 11 10 9 8

| MOSCXTST |
7 6 5 4 3 2 1 0

| - | MOSCRCF | MOSCRCEN | - | MOSCXTBY MOSCXTEN |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

» KEY: Password
Should be written at value 0x37. Writing any other value in this field aborts the write operation.

* MOSCXTEN: Main Crystal Oscillator Enable

A crystal must be connected between XIN and XOUT.

0 = The Main Crystal Oscillator is disabled.

1 = The Main Crystal Oscillator is enabled. MOSCXTBY must be set to 0.

When MOSCXTEN is set, the MOSCXTS flag is set once the Main Crystal Oscillator startup time is achieved.

» MOSCXTBY: Main Crystal Oscillator Bypass

0 = No effect.

1 = The Main Crystal Oscillator is bypassed. MOSCXTEN must be set to 0. An external clock must be connected on XIN.
When MOSCXTBY is set, the MOSCXTS flag in PMC_SR is automatically set.

Clearing MOSCXTEN and MOSCXTBY bits allows resetting the MOSCXTS flag.

¢ MOSCRCEN: Main On-Chip RC Oscillator Enable

0 = The Main On-Chip RC Oscillator is disabled.

1 = The Main On-Chip RC Oscillator is enabled.

When MOSCRCEN is set, the MOSCRCS flag is set once the Main On-Chip RC Oscillator startup time is achieved.

¢ MOSCRCF: Main On-Chip RC Oscillator Frequency Selection
At start-up, the Main On-Chip RC Oscillator frequency is 4 MHz.

Value Name Description
0x0 4 MHz The Fast RC Oscillator Frequency is at 4 MHz (default)
ox1 8 MHz The Fast RC Oscillator Frequency is at 8 MHz
0x2 12_MHz The Fast RC Oscillator Frequency is at 12 MHz

444 SAM3S8 / SAM3SD8 [DATASHEET)] AtmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

¢ MOSCXTST: Main Crystal Oscillator Start-up Time

Specifies the number of Slow Clock cycles multiplied by 8 for the Main Crystal Oscillator start-up time.

¢ MOSCSEL: Main Oscillator Selection
0 = The Main On-Chip RC Oscillator is selected.
1 = The Main Crystal Oscillator is selected.

¢ CFDEN: Clock Failure Detector Enable
0 = The Clock Failure Detector is disabled.
1 = The Clock Failure Detector is enabled.

SAM3S8 /| SAM3SDS8 [DATASHEET 445
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.8 PMC Clock Generator Main Clock Frequency Register

Name: CKGR_MCFR

Address: 0x400E0424

Access: Read-Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | - | - | RCMEAS | - | — | - | MAINFRDY |
15 14 13 12 11 10 9 8

| MAINF |
7 6 5 4 3 2 1 0

| MAINF |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

* MAINF: Main Clock Frequency
Gives the number of Main Clock cycles within 16 Slow Clock periods.

* MAINFRDY: Main Clock Ready
0 = MAINF value is not valid or the Main Oscillator is disabled or a measure has just been started by means of RCMEAS.
1 = The Main Oscillator has been enabled previously and MAINF value is available.

¢ RCMEAS: RC Oscillator Frequency Measure (write-only)
0 = No effect.

1 = restart a measure of the main RC frequency, MAINF will carry the new frequency as soon as a low to high transition
occurs on MAINFRDY flag.

The measure is performed on the main frequency (i.e. not limited to RC oscillator only) but if the main clock frequency
source is the fast crystal oscillator, the restart of the measure is unneeded because of the well known stability of crystal
oscillators.

446 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.9 PMC Clock Generator PLLA Register

Name: CKGR_PLLAR

Address: 0x400E0428

Access: Read-write
31 30 29 28 27 26 25 24

| - | - ONE - — MULA |
23 22 21 20 19 18 17 16

| MULA |
15 14 13 12 11 10 9 8

| — - PLLACOUNT |
7 6 5 4 3 2 1 0

| DIVA |

Possible limitations on PLLA input frequencies and multiplier factors should be checked before using the PMC.
Warning: Bit 29 must always be set to 1 when programming the CKGR_PLLAR register.
This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register”.

* DIVA: Divider

DIVA Divider Selected

0 Divider output is O

1 Divider is bypassed (DIVA=1)
2-255 Divider output is DIVA

* PLLACOUNT: PLLA Counter
Specifies the number of Slow Clock cycles x8 before the LOCKA bit is set in PMC_SR after CKGR_PLLAR is written.

* MULA: PLLA Multiplier
0 = The PLLA is deactivated.
1 up to 36 = The PLLA Clock frequency is the PLLA input frequency multiplied by MULA + 1.

* ONE: MustBe Setto 1
Bit 29 must always be set to 1 when programming the CKGR_PLLAR register.

SAM3S8 / SAM3SDS8 [DATASHEET 447
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.10 PMC Clock Generator PLLB Register

Name: CKGR_PLLBR

Address: 0x400E042C

Access: Read-write
31 30 29 28 27 26 25 24

| — [- - - - MULB |
23 22 21 20 19 18 17 16

| MULB |
15 14 13 12 11 10 9 8

| — - PLLBCOUNT |
7 6 5 4 3 2 1 0

| DIVB |

Possible limitations on PLLB input frequencies and multiplier factors should be checked before using the PMC.
This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

« DIVB: Divider

DIVB Divider Selected

0 Divider output is O

1 Divider is bypassed (DIVB=1)
2-255 Divider output is DIVB

* PLLBCOUNT: PLLB Counter
Specifies the number of Slow Clock cycles x8 before the LOCKB bit is set in PMC_SR after CKGR_PLLBR is written.

* MULB: PLLB Multiplier
0 = The PLLB is deactivated.
1 up to 36 = The PLLB Clock frequency is the PLLB input frequency multiplied by MULB + 1.

448 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.11 PMC Master Clock Register

Name: PMC_MCKR

Address: 0x400E0430

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| _ | _ | puBDV2 | PLLADIVZ2] - | - | - | - |
7 6 5 4 3 2 1 0

| - | PRES | - | - | css |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

» CSS: Master Clock Source Selection

Value Name Description
0 SLOW_CLK Slow Clock is selected
1 MAIN_CLK Main Clock is selected
2 PLLA_CLK PLLA Clock is selected
3 PLLB_CLK PLLBClock is selected

» PRES: Processor Clock Prescaler

Value Name Description

0 CLK 1 Selected clock

1 CLK_2 Selected clock divided by 2
2 CLK_4 Selected clock divided by 4
3 CLK_8 Selected clock divided by 8
4 CLK_16 Selected clock divided by 16
5 CLK_32 Selected clock divided by 32
6 CLK_64 Selected clock divided by 64
7 CLK_3 Selected clock divided by 3

* PLLADIV2: PLLA Divisor by 2

PLLADIV2 PLLA Clock Division
0 PLLA clock frequency is divided by 1.
1 PLLA clock frequency is divided by 2.

SAM3S8 /| SAM3SDS8 [DATASHEET 449
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

e PLLBDIV2: PLLB Divisor by 2

PLLBDIV2 PLLB Clock Division
0 PLLB clock frequency is divided by 1.
1 PLLB clock frequency is divided by 2.
450 SAM3S8 / SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.12 PMC USB Clock Register

Name: PMC_USB

Address: 0x400E0438

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | USBDIV |
7 6 5 4 3 2 1 0

r - r - r - r - 1 - [- [- uses |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .
e USBS: USB Input Clock Selection

0 = USB Clock Input is PLLA.

1 =USB Clock Input is PLLB.

« USBDIV: Divider for USB Clock.

USB Clock is Input clock divided by USBDIV+1.

SAM3S8 /| SAM3SDS8 [DATASHEET 451
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.13 PMC Programmable Clock Register

Name: PMC_PCKXx
Address: 0x400E0440
Access: Read-write
31 30 29 28 27 26 25 24
I I I R R R - -
23 22 21 20 19 18 17 16
I I I R N R - -
15 14 13 12 11 10 9 8
[1 T T T - - -
7 6 5 4 3 2 1 0
| - | PRES | - | CSS

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

» CSS: Master Clock Source Selection

Value Name Description
0 SLOW_CLK Slow Clock is selected
1 MAIN_CLK Main Clock is selected
2 PLLA_CLK PLLA Clock is selected
3 PLLB_CLK PLLB Clock is selected
4 MCK Master Clock is selected

* PRES: Programmable Clock Prescaler

Value Name Description

0 CLK 1 Selected clock

1 CLK_2 Selected clock divided by 2
2 CLK 4 Selected clock divided by 4
3 CLK_8 Selected clock divided by 8
4 CLK_16 Selected clock divided by 16
5 CLK_32 Selected clock divided by 32
6 CLK_64 Selected clock divided by 64

452 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

26.16.14 PMC Interrupt Enable Register

Name: PMC_IER

Address: 0x400E0460

Access: Write-only
31 30 29 28 27 26 25 24

. - r - r - r - r - 1 - @ - [-]
23 22 21 20 19 18 17 16

| _ [_ [— [- | = | CcFDEV__ | MOSCRCS | MOSCSELS |
15 14 13 12 11 10 9 8

| _ [— [- | - | - | PCKRDY2 | PCKRDY1 | PCKRDYO |
7 6 5 4 3 2 1 0

| - | - [= | - [MCKRDY | LOCKB | LOCKA | MOSCXTS |

* MOSCXTS: Main Crystal Oscillator Status Interrupt Enable

* LOCKA: PLLA Lock Interrupt Enable

* LOCKB: PLLB Lock Interrupt Enable

» MCKRDY: Master Clock Ready Interrupt Enable

* PCKRDYx: Programmable Clock Ready x Interrupt Enable

*» MOSCSELS: Main Oscillator Selection Status Interrupt Enable
* MOSCRCS: Main On-Chip RC Status Interrupt Enable

» CFDEV: Clock Failure Detector Event Interrupt Enable

SAM3S8 /| SAM3SDS8 [DATASHEET 453
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.15 PMC Interrupt Disable Register

Name: PMC_IDR

Address: 0x400E0464

Access: Write-only
31 30 29 28 27 26 25 24

. - r - r - r - r - 1 - @ - [-]
23 22 21 20 19 18 17 16

| _ [_ [— [- | = | CcFDEV__ | MOSCRCS | MOSCSELS |
15 14 13 12 11 10 9 8

| _ [— [- | - | - | PCKRDY2 | PCKRDY1 | PCKRDYO |
7 6 5 4 3 2 1 0

| - | - [= | - [MCKRDY | LOCKB | LOCKA | MOSCXTS |

* MOSCXTS: Main Crystal Oscillator Status Interrupt Disable

* LOCKA: PLLA Lock Interrupt Disable

* LOCKB: PLLB Lock Interrupt Disable

*» MCKRDY: Master Clock Ready Interrupt Disable

» PCKRDYx: Programmable Clock Ready x Interrupt Disable

* MOSCSELS: Main Oscillator Selection Status Interrupt Disable
* MOSCRCS: Main On-Chip RC Status Interrupt Disable

» CFDEV: Clock Failure Detector Event Interrupt Disable

454 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.16 PMC Status Register

Name: PMC_SR

Address: 0x400E0468

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | - | - | FOS | CFDS | CFDEV | MOSCRCS | MOSCSELS |
15 14 13 12 11 10 9 8

[- [- | - | - | - | PckrDY2 [PCKRDY1 | PCKRDYO |
7 6 5 4 3 2 1 0

| OSCSELS | - | - | - | MCKRDY [LOCKB [LOCKA | MOSCXTS |

* MOSCXTS: Main XTAL Oscillator Status
0 = Main XTAL oscillator is not stabilized.
1 = Main XTAL oscillator is stabilized.

LOCKA: PLLA Lock Status
0 = PLLA is not locked
1 = PLLA is locked.

» LOCKB: PLLB Lock Status
0 = PLLB is not locked
1 =PLLB is locked.

MCKRDY: Master Clock Status
0 = Master Clock is not ready.
1 = Master Clock is ready.

*» OSCSELS: Slow Clock Oscillator Selection
0 = Internal slow clock RC oscillator is selected.
1 = External slow clock 32 kHz oscillator is selected.

» PCKRDYx: Programmable Clock Ready Status
0 = Programmable Clock x is not ready.
1 = Programmable Clock x is ready.

« MOSCSELS: Main Oscillator Selection Status
0 = Selection is in progress .
1 = Selection is done.

* MOSCRCS: Main On-Chip RC Oscillator Status
0 = Main on-chip RC oscillator is not stabilized.
1 = Main on-chip RC oscillator is stabilized.

SAM3S8 /| SAM3SDS8 [DATASHEET 455
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

e CFDEV: Clock Failure Detector Event
0 = No clock failure detection of the main on-chip RC oscillator clock has occurred since the last read of PMC_SR.
1 = At least one clock failure detection of the main on-chip RC oscillator clock has occurred since the last read of PMC_SR.

¢ CFDS: Clock Failure Detector Status
0 = A clock failure of the main on-chip RC oscillator clock is not detected.
1 = A clock failure of the main on-chip RC oscillator clock is detected.

¢ FOS: Clock Failure Detector Fault Output Status
0 = The fault output of the clock failure detector is inactive.
1 = The fault output of the clock failure detector is active.

456 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14 /I t I I IeL

26.16.17 PMC Interrupt Mask Register

Name: PMC_IMR

Address: 0x400E046C

Access: Read-only
31 30 29 28 27 26 25 24

. - r - r - r - r - 1 - @ - [-]
23 22 21 20 19 18 17 16

| _ [_ [— [- | = | CcFDEV__ | MOSCRCS | MOSCSELS |
15 14 13 12 11 10 9 8

| _ [— [- | - | - | PCKRDY2 | PCKRDY1 | PCKRDYO |
7 6 5 4 3 2 1 0

| - | - [- | - [MCKRDY | LOCKB | LOCKA | MOSCXTS |

* MOSCXTS: Main Crystal Oscillator Status Interrupt Mask

* LOCKA: PLLA Lock Interrupt Mask

* LOCKB: PLLB Lock Interrupt Mask

» MCKRDY: Master Clock Ready Interrupt Mask

* PCKRDYx: Programmable Clock Ready x Interrupt Mask

* MOSCSELS: Main Oscillator Selection Status Interrupt Mask
* MOSCRCS: Main On-Chip RC Status Interrupt Mask

» CFDEV: Clock Failure Detector Event Interrupt Mask

SAM3S8 /| SAM3SDS8 [DATASHEET 457
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.18 PMC Fast Startup Mode Register

Name: PMC_FSMR

Address: 0x400E0470

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - - - I - -
23 22 21 20 19 18 17 16

| - | - | - | LPM | - | USBAL | RTCAL | RTTAL |
15 14 13 12 11 10 9 8

| FSTT15 | FSTT14 | FSTT13 | FSTT12 | FSTT11 | FSTT10 | FSTT9 | FSTTS8 |
7 6 5 4 3 2 1 0

| FSTT7 | FSTT6 | FSTT5 | FSTT4 | FSTT3 | FSTT2 | FSTT1 | FSTTO |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

e FSTTO - FSTT15: Fast Startup Input Enable 0 to 15
0 = The corresponding wake up input has no effect on the Power Management Controller.
1 = The corresponding wake up input enables a fast restart signal to the Power Management Controller.

* RTTAL: RTT Alarm Enable
0 = The RTT alarm has no effect on the Power Management Controller.
1 =The RTT alarm enables a fast restart signal to the Power Management Controller.

* RTCAL: RTC Alarm Enable
0 = The RTC alarm has no effect on the Power Management Controller.
1 =The RTC alarm enables a fast restart signal to the Power Management Controller.

» USBAL: USB Alarm Enable
0 = The USB alarm has no effect on the Power Management Controller.
1 =The USB alarm enables a fast restart signal to the Power Management Controller.

 LPM: Low Power Mode

0 = The WaitForinterrupt (WFI) or WaitForEvent (WFE) instruction of the processor makes the processor enter Sleep
Mode.

1 = The WaitForEvent (WFE) instruction of the processor makes the system to enter in Wait Mode.

458 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

26.16.19 PMC Fast Startup Polarity Register

Name: PMC_FSPR

Address: 0x400E0474

Access: Read-write
31 30 29 28 27 26 25 24

- 1T - 1T - - S I R R
23 22 21 20 19 18 17 16

I R - S R R R
15 14 13 12 11 10 9 8

| FSTP15 | FSTP14 | FSTP13 FSTP12 FSTP11 | FSTP10 | FSTP9 | FSTP8 |
7 6 5 4 3 2 1 0

[FSTP7 [FSTP6 [FSTP5 FSTP4 FSTP3 [FSTP2 [FSTPL [FSTPO |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

» FSTPx: Fast Startup Input Polarityx

Defines the active polarity of the corresponding wake up input. If the corresponding wake up input is enabled and at the

FSTP level, it enables a fast restart signal.

Atmel

SAM3S8 / SAM3SD8 [DATASHEET] 459

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.20 PMC Fault Output Clear Register

Name: PMC_FOCR

Address: 0x400E0478

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | FOCLR |

¢ FOCLR: Fault Output Clear
Clears the clock failure detector fault output.

460 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.21 PMC Write Protect Mode Register

Name: PMC_WPMR

Address: Ox400E04E4

Access: Read-write

Reset: See Table 26-3
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - WPEN |

« WPEN: Write Protect Enable

0 = Disables the Write Protect if WPKEY corresponds to 0x504D43 (“PMC” in ASCII).
1 = Enables the Write Protect if WPKEY corresponds to 0x504D43 (“PMC” in ASCII).
Protects the registers:

“PMC System Clock Enable Register”

“PMC System Clock Disable Register”

“PMC Peripheral Clock Enable Register 0”

“PMC Peripheral Clock Disable Register 0”

“PMC Clock Generator Main Oscillator Register”

“PMC Clock Generator PLLA Register”

“PMC Clock Generator PLLB Register”

“PMC Master Clock Register”

“PMC USB Clock Register”

“PMC Programmable Clock Register”

“PMC Fast Startup Mode Register”

“PMC Fast Startup Polarity Register”

“PMC Peripheral Clock Enable Register 1”

“PMC Peripheral Clock Disable Register 1”

“PMC Oscillator Calibration Register”

« WPKEY: Write Protect KEY

Should be written at value 0x504D43 (“PMC” in ASCII). Writing any other value in this field aborts the write operation of the
WPEN bit. Always reads as 0.

SAM3S8 /| SAM3SDS8 [DATASHEET 461
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.22 PMC Write Protect Status Register

Name: PMC_WPSR

Address: 0x400E04ES8

Access: Read-only

Reset: See Table 26-3
31 30 29 28 27 26 25 24

I R - : : - : — 1
23 22 21 20 19 18 17 16

| WPVSRC |
15 14 13 12 11 10 9 8

| WPVSRC |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - wevs |

* WPVS: Write Protect Violation Status
0 = No Write Protect Violation has occurred since the last read of the PMC_WPSR register.

1 = A Write Protect Violation has occurred since the last read of the PMC_WPSR register. If this violation is an unauthor-
ized attempt to write a protected register, the associated violation is reported into field WPVSRC.

« WPVSRC: Write Protect Violation Source

When WPVS is active, this field indicates the write-protected register (through address offset or code) in which a write
access has been attempted.

Reading PMC_WPSR automatically clears all fields.

462 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.23 PMC Peripheral Clock Enable Register 1

Name: PMC_PCER1

Address: 0x400E0500

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | _ | - [PD3a | PD33_ | PiD32_ |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

* PIDx: Peripheral Clock x Enable
0 = No effect.
1 = Enables the corresponding peripheral clock.

Notes: 1. To get PIDx, refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.
2. Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the PMC.

SAM3S8 /| SAM3SDS8 [DATASHEET 463
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.24 PMC Peripheral Clock Disable Register 1

Name: PMC_PCDR1

Address: 0x400E0504

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | _ | - [PD3a | PD33_ | PiD32_ |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” on page 461.

» PIDx: Peripheral Clock x Disable
0 = No effect.

1 = Disables the corresponding peripheral clock.
Note: To get PIDx, refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.

464 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.25 PMC Peripheral Clock Status Register 1

Name: PMC_PCSR1

Address: 0x400E0508

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | _ | - [PD3a | PD33_ | PiD32_ |

» PIDx: Peripheral Clock x Status
0 = The corresponding peripheral clock is disabled.

1 = The corresponding peripheral clock is enabled.
Note: To get PIDx, refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.

SAM3S8 /| SAM3SDS8 [DATASHEET 465
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

26.16.26 PMC Oscillator Calibration Register

Name: PMC_OCR

Address: 0x400E0510

Access: Read-write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| SEL12 | CAL12 |
15 14 13 12 11 10 9 8

| SELS8 | CALS8 |
7 6 5 4 3 2 1 0

| SEL4 [CAL4 |

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

» CAL4: RC Oscillator Calibration bits for 4 Mhz
Calibration bits applied to the RC Oscillator when SEL4 is set.

» SELA4: Selection of RC Oscillator Calibration bits for 4 Mhz
0 = Default value stored in Flash memory.
1 = Value written by user in CAL4 field of this register.

e CALS8: RC Oscillator Calibration bits for 8 Mhz
Calibration bits applied to the RC Oscillator when SELS8 is set.

+ SELS8: Selection of RC Oscillator Calibration bits for 8 Mhz
0 = Factory determined value stored in Flash memory.
1 = Value written by user in CALS field of this register.

* CAL12: RC Oscillator Calibration bits for 12 Mhz
Calibration bits applied to the RC Oscillator when SEL12 is set.

» SEL12: Selection of RC Oscillator Calibration bits for 12 Mhz
0 = Factory determined value stored in Flash memory.
1 = Value written by user in CAL12 field of this register.

466 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

27.

27.1

27.2

Chip Identifier (CHIPID)

Description

Chip Identifier registers permit recognition of the device and its revision. These registers provide the sizes and
types of the on-chip memories, as well as the set of embedded peripherals.

Two chip identifier registers are embedded: CHIPID_CIDR (Chip ID Register) and CHIPID_EXID (Extension ID).
Both registers contain a hard-wired value that is read-only. The first register contains the following fields:
e EXT - shows the use of the extension identifier register
NVPTYP and NVPSIZ - identifies the type of embedded non-volatile memory and its size
ARCH - identifies the set of embedded peripherals
SRAMSIZ - indicates the size of the embedded SRAM
EPROC - indicates the embedded ARM processor
e VERSION - gives the revision of the silicon

The second register is device-dependent and reads 0 if the bit EXT is 0.

Embedded Characteristics
e Chip ID Registers

— ldentification of the Device Revision, Sizes of the Embedded Memories, Set of Peripherals,
Embedded Processor

Table 27-1. ATSAMS3S Chip IDs Register

Chip Name CHIPID_CIDR CHIPID_EXID
ATSAM3S4A (Rev A) 0x28800960 0x0
ATSAM3S2A (Rev A) 0x288A0760 0x0
ATSAM3S1A (Rev A) 0x28890560 0x0
ATSAM3S4B (Rev A) 0x28900960 0x0
ATSAM3S2B (Rev A) 0x289A0760 0x0
ATSAM3S1B (Rev A) 0x28990560 0x0
ATSAM3S4C (Rev A) 0x28A00960 0x0
ATSAM3S2C (Rev A) 0x28AA0760 0x0
ATSAM3SIC (Rev A) 0x28A90560 0x0
ATSAM3S8B (Rev A) 0x289B0OA60 0x0
ATSAM3SSC (Rev A) 0x28ABOAG0 0x0
ATSAM3SDS8B (Rev A) 0x299B0OA60 0x0

ATSAM3SDSC (Rev A) 0x29ABOA60 0x0

Atmel

SAM3S8 / SAM3SD8 [DATASHEET]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

467

27.3 Chip Identifier (CHIPID) User Interface

Table 27-2. Register Mapping

Offset Register Name Access Reset
0x0 Chip ID Register CHIPID_CIDR Read-only -
Ox4 Chip ID Extension Register CHIPID_EXID Read-only -

468 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

27.3.1 Chip ID Register

Name: CHIPID_CIDR
Address: 0x400E0740
Access: Read-only
31 30 29 28 27 26 25 24
| EXT | NVPTYP | ARCH
23 22 21 20 19 18 17 16
| ARCH | SRAMSIZ
15 14 13 12 11 10 9 8
| NVPSIZ2 | NVPSIZ
7 6 5 4 3 2 1 0
| EPROC VERSION
» VERSION: Version of the Device
Current version of the device.
» EPROC: Embedded Processor
Value Name Description
1 ARM946ES ARM946ES
2 ARM7TDMI ARM7TDMI
3 CM3 Cortex-M3
4 ARM920T ARM920T
5 ARM926EJS ARM926EJS
6 CA5 Cortex-A5
7 CM4 Cortex-M4
* NVPSIZ: Nonvolatile Program Memory Size
Value Name Description
0 NONE None
1 8K 8K bytes
2 16K 16K bytes
3 32K 32K bytes
4 Reserved
5 64K 64K bytes
6 Reserved
7 128K 128K bytes
8 Reserved
9 256K 256K bytes
10 512K 512K bytes
11 Reserved
12 1024K 1024K bytes
13 Reserved
/lt m eL SAM3S8 / SAM3SD8 [DATASHEET] 469
Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Value Name Description
14 2048K 2048K bytes
15 Reserved

» NVPSIZ2: Second Nonvolatile Program Memory Size

Value Name Description
0 NONE None
1 8K 8K bytes
2 16K 16K bytes
3 32K 32K bytes
4 Reserved
5 64K 64K bytes
6 Reserved
7 128K 128K bytes
8 Reserved
9 256K 256K bytes
10 512K 512K bytes
11 Reserved
12 1024K 1024K bytes
13 Reserved
14 2048K 2048K bytes
15 Reserved

» SRAMSIZ: Internal SRAM Size

Value Name Description

0 48K 48K bytes

1 1K 1K bytes

2 2K 2K bytes

3 6K 6K bytes

4 24K 24K bytes

5 4K 4K bytes

6 80K 80K bytes

7 160K 160K bytes
8 8K 8K bytes

9 16K 16K bytes
10 32K 32K bytes
11 64K 64K bytes
12 128K 128K bytes
13 256K 256K bytes
14 96K 96K bytes

470 SAM3S8 / SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Value Name Description
15 512K 512K bytes
» ARCH: Architecture Identifier

Value Name Description
0x19 AT91SAMOIxxX AT91SAMIxx Series
0x29 AT91SAMIXEXx AT91SAMIXExx Series
0x34 AT91x34 AT91x34 Series
0x37 CAP7 CAP7 Series
0x39 CAP9 CAP9 Series
0x3B CAP11 CAP11 Series
0x40 AT91x40 AT91x40 Series
0x42 AT91x42 AT91x42 Series
0x55 AT91x55 AT91x55 Series
0x60 AT91SAM7AXX AT91SAM7AXx Series
0x61 AT91SAM7AQXX AT91SAM7AQxx Series
0x63 AT91x63 AT91x63 Series
0x70 AT91SAM7SxxX AT91SAM7Sxx Series
0x71 AT91SAMT7XCxx AT91SAM7XCxx Series
0x72 AT91SAM7SEXX AT91SAM7SExx Series
0x73 AT91SAM7LxXX AT91SAMT7Lxx Series
0x75 ATI9LSAM7XXX AT91SAM7Xxx Series
0x76 AT91SAM7SLxx AT91SAM7SLxx Series
0x80 SAM3UxC SAM3UXC Series (100-pin version)
0x81 SAM3UXE SAMB3UXE Series (144-pin version)
0x83 SAM3AXC SAM3AXC Series (100-pin version)
0x83 SAM4AxC SAM4AXC Series (100-pin version)
0x84 SAM3XxC SAM3XxXC Series (100-pin version)
0x84 SAM4XxC SAM4XXC Series (100-pin version)
0x85 SAM3XXE SAM3XXE Series (144-pin version)
0x85 SAMAXXE SAM4XXE Series (144-pin version)
0x86 SAM3XXG SAM3XXG Series (208/217-pin version)
0x86 SAM4AXXG SAM4XXG Series (208/217-pin version)
0x88 SAM3SxA SAM3SxASeries (48-pin version)
0x88 SAMA4SxA SAMA4SXA Series (48-pin version)
0x89 SAM3SxB SAM3SxB Series (64-pin version)
0x89 SAM4SxB SAMA4SxB Series (64-pin version)
O0x8A SAM3SxC SAM3SXC Series (100-pin version)
O0x8A SAM4SxC SAM4SxC Series (100-pin version)

SAM3S8 / SAM3SDS8 [DATASHEET 471
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Value Name Description

0x92 AT91x92 AT91x92 Series

0x93 SAM3NXA SAM3NXA Series (48-pin version)
0x94 SAM3NxB SAM3NXB Series (64-pin version)
0x95 SAM3NxC SAM3NXC Series (100-pin version)
0x99 SAM3SDxB SAM3SDxB Series (64-pin version)
0x9A SAM3SDxC SAM3SDxC Series (100-pin version)
OxA5 SAMS5A SAMS5A

OxFO AT75Cxx AT75Cxx Series

* NVPTYP: Nonvolatile Program Memory Type

Value Name Description
0 ROM ROM
1 ROMLESS ROMiless or on-chip Flash
4 SRAM SRAM emulating ROM
2 FLASH Embedded Flash Memory

ROM and Embedded Flash Memory

3 ROM_FLASH NVPSIZ is ROM size
NVPSIZ2 is Flash size

« EXT: Extension Flag
0 = Chip ID has a single register definition without extension
1 = An extended Chip ID exists.

472 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

27.3.2 Chip ID Extension Register

Name: CHIPID_EXID

Address: 0x400E0744

Access: Read-only
31 30 29 28 27 26 25 24

| EXID |
23 22 21 20 19 18 17 16

| EXID |
15 14 13 12 11 10 9 8

| EXID |
7 6 5 4 3 2 1 0

| EXID |

» EXID: Chip ID Extension

Reads 0 if the bit EXT in CHIPID_CIDR is 0.

/lt L SAM3S8 / SAM3SD8 [DATASHEET] 473

me Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

28. Parallel Input/Output Controller (P10)

28.1 Description

The Parallel Input/Output Controller (PIO) manages up to 32 fully programmable input/output lines. Each 1/O line
may be dedicated as a general-purpose I/O or be assigned to a function of an embedded peripheral. This assures
effective optimization of the pins of a product.

Each I/O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide User Interface.
Each I/O line of the PIO Controller features:
e An input change interrupt enabling level change detection on any I/O line.
Additional Interrupt modes enabling rising edge, falling edge, low level or high level detection on any 1/O line.
A glitch filter providing rejection of glitches lower than one-half of PIO clock cycle.
A debouncing filter providing rejection of unwanted pulses from key or push button operations.
Multi-drive capability similar to an open drain 1/O line.
Control of the pull-up and pull-down of the I/O line.
e Input visibility and output control.

The PIO Controller also features a synchronous output providing up to 32 bits of data output in a single write
operation.

An 8-bit parallel capture mode is also available which can be used to interface a CMOS digital image sensor, an
ADC, a DSP synchronous port in synchronous mode, etc...

474 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

28.2 Embedded Characteristics
e Upto 32 programmable I/O Lines
e Fully programmable through set/clear registers

Table 28-1. PIO available according to pin count
Version 64 pin 100 pin
PIOA 32 32
PIOB 15 15
PIOC - 32

e Multiplexing of four peripheral functions per 1/O line
e For each I/O line (whether assigned to a peripheral or used as general purpose 1/0O)

Atmel

Input change interrupt

Programmable glitch filter

Programmable debouncing filter

Multi-drive option enables driving in open drain

Programmable pull up on each I/O line

Pin data status register, supplies visibility of the level on the pin at any time

Additional interrupt modes on a programmable event: rising edge, falling edge, low level or high level
Lock of the configuration by the connected peripheral

Synchronous output, provides set and clear of several I/O lines in a single write
Write Protect registers

Programmable Schmitt trigger inputs

Parallel capture mode

Can be used to interface a CMOS digital image sensor, an ADC....
One clock, 8-bit parallel data and two data enable on /O lines
Data can be sampled one time out of two (for chrominance sampling only)

Supports connection of one Peripheral DMA Controller channel (PDC) which offers buffer reception
without processor intervention

SAM3S8 / SAM3SD8 [DATASHEET] 475

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

28.3 Block Diagram

Figure 28-1. Block Diagram

<—|:| PIODCCLK
— | 4—[| PIODC[7:0]
PDC Parallel Capture
Status Mode
<—|:| PIODCEN2
PIO Interrupt
Interrupt Controller [«
PIO Clock P10 Controller
PMC >
| Data, Enable N
4—»
| < > > Up to 32
peripheral 10s
Embedded >
Peripheral
< <—>|:| PINO "\
Data, Enable
| < > ") PIN 1 U 3
<—>| | ¢ .
| E i . > p to 32 pins
> Up to 32 °
Embedded > peripheral 10s PY
Peripheral | | PIN31 _/
S
APB
Table 28-2. Signal Description
Signal Name Signal Description Signal Type
PIODCCLK Parallel Capture Mode Clock Input
PIODCI7:0] Parallel Capture Mode Data Input
PIODCEN1 Parallel Capture Mode Data Enable 1 Input
PIODCEN2 Parallel Capture Mode Data Enable 2 Input

476 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 28-2. Application Block Diagram

On-Chip Peripheral Drivers
Keyboard Driver Control & Command
Driver

On-Chip Peripherals

PIO Controller

Keyboard Driver General Purpose 1/Os External Devices

SAM3S8 / SAM3SDS8 [DATASHEET 477
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

28.4 Product Dependencies

28.4.1 Pin Multiplexing

Each pin is configurable, according to product definition as either a general-purpose 1/O line only, or as an 1/O line
multiplexed with one or two peripheral I/0s. As the multiplexing is hardware defined and thus product-dependent,
the hardware designer and programmer must carefully determine the configuration of the PIO controllers required
by their application. When an 1/O line is general-purpose only, i.e. not multiplexed with any peripheral /O,
programming of the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO
Controller can control how the pin is driven by the product.

28.4.2 Power Management

The Power Management Controller controls the PIO Controller clock in order to save power. Writing any of the
registers of the user interface does not require the PIO Controller clock to be enabled. This means that the
configuration of the I/O lines does not require the PIO Controller clock to be enabled.

However, when the clock is disabled, not all of the features of the PIO Controller are available, including glitch
filtering. Note that the Input Change Interrupt, Interrupt Modes on a programmable event and the read of the pin
level require the clock to be validated.

After a hardware reset, the PIO clock is disabled by default.
The user must configure the Power Management Controller before any access to the input line information.

28.4.3 Interrupt Generation

The PIO Controller is connected on one of the sources of the Nested Vectored Interrupt Controller (NVIC). Using
the PIO Controller requires the NVIC to be programmed first.

The PIO Controller interrupt can be generated only if the PIO Controller clock is enabled.

478 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

28.5 Functional Description

The PIO Controller features up to 32 fully-programmable 1/O lines. Most of the control logic associated to each 1/0
is represented in Figure 28-3. In this description each signal shown represents but one of up to 32 possible

indexes.

Figure 28-3. 1/O Line Control Logic

PIO_OER[0]

PIO_OSR[0] PIO_PUER[0] T_
PIO_ODRI0] PIO_PUSR[0] <z
PIO_PUDRI0]

Peripheral A Output Enable
Peripheral B Output Enable

Peripheral C Output Enable
Peripheral D Output Enable

PIO_ABCDSR1[0]
PIO_ABCDSR2[0]

Peripheral A Output
Peripheral B Output

Peripheral C Output

Peripheral D Output

PIO_ODSR[0]

— > Peripheral A Input
$—> Peripheral B Input
$——> Peripheral C Input

—> Peripheral D Input

| PIO_PDSR[0] I
| PIO_ISRI[0] I
EVENT (Up to 32 possible inputs)
DETECTOR

PIO Clock Programmable
Glitch PIO Interrupt
Slow Clock Debo?Jrncing Resynchronization
Clock Filter Stage
Clockc
NG
5o For
PIO_IFSCSRI[0
PIO_IFSCDRI[0] PIO_IER[31]
-
SAM3S8 / SAM3SD8 [DATASHEET] 479
Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

28.5.1 Pull-up and Pull-down Resistor Control

Each 1/O line is designed with an embedded pull-up resistor and an embedded pull-down resistor. The pull-up
resistor can be enabled or disabled by writing respectively PIO_PUER (Pull-up Enable Register) and PIO_PUDR
(Pull-up Disable Resistor). Writing in these registers results in setting or clearing the corresponding bit in
PIO_PUSR (Pull-up Status Register). Reading a 1 in PIO_PUSR means the pull-up is disabled and reading a O
means the pull-up is enabled. The pull-down resistor can be enabled or disabled by writing respectively
PIO_PPDER (Pull-down Enable Register) and PIO_PPDDR (Pull-down Disable Resistor). Writing in these
registers results in setting or clearing the corresponding bit in PIO_PPDSR (Pull-down Status Register). Reading a
1in PIO_PPDSR means the pull-up is disabled and reading a 0 means the pull-down is enabled.

Enabling the pull-down resistor while the pull-up resistor is still enabled is not possible. In this case, the write of
P1O_PPDER for the concerned 1I/O line is discarded. Likewise, enabling the pull-up resistor while the pull-down
resistor is still enabled is not possible. In this case, the write of PIO_PUER for the concerned I/O line is discarded.

Control of the pull-up resistor is possible regardless of the configuration of the 1/O line.

After reset, all of the pull-ups are enabled, i.e. PIO_PUSR resets at the value 0x0, and all the pull-downs are
disabled, i.e. PIO_PPDSR resets at the value OXFFFFFFFF.

28.5.2 1/O Line or Peripheral Function Selection

When a pin is multiplexed with one or two peripheral functions, the selection is controlled with the registers
PIO_PER (PIO Enable Register) and PIO_PDR (PIO Disable Register). The register PIO_PSR (PIO Status
Register) is the result of the set and clear registers and indicates whether the pin is controlled by the
corresponding peripheral or by the PIO Controller. A value of 0 indicates that the pin is controlled by the
corresponding on-chip peripheral selected in the PIO_ABCDSR1 and PIO_ABCDSR2 (ABCD Select Registers). A
value of 1 indicates the pin is controlled by the PIO controller.

If a pin is used as a general purpose /O line (not multiplexed with an on-chip peripheral), PIO_PER and PIO_PDR
have no effect and PIO_PSR returns 1 for the corresponding bit.

After reset, most generally, the I/O lines are controlled by the P1O controller, i.e. PIO_PSR resets at 1. However, in
some events, it is important that PIO lines are controlled by the peripheral (as in the case of memory chip select
lines that must be driven inactive after reset or for address lines that must be driven low for booting out of an
external memory). Thus, the reset value of PIO_PSR is defined at the product level, depending on the multiplexing
of the device.

28.5.3 Peripheral A or B or C or D Selection

The PIO Controller provides multiplexing of up to four peripheral functions on a single pin. The selection is
performed by writing PIO_ABCDSR1 and PIO_ABCDSR2 (ABCD Select Registers).
For each pin:
e the corresponding bit at level 0 in PIO_ABCDSR1 and the corresponding bit at level 0 in PIO_ABCDSR2
means peripheral A is selected.
e the corresponding bit at level 1 in PIO_ABCDSR1 and the corresponding bit at level 0 in PIO_ABCDSR2
means peripheral B is selected.
e the corresponding bit at level 0 in PIO_ABCDSR1 and the corresponding bit at level 1 in PIO_ABCDSR2
means peripheral C is selected.
e the corresponding bit at level 1 in PIO_ABCDSR1 and the corresponding bit at level 1 in PIO_ABCDSR2
means peripheral D is selected.

Note that multiplexing of peripheral lines A, B, C and D only affects the output line. The peripheral input lines are
always connected to the pin input.

After reset, PIO_ABCDSR1 and PIO_ABCDSR2 are 0, thus indicating that all the PI1O lines are configured on
peripheral A. However, peripheral A generally does not drive the pin as the PIO Controller resets in I/O line mode.

480 SAM3S8 / SAM3SD8 [DATASHEET)] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Writing in PIO_ABCDSR1 and PIO_ABCDSR2 manages the multiplexing regardless of the configuration of the
pin. However, assignment of a pin to a peripheral function requires a write in the peripheral selection registers
(PIO_ABCDSR1 and PIO_ABCDSR?2) in addition to a write in PIO_PDR.

28.5.4 Output Control

When the 1/0 line is assigned to a peripheral function, i.e. the corresponding bit in PIO_PSR is at 0, the drive of the
I/O line is controlled by the peripheral. Peripheral A or B or C or D depending on the value in PIO_ABCDSR1 and
P1IO_ABCDSR2 (ABCD Select Registers) determines whether the pin is driven or not.

When the 1/O line is controlled by the PIO controller, the pin can be configured to be driven. This is done by writing
PIO_OER (Output Enable Register) and PIO_ODR (Output Disable Register). The results of these write
operations are detected in PIO_OSR (Output Status Register). When a bit in this register is at 0, the corresponding
I/O line is used as an input only. When the bit is at 1, the corresponding I/O line is driven by the PIO controller.

The level driven on an I/O line can be determined by writing in PIO_SODR (Set Output Data Register) and
PIO_CODR (Clear Output Data Register). These write operations respectively set and clear PIO_ODSR (Output
Data Status Register), which represents the data driven on the 1/O lines. Writing in PIO_OER and PIO_ODR
manages PIO_OSR whether the pin is configured to be controlled by the PIO controller or assigned to a peripheral
function. This enables configuration of the I/O line prior to setting it to be managed by the PIO Controller.

Similarly, writing in PIO_SODR and PIO_CODR effects PIO_ODSR. This is important as it defines the first level
driven on the 1/O line.

28.5.5 Synchronous Data Output

Clearing one (or more) PIO line(s) and setting another one (or more) PIO line(s) synchronously cannot be done by
using PIO_SODR and PIO_CODR registers. It requires two successive write operations into two different
registers. To overcome this, the PIO Controller offers a direct control of PIO outputs by single write access to
PIO_ODSR (Output Data Status Register).Only bits unmasked by PIO_OWSR (Output Write Status Register) are
written. The mask bits in PIO_OWSR are set by writing to PIO_OWER (Output Write Enable Register) and cleared
by writing to PIO_OWDR (Output Write Disable Register).

After reset, the synchronous data output is disabled on all the 1/O lines as PIO_OWSR resets at 0x0.

28.5.6 Multi Drive Control (Open Drain)

Each I/O can be independently programmed in Open Drain by using the Multi Drive feature. This feature permits
several drivers to be connected on the 1/O line which is driven low only by each device. An external pull-up resistor
(or enabling of the internal one) is generally required to guarantee a high level on the line.

The Multi Drive feature is controlled by PIO_MDER (Multi-driver Enable Register) and PIO_MDDR (Multi-driver
Disable Register). The Multi Drive can be selected whether the 1/O line is controlled by the PIO controller or
assigned to a peripheral function. PIO_MDSR (Multi-driver Status Register) indicates the pins that are configured
to support external drivers.

After reset, the Multi Drive feature is disabled on all pins, i.e. PIO_MDSR resets at value 0x0.

28.5.7 Output Line Timings

Figure 28-4 shows how the outputs are driven either by writing PIO_SODR or PIO_CODR, or by directly writing
PIO_ODSR. This last case is valid only if the corresponding bit in PIO_OWSR is set. Figure 28-4 also shows when
the feedback in PIO_PDSR is available.

SAM3S8 /| SAM3SDS8 [DATASHEET 481
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 28-4. Output Line Timings
vek [B

Write PIO_SODR APB Access
Write PIO_ODSR at 1

Write PIO_CODR APB Access
Write PIO_ODSR at 0

PIO_ODSR

2 cycles 2 cycles

PIO_PDSR

28.5.8 Inputs

The level on each I/O line can be read through PIO_PDSR (Pin Data Status Register). This register indicates the
level of the 1/O lines regardless of their configuration, whether uniquely as an input or driven by the PIO controller
or driven by a peripheral.

Reading the 1/O line levels requires the clock of the PIO controller to be enabled, otherwise PIO_PDSR reads the
levels present on the 1/O line at the time the clock was disabled.

28.5.9 Input Glitch and Debouncing Filters
Optional input glitch and debouncing filters are independently programmable on each /O line.

The glitch filter can filter a glitch with a duration of less than 1/2 Master Clock (MCK) and the debouncing filter can
filter a pulse of less than 1/2 Period of a Programmable Divided Slow Clock.

The selection between glitch filtering or debounce filtering is done by writing in the registers PIO_IFSCDR (PIO
Input Filter Slow Clock Disable Register) and PIO_IFSCER (PIO Input Filter Slow Clock Enable Register). Writing
PIO_IFSCDR and PIO_IFSCER respectively, sets and clears bits in PIO_IFSCSR.

The current selection status can be checked by reading the register PIO_IFSCSR (Input Filter Slow Clock Status

Register).
e If PIO_IFSCSRJi] = 0: The glitch filter can filter a glitch with a duration of less than 1/2 Period of Master
Clock.

e If PIO_IFSCSRJi] = 1: The debouncing filter can filter a pulse with a duration of less than 1/2 Period of the
Programmable Divided Slow Clock.

For the debouncing filter, the Period of the Divided Slow Clock is performed by writing in the DIV field of the
PIO_SCDR (Slow Clock Divider Register)

Tdiv_slclk = ((DIV+1)*2).Tslow_clock

When the glitch or debouncing filter is enabled, a glitch or pulse with a duration of less than 1/2 Selected Clock
Cycle (Selected Clock represents MCK or Divided Slow Clock depending on PIO_IFSCDR and PIO_IFSCER
programming) is automatically rejected, while a pulse with a duration of 1 Selected Clock (MCK or Divided Slow
Clock) cycle or more is accepted. For pulse durations between 1/2 Selected Clock cycle and 1 Selected Clock
cycle the pulse may or may not be taken into account, depending on the precise timing of its occurrence. Thus for
a pulse to be visible it must exceed 1 Selected Clock cycle, whereas for a glitch to be reliably filtered out, its
duration must not exceed 1/2 Selected Clock cycle.

The filters also introduce some latencies, this is illustrated in Figure 28-5 and Figure 28-6.

482 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

The glitch filters are controlled by the register set: PIO_IFER (Input Filter Enable Register), PIO_IFDR (Input Filter
Disable Register) and PIO_IFSR (Input Filter Status Register). Writing PIO_IFER and PIO_IFDR respectively sets
and clears bits in PIO_IFSR. This last register enables the glitch filter on the I/O lines.

When the glitch and/or debouncing filter is enabled, it does not modify the behavior of the inputs on the
peripherals. It acts only on the value read in PIO_PDSR and on the input change interrupt detection. The glitch and
debouncing filters require that the P1O Controller clock is enabled.

Figure 28-5. Input Glitch Filter Timing

PIO_IFCSR =0
wek [] I LI L1 | I L1 |
up tp 1.5 cycles
Pin Level ﬂ-l—-l-n ” ”
1cycle 1 cycle 1cycle 1cycle
PIO_PDSR
if PIO_IFSR=0
2 cycles 1 cycle
PIO_PDSR up to 2.5 pycles
if PIO_IF_SR =1 up to |2 cycles

Figure 28-6. Input Debouncing Filter Timing

PIO_IFCSR =1
Divided Slow Clock | | [| | | | |
Pin Level (| L 0l | |
up to|2 cycles Tmck up to g_cycles Tmck
PIO_PDSR r I
if PIO_IFSR = 0 |
1 cycle|Tdiv_slclk 1 cycle Tdiv_slclk
PIO_PDSR up|to 1.5 cycles Tdiv_slclk
ifPIO_IFSR = 1 uplto 1.5 cycles Tdiv_slclk| [
[[
up to 2 cycles Tmck up to 2 cycles Tmck

28.5.10 Input Edge/Level Interrupt

The PIO Controller can be programmed to generate an interrupt when it detects an edge or a level on an 1/O line.
The Input Edge/Level Interrupt is controlled by writing PIO_IER (Interrupt Enable Register) and PIO_IDR (Interrupt
Disable Register), which respectively enable and disable the input change interrupt by setting and clearing the
corresponding bit in PIO_IMR (Interrupt Mask Register). As Input change detection is possible only by comparing
two successive samplings of the input of the I/O line, the PIO Controller clock must be enabled. The Input Change
Interrupt is available, regardless of the configuration of the I/O line, i.e. configured as an input only, controlled by
the PIO Controller or assigned to a peripheral function.

By default, the interrupt can be generated at any time an edge is detected on the input.

Some additional Interrupt modes can be enabled/disabled by writing in the PIO_AIMER (Additional Interrupt
Modes Enable Register) and PIO_AIMDR (Additional Interrupt Modes Disable Register). The current state of this
selection can be read through the PIO_AIMMR (Additional Interrupt Modes Mask Register)

SAM3S8 /| SAM3SDS8 [DATASHEET 483
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

These Additional Modes are:
e Rising Edge Detection
e Falling Edge Detection
e Low Level Detection
e High Level Detection

In order to select an Additional Interrupt Mode:

e The type of event detection (Edge or Level) must be selected by writing in the set of registers; PIO_ESR
(Edge Select Register) and PIO_LSR (Level Select Register) which enable respectively, the Edge and Level
Detection. The current status of this selection is accessible through the PIO_ELSR (Edge/Level Status
Register).

e The Polarity of the event detection (Rising/Falling Edge or High/Low Level) must be selected by writing in
the set of registers; PIO_FELLSR (Falling Edge /Low Level Select Register) and PIO_REHLSR (Rising
Edge/High Level Select Register) which allow to select Falling or Rising Edge (if Edge is selected in the
PIO_ELSR) Edge or High or Low Level Detection (if Level is selected in the PIO_ELSR). The current status
of this selection is accessible through the PIO_FRLHSR (Fall/Rise - Low/High Status Register).

When an input Edge or Level is detected on an 1/O line, the corresponding bit in PIO_ISR (Interrupt Status
Register) is set. If the corresponding bit in PIO_IMR is set, the PIO Controller interrupt line is asserted. The
interrupt signals of the thirty-two channels are ORed-wired together to generate a single interrupt signal to the.
Nested Vector Interrupt Controller (NVIC).

When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies that all the interrupts
that are pending when PIO_ISR is read must be handled. When an Interrupt is enabled on a “Level”, the interrupt
is generated as long as the interrupt source is not cleared, even if some read accesses in PIO_ISR are performed.

Figure 28-7. Event Detector on Input Lines (Figure represents line 0)

Rising Edge
Detector

P Falling Edge
Detector

Event Detector

7

PIO_REHLSR[0]
1
PIO_FRLHSR[0] J Event detection on line 0
PIO_FELLSR[0] } J
0
Resynchronized input on line 0 High Level 4
Detector
«
Detector
PIO_LSR[0]
PIO_ELSR[0] PIO_AIMERI[O0]
PIO_ESR[0] PIO_AIMMR[0]
PIO_AIMDR[0]

Edge
Detector

484 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

28.5.10.1 Example

If generating an interrupt is required on the following:
e Rising edge on PIO line 0

Falling edge on PIO line 1

Rising edge on PIO line 2

Low Level on PIO line 3

High Level on PIO line 4

High Level on PIO line 5

Falling edge on PIO line 6

Rising edge on PIO line 7

e Any edge on the other lines

The configuration required is described below.

28.5.10.2 Interrupt Mode Configuration
All the interrupt sources are enabled by writing 32’hFFFF_FFFF in PIO_IER.
Then the Additional Interrupt Mode is enabled for line 0 to 7 by writing 32’h0000_00FF in PIO_AIMER.

28.5.10.3 Edge or Level Detection Configuration
Lines 3, 4 and 5 are configured in Level detection by writing 32’h0000_0038 in PIO_LSR.
The other lines are configured in Edge detection by default, if they have not been previously configured.
Otherwise, lines 0, 1, 2, 6 and 7 must be configured in Edge detection by writing 32’'h0000_00C7 in PIO_ESR.
28.5.10.4 Falling/Rising Edge or Low/High Level Detection Configuration.

Lines 0, 2, 4, 5 and 7 are configured in Rising Edge or High Level detection by writing 32’h0000_00B5 in
PIO_REHLSR.

The other lines are configured in Falling Edge or Low Level detection by default, if they have not been previously
configured. Otherwise, lines 1, 3 and 6 must be configured in Falling Edge/Low Level detection by writing
32’h0000_004A in PIO_FELLSR.

Figure 28-8. Input Change Interrupt Timings if there are no Additional Interrupt Modes

e | I L LI |

Pin Level

PIO_ISR

/ /

Read PIO_ISR APB Access APB Access

SAM3S8 /| SAM3SDS8 [DATASHEET 485
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

28.5.11 1/O Lines Lock

When an I/O line is controlled by a peripheral (particularly the Pulse Width Modulation Controller PWM), it can
become locked by the action of this peripheral via an input of the PIO controller. When an /O line is locked, the
write of the corresponding bit in the registers PIO_PER, PIO_PDR, PIO_MDER, PIO_MDDR, PIO_PUDR,
PIO_PUER, PIO_ABCDSR1 and PIO_ABCDSR?2 is discarded in order to lock its configuration. The user can know
at anytime which 1/O line is locked by reading the PIO Lock Status register PIO_LOCKSR. Once an I/O line is
locked, the only way to unlock it is to apply a hardware reset to the PIO Controller.

28.5.12 Programmable Schmitt Trigger
It is possible to configure each input for the Schmitt Trigger. By default the Schmitt trigger is active. Disabling the

Schmitt Trigger is requested when using the QTouch® Library.

28.5.13 Parallel Capture Mode

28.5.13.1 Overview

The PIO Controller integrates an interface able to read data from a CMOS digital image sensor, a high-speed
parallel ADC, a DSP synchronous port in synchronous mode, etc. For better understanding and to ease reading,
the following description uses an example with a CMOS digital image sensor.

28.5.13.2 Functional Description

The CMOS digital image sensor provides a sensor clock, an 8-bit data synchronous with the sensor clock, and two
data enables which are synchronous with the sensor clock too.

Figure 28-9. PIO controller connection with CMOS digital image sensor

PI1O Controller

Parallel Capture !
Mode ' CMOS Digital

PIODCCLK <—E:|<— pcLk Image Sensor

Data
e PIODC[7:0] | DATA[7:0]
PDC
Status
 E— PIODCEN1 <—|I|<—-VSYNC

PIODCEN2 <_|I|‘_ HSYNC

As soon as the parallel capture mode is enabled by writing the PCEN bit at 1 in PIO_PCMR (“PIO Parallel Capture
Mode Register”), the 1/O lines connected to the sensor clock (PIODCCLK), the sensor data (PIODCJ[7:0]) and the
sensor data enable signals (PIODCEN1 and PIODCEN2) are configured automatically as INPUTS. To know which
I/O lines are associated with the sensor clock, the sensor data and the sensor data enable signals, refer to the 1/0O
multiplexing table(s) in the product datasheet.

Once it is enabled, the parallel capture mode samples the data at rising edge of the sensor clock and
resynchronizes it with the PI1O clock domain.

The size of the data which can be read in PIO_PCRHR (“P1O Parallel Capture Reception Holding Register”) can
be programmed thanks to the DSIZE field in PIO_PCMR. If this data size is larger than 8 bits, then the parallel
capture mode samples several sensor data to form a concatenated data of size defined by DSIZE. Then this data
is stored in PIO_PCRHR and the flag DRDY is setto 1 in PIO_PCISR (“PIO Parallel Capture Interrupt Status
Register”).

486 SAM3S8 / SAM3SD8 [DATASHEET)] /ltmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

The parallel capture mode can be associated with a reception channel of the Peripheral DMA Controller (PDC).
This enables performing reception transfer from parallel capture mode to a memory buffer without any intervention
from the CPU. Transfer status signals from PDC are available in PIO_PCISR through the flags ENDRX and
RXBUFF (see “PIO Parallel Capture Interrupt Status Register” on page 549).

The parallel capture mode can take into account the sensor data enable signals or not. If the bit ALWYS is setto 0
in PIO_PCMR, the parallel capture mode samples the sensor data at the rising edge of the sensor clock only if
both data enable signals are active (at 1). If the bit ALWYS is set to 1, the parallel capture mode samples the
sensor data at the rising edge of the sensor clock whichever the data enable signals are.

The parallel capture mode can sample the sensor data only one time out of two. This is particularly useful when
the user wants only to sample the luminance Y of a CMOS digital image sensor which outputs a YUV422 data
stream. If the HALFS bit is set to 0 in PIO_PCMR, the parallel capture mode samples the sensor data in the
conditions described above. If the HALFS bit is set to 1 in PIO_PCMR, the parallel capture mode samples the
sensor data in the conditions described above, but only one time out of two. Depending on the FRSTS bit in
PIO_PCMR, the sensor can either sample the even or odd sensor data. If sensor data are numbered in the order
that they are received with an index from O to n, if FRSTS = 0 then only data with an even index are sampled, if
FRSTS = 1 then only data with an odd index are sampled. If data is ready in PIO_PCRHR and it is not read before
a new data is stored in PIO_PCRHR, then an overrun error occurs. The previous data is lost and the OVRE flag in
PIO_PCISR is set to 1. This flag is automatically reset when PIO_PCISR is read (reset after read).

The flags DRDY, OVRE, ENDRX and RXBUFF can be a source of the PIO interrupt.

Figure 28-10. Parallel Capture Mode Waveforms (DSIZE = 2, ALWYS = 0, HALFS = 0)

PIODCCLK [O I O I O I O I
PIODC[7:0] X 0x01 X ox12 X 0x23 X 0x34 X 0x45 X 0x56 X 0x67 X 0x78 X 0x89 X X
PIODCEN1 | |

PIODCEN2 |
DRDY (PIO_PCISR) | |
Read of PIO_PCISR /I\
RDATA (PIO_PCRHR) X 0x5645_3423

SAM3S8 /| SAM3SDS8 [DATASHEET 487
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 28-11. Parallel Capture Mode Waveforms (DSIZE=2, ALWYS=1, HALFS=0)

veo JTUTUTUTUTUTUTUTUTUTUUUUUUUrUryuyuyut
PIODCCLK A S O A O I ’|\ I N O O A 'F_| [1]
PIODC[7:0] X oxo1 X ox12 X o3 X o4 X oxds X os6 X ox67 X 0x78 X O0x89 X X
PIODCEN | | ;

PIODCEN2 |

DRDY (PIO_PCISR) | | | |
Read of PIO_PCISR /I\ /I\

RDATA (PIO_PCRHR) X 0x3423_1201 X 0x7867_5645

Figure 28-12. Parallel Capture Mode Waveforms (DSIZE=2, ALWYS=0, HALFS=1, FRSTS=0)

PIODC(7:0] oo X o2 X oz X oo X o5 X oss X o7 X ows X v X Y

PIODCENT 4 |

PlODCEN2 | |
DRDY (PIO_PCISR) I—l

Read of PIO_PCISR /I\
RDATA (PIO_PCRHR) X 0x6745 2301
488 SAM3S8/ SAM3SD8 [DATASHEET] Atmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Figure 28-13. Parallel Capture Mode Waveforms (DSIZE=2, ALWYS=0, HALFS=1, FRSTS=1)

pEnEnE el alnkal
PIODC[7:0] W ooxor X oaz X oz X osa X oas X oxse X oxez X oxza X oxe9 iX X
PIODCENT | |
PIODCEN2 |
DRDY (PIO_PCISR) 1

Read of PIO_PCISR /I\

RDATA (PIO_PCRHR) X 0x7856_3412

28.5.13.3 Restrictions
e Configuration fields DSIZE, ALWYS, HALFS and FRSTS in PIO_PCMR (“P10O Parallel Capture Mode
Register”) can be changed ONLY if the parallel capture mode is disabled at this time (PCEN =0 in
PIO_PCMR).
e Frequency of PIO controller clock must be strictly superior to 2 times the frequency of the clock of the device
which generates the parallel data.

28.5.13.4 Programming Sequence

Without PDC
1. Write PIO_PCIDR and PIO_PCIER (“PIO Parallel Capture Interrupt Disable Register” and “P1O Parallel
Capture Interrupt Enable Register”) in order to configure the parallel capture mode interrupt mask.
2. Write PIO_PCMR (“PIO Parallel Capture Mode Register”) to set the fields DSIZE, ALWYS, HALFS and
FRSTS in order to configure the parallel capture mode WITHOUT enabling the parallel capture mode.
3. Write PIO_PCMR to set the PCEN bit to 1 in order to enable the parallel capture mode WITHOUT changing
the previous configuration.
4. Wait for a data ready by polling the DRDY flag in PIO_PCISR (“PIO Parallel Capture Interrupt Status
Register”) or by waiting the corresponding interrupt.
Check OVRE flag in PIO_PCISR.
Read the data in PIO_PCRHR (“PIO Parallel Capture Reception Holding Register”).
If new data are expected go to step 4.
Write PIO_PCMR to set the PCEN bit to 0 in order to disable the parallel capture mode WITHOUT changing
the previous configuration.

© N o »

With PDC
1. Write PIO_PCIDR and PIO_PCIER (“PIO Parallel Capture Interrupt Disable Register” and “P10 Parallel
Capture Interrupt Enable Register”) in order to configure the parallel capture mode interrupt mask.
2. Configure PDC transfer in PDC registers.
3. Write PIO_PCMR (“PIO Parallel Capture Mode Register”) to set the fields DSIZE, ALWYS, HALFS and
FRSTS in order to configure the parallel capture mode WITHOUT enabling the parallel capture mode.

4. Write PIO_PCMR to set PCEN bit to 1 in order to enable the parallel capture mode WITHOUT changing the
previous configuration.

SAM3S8 /| SAM3SDS8 [DATASHEET 489
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

5. Wait for end of transfer by waiting the interrupt corresponding the flag ENDRX in PIO_PCISR (“PIO Parallel
Capture Interrupt Status Register”).

6. Check OVRE flag in PIO_PCISR.

7. If a new buffer transfer is expected go to step 5.

8. Write PIO_PCMR to set the PCEN bit to O in order to disable the parallel capture mode WITHOUT changing
the previous configuration.

490 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

28.5.14 Write Protection Registers

To prevent any single software error that may corrupt PIO behavior, certain address spaces can be write-protected
by setting the WPEN bit in the “PIO Write Protect Mode Register” (PIO_WPMR).

If a write access to the protected registers is detected, then the WPVS flag in the PIO Write Protect Status Register
(PIO_WPSR) is set and the field WPVSRC indicates in which register the write access has been attempted.

The WPVS flag is reset by writing the PIO Write Protect Mode Register (PIO_WPMR) with the appropriate access
key, WPKEY.

The protected registers are:

Atmel

“P1O Enable Register” on page 496

“P1O Disable Register” on page 497

“P1O Output Enable Register” on page 499

“P10O Output Disable Register” on page 500

“Pl1O Input Filter Enable Register” on page 502

“P1O Input Filter Disable Register” on page 503

“P1O Multi-driver Enable Register” on page 513

“P1O Multi-driver Disable Register” on page 514

“P1O Pull Up Disable Register” on page 516

“P10 Pull Up Enable Register” on page 517

“P1O Peripheral ABCD Select Register 1” on page 519
“P10O Peripheral ABCD Select Register 2” on page 520
“P1O Output Write Enable Register” on page 528

“P10 Output Write Disable Register” on page 529
“P1O Pad Pull Down Disable Register” on page 525
“P1O Pad Pull Down Status Register” on page 527
“PlO Parallel Capture Mode Register” on page 545

SAM3S8 / SAM3SD8 [DATASHEET] 491

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

28.6 1/0 Lines Programming Example

The programing example as shown in Table 28-3 below is used to obtain the following configuration.

e 4-bit output port on I/O lines 0 to 3, (should be written in a single write operation), open-drain, with pull-up
resistor

e Four output signals on I/O lines 4 to 7 (to drive LEDs for example), driven high and low, no pull-up resistor,
no pull-down resistor

e Fourinput signals on I/O lines 8 to 11 (to read push-button states for example), with pull-up resistors, glitch
filters and input change interrupts

e Four input signals on I/O line 12 to 15 to read an external device status (polled, thus no input change
interrupt), no pull-up resistor, no glitch filter

e 1/Olines 16 to 19 assigned to peripheral A functions with pull-up resistor
e |/Olines 20 to 23 assigned to peripheral B functions with pull-down resistor

e 1/Oline 24 to 27 assigned to peripheral C with Input Change Interrupt, no pull-up resistor and no pull-down
resistor

e /O line 28 to 31 assigned to peripheral D, no pull-up resistor and no pull-down resistor

Table 28-3. Programming Example

492

Register Value to be Written
PIO_PER 0x0000_FFFF
PIO_PDR OXFFFF_0000
PIO_OER 0x0000_O00FF
PIO_ODR OxFFFF_FFOO0
PIO_IFER 0x0000_0F00
PIO_IFDR OxFFFF_FOFF
PIO_SODR 0x0000_0000
PIO_CODR OXOFFF_FFFF
PIO_IER 0x0F00_0F00
PIO_IDR OxFOFF_FOFF
PIO_MDER 0x0000_000F
PIO_MDDR OxFFFF_FFFO
PIO_PUDR OxFFFO_O0OFO0
PIO_PUER 0xO000F_FFOF
PIO_PPDDR OxFFOF_FFFF
PIO_PPDER 0x00F0_0000
PIO_ABCDSR1 0xFOFO0_0000
PIO_ABCDSR2 OxFF00_0000
PIO_OWER 0x0000_000F
PIO_OWDR OxOFFF_ FFFO

SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

28.7 Parallel Input/Output Controller (P1O) User Interface

Each I/O line controlled by the PIO Controller is associated with a bit in each of the PIO Controller User Interface
registers. Each register is 32 bits wide. If a parallel I/O line is not defined, writing to the corresponding bits has no
effect. Undefined bits read zero. If the I/O line is not multiplexed with any peripheral, the 1/O line is controlled by the
PI1O Controller and PIO_PSR returns 1 systematically.

Table 28-4. Register Mapping
Offset Register Name Access Reset
0x0000 PIO Enable Register PIO_PER Write-only -
0x0004 P10 Disable Register PIO_PDR Write-only -
0x0008 PIO Status Register PIO_PSR Read-only @
0x000C Reserved
0x0010 Output Enable Register PIO_OER Write-only -
0x0014 Output Disable Register PIO_ODR Write-only -
0x0018 Output Status Register PIO_OSR Read-only 0x0000 0000
0x001C Reserved
0x0020 Glitch Input Filter Enable Register PIO_IFER Write-only -
0x0024 Glitch Input Filter Disable Register PIO_IFDR Write-only -
0x0028 Glitch Input Filter Status Register PIO_IFSR Read-only 0x0000 0000
0x002C Reserved
0x0030 Set Output Data Register PIO_SODR Write-only -
0x0034 Clear Output Data Register PIO_CODR Write-only
Read-only
0x0038 Output Data Status Register PIO_ODSR or® -
Read-write
0x003C Pin Data Status Register PIO_PDSR Read-only ®
0x0040 Interrupt Enable Register PIO_IER Write-only -
0x0044 Interrupt Disable Register PIO_IDR Write-only -
0x0048 Interrupt Mask Register PIO_IMR Read-only 0x00000000
0x004C Interrupt Status Register® PIO_ISR Read-only 0x00000000
0x0050 Multi-driver Enable Register PIO_MDER Write-only -
0x0054 Multi-driver Disable Register PIO_MDDR Write-only -
0x0058 Multi-driver Status Register PIO_MDSR Read-only 0x00000000
0x005C Reserved
0x0060 Pull-up Disable Register PIO_PUDR Write-only -
0x0064 Pull-up Enable Register PIO_PUER Write-only -
0x0068 Pad Pull-up Status Register PIO_PUSR Read-only @
0x006C Reserved

Atmel

SAM3S8 / SAM3SD8 [DATASHEET] 493

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Table 28-4. Register Mapping (Continued)
Offset Register Name Access Reset
0x0070 Peripheral Select Register 1 PIO_ABCDSR1 Read-write 0x00000000
0x0074 Peripheral Select Register 2 PIO_ABCDSR2 Read-write 0x00000000
0x0078
to Reserved
0x007C
0x0080 Input Filter Slow Clock Disable Register PIO_IFSCDR Write-only -
0x0084 Input Filter Slow Clock Enable Register PIO_IFSCER Write-only -
0x0088 Input Filter Slow Clock Status Register PIO_IFSCSR Read-only 0x00000000
0x008C Slow Clock Divider Debouncing Register PIO_SCDR Read-write 0x00000000
0x0090 Pad Pull-down Disable Register PIO_PPDDR Write-only -
0x0094 Pad Pull-down Enable Register PIO_PPDER Write-only -
0x0098 Pad Pull-down Status Register PIO_PPDSR Read-only @
0x009C Reserved
0x00A0 Output Write Enable PIO_OWER Write-only -
0x00A4 Output Write Disable PIO_OWDR Write-only -
0x00A8 Output Write Status Register PIO_OWSR Read-only 0x00000000
0x00AC Reserved
0x00BO Additional Interrupt Modes Enable Register PIO_AIMER Write-only -
0x00B4 Additional Interrupt Modes Disables Register PIO_AIMDR Write-only -
0x00B8 Additional Interrupt Modes Mask Register PIO_AIMMR Read-only 0x00000000
0x00BC Reserved
0x00CO0 Edge Select Register PIO_ESR Write-only -
0x00C4 Level Select Register PIO_LSR Write-only -
0x00C8 Edge/Level Status Register PIO_ELSR Read-only 0x00000000
oxooccC Reserved
0x00DO0 Falling Edge/Low Level Select Register PIO_FELLSR Write-only -
0x00D4 Rising Edge/ High Level Select Register PIO_REHLSR Write-only -
0x00D8 Fall/Rise - Low/High Status Register PIO_FRLHSR Read-only 0x00000000
0x00DC Reserved
0x00EO Lock Status PIO_LOCKSR Read-only 0x00000000
Ox00E4 Write Protect Mode Register PIO_WPMR Read-write 0x0
O0x00E8 Write Protect Status Register PIO_WPSR Read-only 0x0
Ox00EC
to Reserved
0x00F8
0x0100 Schmitt Trigger Register PIO_SCHMITT Read-write 0x00000000
8§818é Reserved
0x0110 Reserved

494 SAM3S8 / SAM3SD8 [DATASHEET)]

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

Atmel

Table 28-4. Register Mapping (Continued)

Offset Register Name Access Reset
gigﬁé Reserved

0x150 Parallel Capture Mode Register PIO_PCMR Read-write 0x00000000
0x154 Parallel Capture Interrupt Enable Register PIO_PCIER Write-only -
0x158 Parallel Capture Interrupt Disable Register PIO_PCIDR Write-only -
0x15C Parallel Capture Interrupt Mask Register PIO_PCIMR Read-only 0x00000000
0x160 Parallel Capture Interrupt Status Register PIO_PCISR Read-only 0x00000000
0x164 Parallel Capture Reception Holding Register PIO_PCRHR Read-only 0x00000000
0x0168

to Reserved for PDC Registers

0x018C

Notes: 1. Reset value depends on the product implementation.
2. PIO_ODSR is Read-only or Read/Write depending on PIO_OWSR I/O lines.

3. Reset value of PIO_PDSR depends on the level of the I/O lines. Reading the 1/O line levels requires the clock of the PIO
Controller to be enabled, otherwise PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.

4. PIO_ISR is reset at 0x0. However, the first read of the register may read a different value as input changes may have
occurred.

Note: if an offset is not listed in the table it must be considered as reserved.

SAM3S8 /| SAM3SDS8 [DATASHEET 495
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

28.7.1 PIO Enable Register

Name: PIO_PER

Address: 0x400EOQEQ0 (PIOA), 0x400E1000 (PIOB), 0x400E1200 (P1OC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “P1O Write Protect Mode Register” .

» P0-P31: PIO Enable
0: No effect.

1: Enables the PIO to control the corresponding pin (disables peripheral control of the pin).

496 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

28.7.2 PIO Disable Register

Name: PIO_PDR

Address: 0x400EOE04 (PIOA), 0x400E1004 (PIOB), 0x400E1204 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “P1O Write Protect Mode Register” .

» P0-P31: PIO Disable
0: No effect.

1: Disables the PIO from controlling the corresponding pin (enables peripheral control of the pin).

SAM3S8 /| SAM3SDS8 [DATASHEET 497
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

28.7.3 PIO Status Register

Name: PIO_PSR

Address: 0x400EOQE08 (PIOA), 0x400E1008 (PIOB), 0x400E1208 (PIOC)

Access: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» PO0-P31: PIO Status
0: PIO is inactive on the corresponding I/O line (peripheral is active).
1: PIO is active on the corresponding I/O line (peripheral is inactive).

498 SAM3S8 / SAM3SD8 [DATASHEET)] /ItmeL

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

28.7.4 PIO Output Enable Register

Name: PIO_OER

Address: 0x400EOE10 (PIOA), 0x400E1010 (PIOB), 0x400E1210 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “P1O Write Protect Mode Register” .

* PO-P31: Output Enable
0: No effect.
1: Enables the output on the I/O line.

SAM3S8 /| SAM3SDS8 [DATASHEET 499
Atmel []

Atmel-11090B-ATARM-SAM3S8-SAM3SD8-Datasheet_18-Dec-14

28.7.5 PIO Output Disable Register

Name: PIO_ODR

Address: Ox400EOE14 (PIOA), 0x400E1014 (PIOB), 0x400E1214 (PIOC)

Access: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register can only be written if the WPEN bit is cleared in “P1O Write Protect Mode Register” .

¢ PO0-P31: Output Disable
0: No effect.
1: Disables the output on the I/O line.

500 SAM3S8 / SAM3SD8 [DATASHEET)] /Itmel

At