

Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 0431163951

Printed: 2013-07-03

Part Number: 0431163951

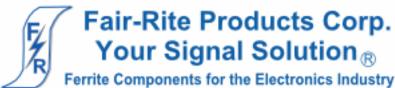
Frequency Range: Lower & Broadband Frequencies 1-300 MHz (31 material)

Description: 31 FLAT CABLE CORE ASSEMBLY

Application: Suppression Components

Where Used: Cable Component

Part Type: Flat Cable Snap-Its


Mechanical Specifications

Weight: 110.000(g)

Part Type Information

Flat cable snap-its for use on multi-conductor flat cables to suppress common-mode conducted EMI from 1MHz to hundreds of MHz. These flat cable snap-its are available in two ferrite materials, 31 and 43. The polypropylene cases are meeting the RoHS restrictions of hazardous substances and have a flammability rating of UL94 V-0.

- -Flat cable snap-it assemblies are controlled for impedances only. Minimum impedance values are specified for the + marked frequencies. The minimum impedance is typically the listed impedance less 20%.
- -Centered, single turn impedance tests on the 31 and 43 material parts are performed on the 4193A Vector Impedance Analyzer. Cores are tested with the shortest practical wire length.
- -The 'Expanded Cable and Suppressor Kit' (Part number 0199000005) contains several flat cable snap-it assemblies.
- -Explanation of Part Numbers: Digits 1 & 2 = product class and 3 & 4 = material grade.

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 0431163951 Printed: 2013-07-03

Mechanical Specifications

Dim	mm	mm	nominal	inch
		tol	inch	misc.
Α	67.80	-	2.670	-
В	52.10	-	2.050	-
С	32.30	-	1.272	-
D	8.10	-	0.320	-
E	-	-	-	-
F	ı	1	-	-
G	-	-	-	-
Н			-	-
J			-	-
K	-	-	-	-

Electrical Specifications

Typical Impedance (Ω)				
1 MHz	13			
5 MHz	35			
10 MHz+	54			
25 MHz+	105			
100 MHz+	300			
250 MHz	425			

Electrical Properties	

Land Patterns

V	W	Х	Υ	Z
-	-	-	-	-
-	-	-	-	-

Winding Information

Turns	Wire	1st Wire	2nd Wire
Tested	Size	Length	Length
-	-	-	-

Reel Information

Tape Width	Pitch	Parts 7 "	Parts 13 "	Parts 14 "
mm	mm	Reel	Reel	Reel
-	-	-	-	-

Package Size

Pkg Size
-
(-)

Connector Plate

# Holes	# Rows	
-	-	

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A 1/2 turn is defined as a single pass through a hole.

_ I/A - Core Constant

Ae: Effective Cross-Sectional Area

 A_{I} - Inductance Factor $\binom{L}{N2}$

I e: Effective Path Length

Ve: Effective Core Volume

NI - Value of dc Ampere-turns

N/AWG - Number of Turns/Wire Size for Test Coil

Fair-Rite Product's Catalog Part Data Sheet, 0431163951 Printed: 2013-07-03

Ferrite Material Constants

Specific Heat 0.25 cal/g/°C

Coefficient of Linear Expansion 8 - 10x10⁻⁶/°C

Tensile Strength 4.9 kgf/mm²

Compressive Strength 42 kgf/mm²

Young's Modulus 15x10³ kgf/mm²

Specific Gravity $\approx 4.7 \text{ g/cm}^3$

The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.

See next page for further material specifications.

Fair-Rite Products Corp. Your Signal Solution® Ferrite Components for the Electronics Industry

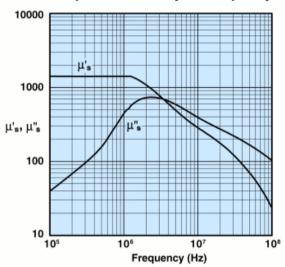
Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

A MnZn ferrite designed specifically for EMI suppression applications from as low as 1 MHz up to 500 MHz. This material does not have the dimensional resonance limitations associated with conventional MnZn ferrite materials.

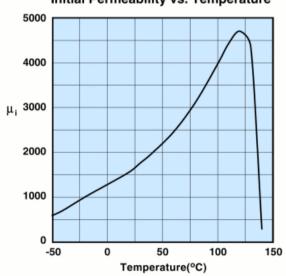
Round cable EMI suppression cores, round cable snap-its, flat cable EMI suppression cores, and flat cable snap-its are all available in 31 material.

Fair-Rite Product's Catalog Part Data Sheet, 0431163951

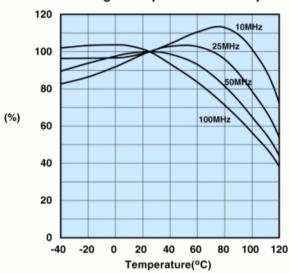
Printed: 2013-07-03



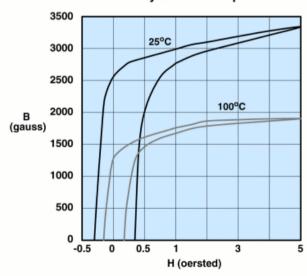
31 Material Characteristics:


Property	Unit	Symbol	Value
Initial Permeability © B < 10 gauss		μ_{i}	1500
Flux Density	gauss	В	3400
@ Field Strength	oersted	н	5
Residual Flux Density	gauss	B,	2500
Coercive Force	oersted	H _c	0.35
Loss Factor	10-6	tan δ/μ,	20
@ Frequency	MHz		0.1
Temperature Coefficient of Initial Permeability (20 -70°C)	%/°C		1.6
Curie Temperature	°C	т。	>130
Resistivity	Ωcm	ρ	3x10 ³

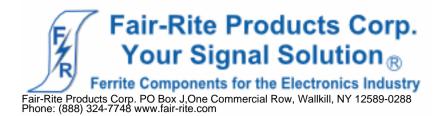
Complex Permeability vs. Frequency


Measured on a 17/10/6mm toroid at 25°C using the HP 4284A and the HP 4291A.

Initial Permeability vs. Temperature


Measured on a 17/10/6mm toroid at 100kHz.

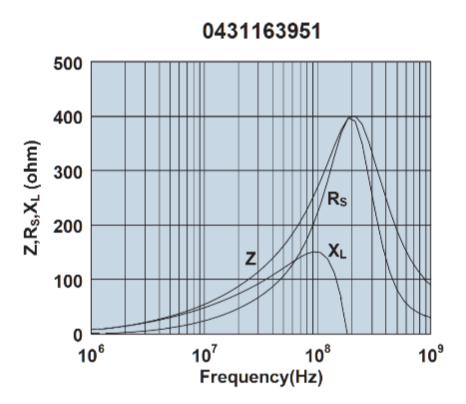
Percent of Original Impedance vs. Temperature



Measured on a 2631000301 using the HP4291A.

Hysteresis Loop

Measured on a 17/10/6mm toroid at 10kHz.



Fair-Rite Product's Catalog Part Data Sheet, 0431163951 Printed: 2013-07-03

Impedance, reactance, and resistance vs. frequency.