

4-OUTPUT LOW POWER FANOUT BUFFER FOR PCIE GEN3 AND 10G ETHERNET

IDT6V31021

General Description

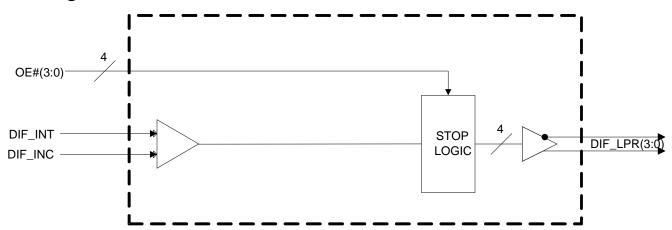
The IDT6V31021 is a 4-output low-power differential buffer. Each output has its own OE# pin. It has a maximum operating frequency of 167 MHz and supports all SERDES clock frequencies for Freescale QorlQ CPUs.

Recommended Application

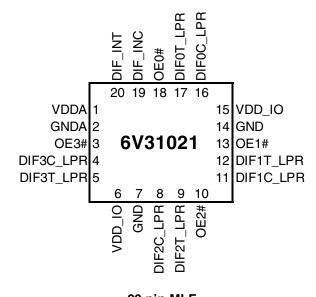
PCIe Gen1/2/3 or Ethernet Fanout Buffer, or any application requiring low additive phase jitter.

Output Features

- 4 low power differential output pairss
- Individual OE# control of each output pair


Features/Benefits

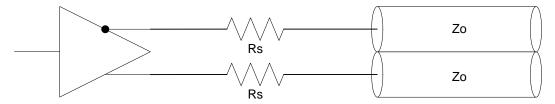
- Low power differential outputs; power efficient
- Power down mode when all OE# are high; reduces system standby power
- Industrial temperature range; can be used in demanding environments
- 20-pin MLF; space savings


Key Specifications

- Output cycle-cycle jitter <15ps additive
- Output to Output skew: <50ps
- PCIe Gen3 addtive phasejitter <0.3ps rms
- 10.3125G/64 additive phase jitter <100fs rms

Block Diagram

Pin Configuration



20-pin MLF

Power Connections

Pin Nun	nber (MLF)	Deceriation
VDD	GND	Description
6,15	7,14	VDD_IO for DIF(3:0)
1	2	3.3V Analog VDD & GND

Terminations

Zo-17 = Rs (ohms), where Zo is the single-ended intrinsic impedance of the board transmission line. Single-ended intrinsic impedance is $\frac{1}{2}$ that of the differential impedance.

Single Ended	Rs		
Impedance	5%	Rs	
(Zo)	tolerance	2% tolerance	Notes
50	33	33.2	In general, 5% resistors
45	27	27.4	may be used. All values are
42.5	24 or 27	24.9	in ohms.

Pin Descriptions

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	VDDA	PWR	3.3V Power for the Analog Core
2	GNDA	GND	Ground for the Analog Core
3	OE3#	l IN	Output Enable for DIF3 output. Control is as follows:
		"	0 = enabled, 1 = Low-Low
4	DIF3C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
5	DIF3T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
6	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
7	GND	GND	Ground pin
8	DIF2C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
9	DIF2T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
10	10 OE2#		Output Enable for DIF2 output. Control is as follows:
10	UE2#	IN	0 = enabled, 1 = Low-Low
11	DIF1C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
12	DIF1T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
13	OE1#	IN	Output Enable for DIF1 output. Control is as follows:
- 10			0 = enabled, 1 = Low-Low
14	GND	GND	Ground pin
15	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
16	DIF0C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
17	DIF0T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
18	18 OE0# IN		Output Enable for DIF0 output. Control is as follows:
10		113	0 = enabled, 1 = Low-Low
19	DIF_INC	IN	Complement side of differential input clock
20	DIF_INT	IN	True side of differential input clock

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the IDT6V31021. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes	
Maximum Supply Voltage	VDDA	Core Supply Voltage			4.6	V	1,7	
Maximum Supply Voltage	VDD_IO	Low-Voltage Differential I/O	0.99		3.8	V	1,7	
Maximum Input Voltage	V_{IH}	3.3V LVCMOS Inputs			4.6	V	1,7,8	
Minimum Input Voltage	V_{IL}	Any Input	Vss - 0.5			V	1,7	
Ambient Operating Temp	T_{ambIND}	Industrial Range	-40		85	°C	1	
Storage Temperature	Ts	-	-65		150	°C	1,7	
Input ESD protection	ESD prot	Human Body Model	2000			V	1,7	

Electrical Characteristics-Input/Supply/Common Output Parameters

Supply Voltage	VDDA	Supply Voltage	3.000	3.3	0.000		
O. mark v Mallana	\/DD 10		0.000	ა.ა	3.600	V	1
Supply Voltage	VDDxxx_IO	Low-Voltage Differential I/O Supply	0.99	1.05-3.3	3.600	V	1
Input High Voltage	V_{IHSE}	Single-ended inputs	2		$V_{DD} + 0.3$	V	1
Input Low Voltage	V_{ILSE}	Single-ended inputs	V _{SS} - 0.3		0.8	V	1
Differential Input High Voltage	V_{IHDIF}	Differential inputs (single-ended measurement)	600		1.15	V	1
Differential Input Low Voltage	V_{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 0.3		300	V	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5		5	uA	1
	I _{DD_3.3V}	VDDA supply current		15	20	mA	1
Operating Supply Current	I _{DD_IO_133M}	VDD_IO supply @ fOP = 133MHz		12	20	mA	1
Power Down Current	I _{DD_SB_3.3V}	VDDA supply current, Input stopped, OE# pins all high		500	750	uA	1
(All OE# pins High)	I _{DD_SBIO}	VDD_IO supply, Input stopped, OE# pins all high		100	150	uA	1
Input Frequency	Fi	$V_{DD} = 3.3 \text{ V}$	15		167	MHz	2
Pin Inductance	L_{pin}				7	nΗ	1
Input Capacitance —	C_{IN}	Logic Inputs	1.5		5	pF	1
input Capacitance	C_{OUT}	Output pin capacitance			6	pF	1
OE# latency (at least one OE# is low)	T _{OE#LAT}	Number of clocks to enable or disable output from assertion/deassertion of OE#	1	2	3	periods	1
Clock stabilization time (from all OE# high to first OE# low).	T _{STAB}	Delay from assertion of first OE# to first clock out (assumes input clock running and device in power down state))			150	ns	1
Tdrive_OE#	T _{DROE#}	Output enable after OE# de-assertion			10	ns	1
Tfall_OE#	T_{FALL}	Fall/rise time of OE# inputs			5	ns	1
Trise_OE#	T_{RISE}	Tan/1136 titlle of OL# illputs			5	ns	1

AC Electrical Characteristics-DIF Low Power Differential Outputs

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Rising/Falling Edge Slew Rate	t _{SLR}	Differential Measurement	1.5	2.2	4	V/ns	1,2
Slew Rate Variation	t _{SLVAR}	Single-ended Measurement		13	20	%	1
Maximum Output Voltage	V_{HIGH}	Includes overshoot		783	1150	mV	1
Minimum Output Voltage	V_{LOW}	Includes undershoot	-300	-22		mV	1
Differential Voltage Swing		Differential Measurement	1200			mV	1
Crossing Point Voltage	V_{XABS}	Single-ended Measurement	250	336	550	mV	1,3,4
Crossing Point Variation	$V_{XABSVAR}$	Single-ended Measurement		14	140	mV	1,3,5
Duty Cycle Distortion	D _{CYCDIS0}	Differential Measurement, fIN<=133.33MHz		1.6	3	%	1,6
Additive Cycle-to-Cycle Jitter	DIFJ _{C2CADD}	Differential Measurement, Additive		2.1	7	ps	1
DIF[3:0] Skew	DIF _{SKEW}	Differential Measurement		19	50	ps	1, 11
Propagation Delay	t _{PD}	Input to output Delay	2.5	3.3	3.8	ns	1
Additive Phase Jitter - PCle Gen1	t _{phase_addPClG1}	1.5MHz < 22MHz		1.6	6	ps Pk-Pk	1,9
Additive Phase Jitter - PCIe Gen2 High Band	t _{phase_add} PCIG2HI	High Band is 1.5MHz to Nyquist (50MHz)		0.1	0.3	ps rms	1,9
Additive Phase Jitter - PCle Gen2 Low Band	t _{phase_addPCIG2LO}	Low Band is 10KHz to 1.5MHz		0.5	0.8	ps rms	1,9
Additive Phase Jitter - PCIe Gen3	t _{phase_addPCIG3}	2MHz - 4MHz, 2MHz - 5MHz		0.19	0.3	ps rms	1,9
Additive Phase Jitter 161.1328125MHz = 10.3125G/64	t _{phase_add10G/64}	12KHz to 100MHz		60	100	fs rms	1,10

Notes on Electrical Characteristics (all measurements use R_S=33ohms/C_L=2pF test load):

¹Guaranteed by design and characterization, not 100% tested in production.

² Slew rate measured through Vswing centered around differential zero

³ Vxabs is defined as the voltage where CLK = CLK#

⁴ Only applies to the differential rising edge (CLK rising and CLK# falling)

⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#.

⁶ This figure refers to the maximum distortion of the input wave form.

⁷Operation under these conditions is neither implied, nor guaranteed.

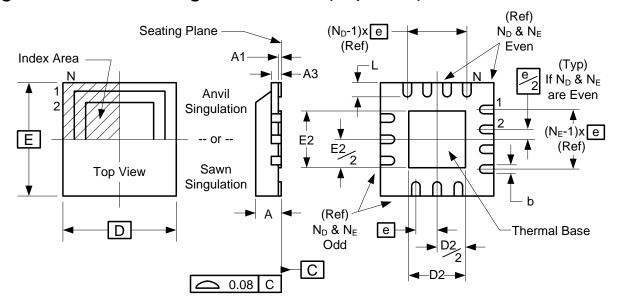
⁸ Maximum input voltage is not to exceed maximum VDD

⁹ The 6V31021has no PLL, so the part itself contributes very little jitter to the input clock. But this also means that the 9DBL411 cannot 'de-jitter' a noisy input clock. Values calculated per PCI SIG and per Intel Clock Jitter tool version 1.6.6. For PCIe RMS figures, additive jitter is calculated by solving the following equation: Additive jitter = SQRT[(total jitter)^2 - (input jitter)^2]

 $^{^{\}rm 10}\,\text{Calculated}$ from Agilent E5052A phase noise machine.

¹¹ Mean value not including cycle-to-cycle jitter

Marking Diagram



6V310 21NLGI YWW**\$

Notes:

- 1. "** is the lot sequence.
- 2. '\$' is the mark code.
- 3. 'YWW' is the year and week that the part was assembled.
- 4. 'G' denotes RoHS compliant package.
- 5. 'I' denotes industrial temperature range.
- 6. Bottom marking: country of origin if not USA.

Package Outline and Package Dimensions (20-pin MLF)

	Millim	neters	
Symbol	Min	Max	
Α	0.8	1.0	
A1	0	0.05	
A3	0.20 Re	ference	
b	0.18	0.3	
е	0.50 BASIC		
D x E BASIC	4.00 x 4.00		
D2 MIN./MAX.	2.00	2.25	
E2 MIN./MAX.	2.00	2.25	
L MIN./MAX.	0.45	0.65	
N	20		
N _D 5			
N _E	5	5	

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
6V31021NLGI	Trays	20-pin MLF	-40 to +85°C
6V31021NLGI8	Tape and Reel	20-pin MLF	-40 to +85°C

"G" after the two0letetr package code indicates Pb-Free configuration, RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

IDT6V31021

4-OUTPUT LOW POWER FANOUT BUFFER FOR PCIE GEN3 AND 10G ETHERNET

Revision History

Rev.	Originator	Issue Date	Description	Page #
0.1	RDW	10/18/2011	Initial Release	
			Updated General Description and Key Specifications	
			2. Added Mark Spec	
Α	RDW	12/12/2011	3. Moved to Final	1, 6
		_		

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775 For Tech Support

www.idt.com/go/clockhelp pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

