
Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 9677142008 Printed: 2015-02-12

Part Number: 9677142008

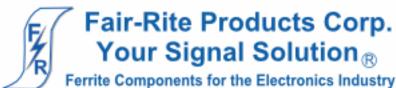
Frequency Range: Power Applications

Description: 77 BOBBIN 3PC. ASSEMBLY COATED

Application: Inductive Components

Where Used: Open Magnetic Circuit

Part Type: Bobbins


Mechanical Specifications

Weight: 8.500 (g)

Part Type Information

Bobbins are an economical and well-proven core design for many applications where relatively low but stable inductance values are required.

- -For higher frequency designs, use small bobbins in 43 material.
- -For power applications, bobbins in 77 material are specified for AL and dc bias limits.
- -Bobbins in Figures 2-5 can be supplied with a uniform coating of thermo-set plastic coating which can withstand a minimum breakdown of 500Vrms. This coating will change the dimensions a maximum of 0.5mm (.020"). The last digit of the thermo-set plastic coated part is an '8'.
- -The listed dimensions are for assembled bobbins without thermo-set plastic.
- -Bobbins are tested for AL value at 1kHz < 10 gauss.
- -For any bobbin requirement not listed in the catalog, please contact our customer service group for availability and pricing.
- -Explanation of Part Numbers: Digits 1&2 = product class, 3&4 = material grade, last digit 8 = coated bobbin.

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 9677142008 Printed: 2015-02-12

Mechanical Specifications

Dim	mm	mm	nominal	inch
		tol	inch	misc.
Α	14.85	Max	0.584	Max
В	21.20	Max	0.834	Max
С	-	-	-	-
D	11.70	Min	0.461	Min
Е	-	-	-	-
F	9.80	Max	0.385	Max
G	1.20	Min	0.048	Min
Н	2.60	Min	0.103	Min
J	-	-	-	-
K	-	-	-	-

Electrical Specifications

<u> </u>			
Typical Impedance (Ω)			
Electrical Properties			
A _L (nH)	55 ±10%		
A _L min. @ NI (At)	47 - 325		
N/AWG	81/28		
A _w (cm ²)	0.24 Min		

Land Patterns

V	W ref	X	Υ	Z
-	-	-		

Winding Information

Turns	Wire	1st Wire	2nd Wire
Tested	Size	Length	Length
-	-	-	-

Reel Information

Tape Width	Pitch			
mm -	mm -	Reel -	Reel -	Reel -

Package Size

Pkg Size
-
(-)

Connector Plate

# Holes	# Rows
-	-

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A ½ turn is defined as a single pass through a hole.

∠I/A - Core Constant

A_e: Effective Cross-Sectional Area

 A_{I} - Inductance Factor $\binom{L}{N2}$

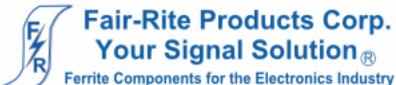
I e: Effective Path Length

Ve: Effective Core Volume

NI - Value of dc Ampere-turns

N/AWG - Number of Turns/Wire Size for Test Coil

Fair-Rite Product's Catalog Part Data Sheet, 9677142008 Printed: 2015-02-12



Ferrite Material Constants

0.25 cal/g/°C Specific Heat 3.5 - 4.5 mW/cm - °C Thermal Conductivity Coefficient of Linear Expansion 8 - 10x10-6/°C Tensile Strength 4.9 kgf/mm² Compressive Strength 42 kgf/mm² 15x103 kgf/mm2 Young's Modulus Hardness (Knoop)..... 650 Specific Gravity $\approx 4.7 \text{ g/cm}^3$ The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.

See next page for further material specifications.

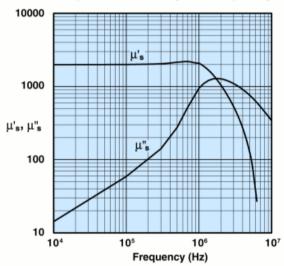
Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

A MnZn ferrite for use in a wide range of high and low flux density inductive designs for frequencies up to 100 kHz.

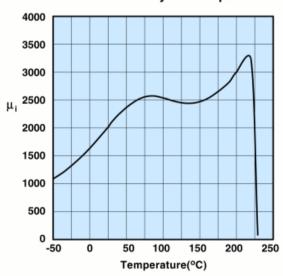
Pot cores, E&I cores, U cores, rods, toroids, and bobbins are all available in 77 material.

Fair-Rite Product's Catalog Part Data Sheet, 9677142008

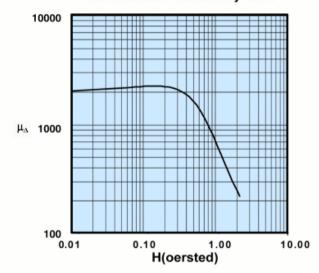
Printed: 2015-02-12



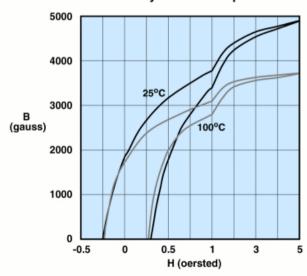
77 Material Characteristics:


Property	Unit	Symbol	Value
Initial Permeability @ B < 10 gauss		μ_{i}	2000
Flux Density	gauss	В	4900
@ Field Strength	oersted	н	5
Residual Flux Density	gauss	B,	1800
Coercive Force	oersted	H _c	0.30
Loss Factor	10-6	tan δ/μ	15
@ Frequency	MHz		0.1
Temperature Coefficient of Initial Permeability (20 -70°C)	%/°C		0.7
Curie Temperature	°C	T.	>200
Resistivity	Ωcm	ρ	1x10 ²

Complex Permeability vs. Frequency


Measured on an 18/10/6mm toroid using the HP 4284A and the HP 4291A.

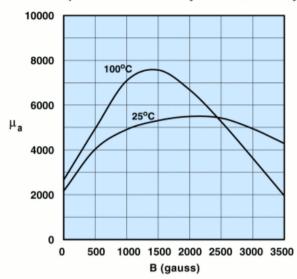
Initial Permeability vs. Temperature



Measured on an 18/10/6mm toroid at 100kHz.

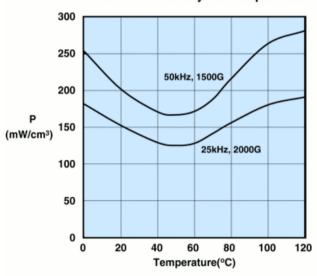
Incremental Permeability vs. H

Hysteresis Loop


Measured on an 18/10/6mm toroid at 10kHz.

Fair-Rite Products Corp. Your Signal Solution®

Ferrite Components for the Electronics Industry


Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

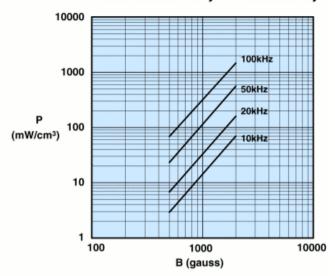
Amplitude Permeability vs. Flux Density

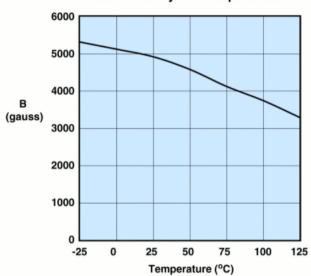
Measured on an 18/10/6mm toroid at 10kHz.

Power Loss Density vs. Temperature

Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW.

Fair-Rite Product's Catalog Part Data Sheet, 9677142008


Printed: 2015-02-12



Power Loss Density vs. Flux Density

Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW at 100°C

Flux Density vs. Temperature

Measured on an 18/10/6mm toroid at 10kHz and H=5 oersted.