Power MOSFET for 1-2 Cells Lithium-ion Battery Protection 20 V, 4.7 m Ω , 23 A, Dual N-Channel

ON Semiconductor®

www.onsemi.com

This Power MOSFET features a low on-state resistance. This device is suitable for applications such as power switches of portable machines. Best suited for 1-2 cells lithium-ion battery applications.

Features

- 2.5 V drive
- 2 kV ESD HBM
- Common-Drain Type
- ESD Diode-Protected Gate
- Pb-Free, Halogen Free and RoHS compliance

Applications

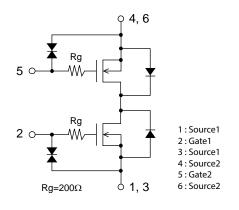
• 1-2 Cells Lithium-ion Battery Charging and Discharging Switch

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS at Ta = 25°C (Note 1)

Parameter	Symbol	Value	Unit
Source to Source Voltage	Vsss	20	V
Gate to Source Voltage	V _{GSS}	±12	V
Maximum Operating Gate to Source Voltage (Note 2)	VGSS(OP)	±8	٧
Source Current (DC)	Is	23	Α
Source Current (Pulse) PW ≤ 100 µs, duty cycle ≤ 1%	ISP	100	Α
Total Dissipation (Note 3)	PT	2.5	W
Junction Temperature	Tj	150	°C
Storage Temperature	Tstg	-55 to +150	°C

- Note 1: Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
- Note 2 : Functional operation above the stresses listed in the recommended operating ranges is not implied. Extended exposure to stresses beyond the recommended operating ranges limits may affect device reliability


THERMAL RESISTANCE RATINGS

Parameter	Symbol	Value	Unit
Junction to Ambient (Note 3)	$R_{\theta}JA$	50	°C/W

Note 3 : Surface mounted on ceramic substrate (5000 mm² × 0.8 mm).

VSSS	Rss(on) Max	Is Max
	4.7 mΩ @ 4.5 V	
	4.75 mΩ @ 4.0 V	
20 V	4.9 mΩ @ 3.8 V	23 A
	5.4 mΩ @ 3.1 V	
	9.0 mΩ @ 2.5 V	

ELECTRICAL CONNECTION N-Channel

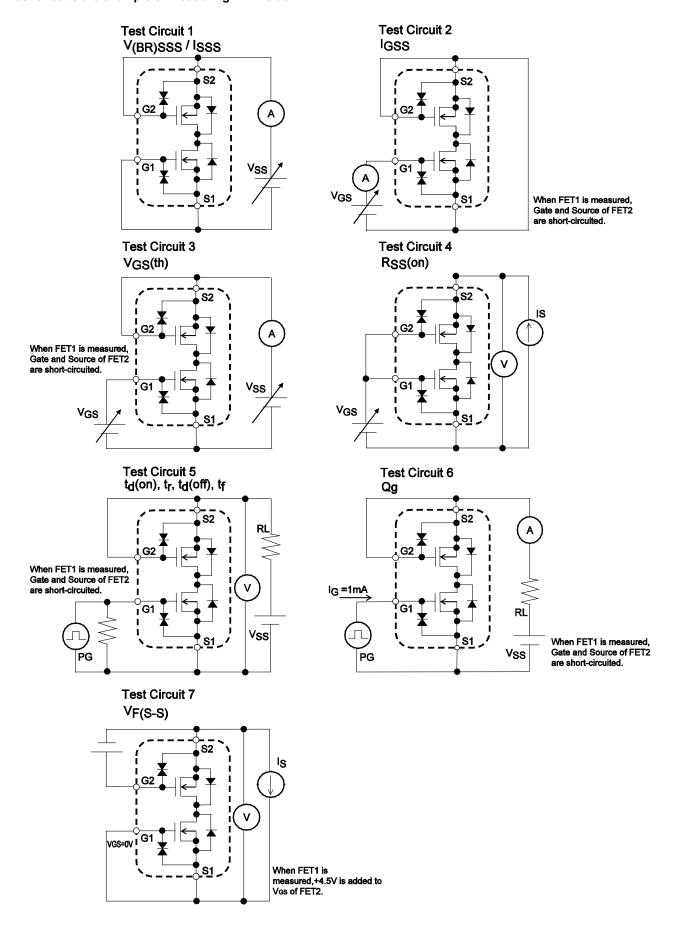
WLCSP6, 1.77x3.05

MARKING

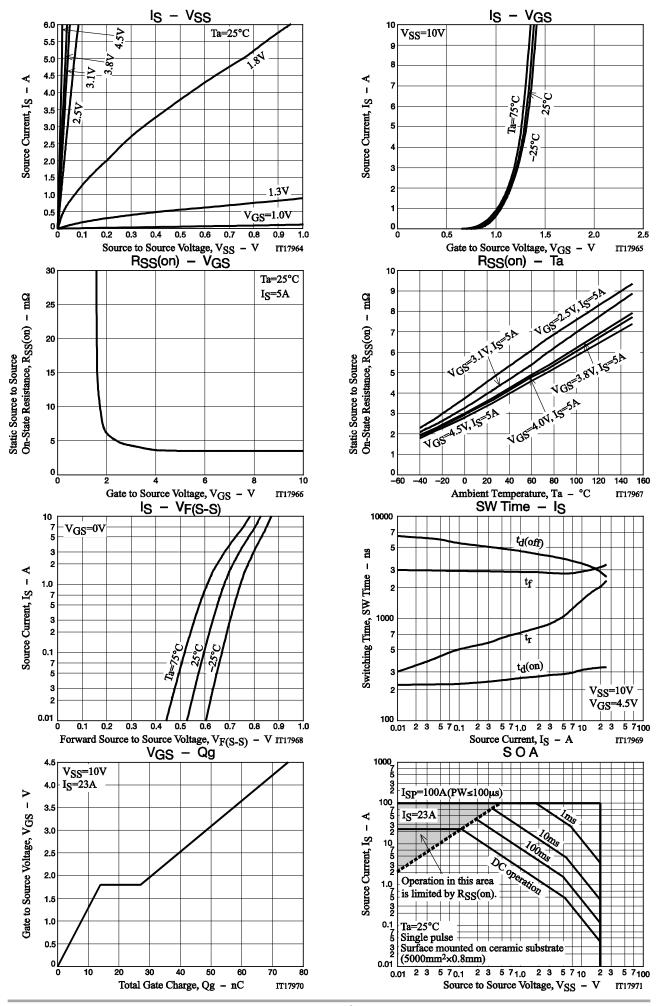
MT = Device Code

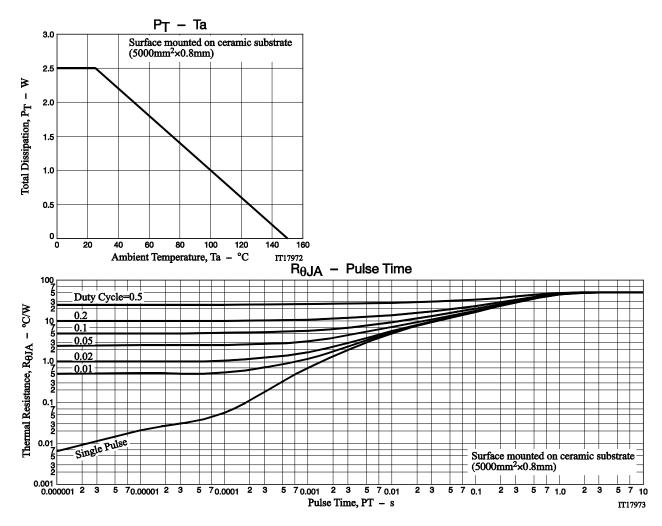
ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.


ELECTRICAL CHARACTERISTICS at Ta = 25°C (Notes 4, 5)

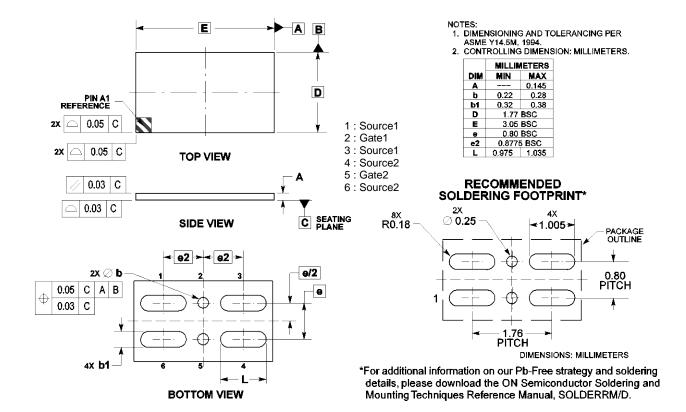
Davie se ete s	Completed	Conditions		Value			I Imit
Parameter	Symbol			min	typ	max	Unit
Source to Source Breakdown Voltage	V(BR)SSS	IS = 1 mA, VGS = 0 V	Test Circuit 1	20			V
Zero-Gate Voltage Source Current	ISSS	Vss = 20 V, Vgs = 0 V	Test Circuit 1			1	μΑ
Gate to Source Leakage Current	IGSS	$VGS = \pm 8 \text{ V}, VSS = 0 \text{ V}$	Test Circuit 2			±1	μΑ
Gate Threshold Voltage	VGS(th)	VSS = 10 V, IS = 1 mA	Test Circuit 3	0.5		1.3	V
Static Source to Source On-State Resistance		I _S = 5 A, V _{GS} = 4.5 V	Test Circuit 4	2.5	3.6	4.7	mΩ
	RSS(on)	Is = 5 A, Vgs = 4.0 V	Test Circuit 4	2.56	3.65	4.75	mΩ
		Is = 5 A, Vgs = 3.8 V	Test Circuit 4	2.6	3.75	4.9	mΩ
		I _S = 5 A, V _{GS} = 3.1 V	Test Circuit 4	2.9	4.15	5.4	mΩ
		Is = 5 A, Vgs = 2.5 V	Test Circuit 4	3.3	4.75	9.0	mΩ
Turn-ON Delay Time	t _d (on)	VSS = 10 V, VGS = 4.5 V, IS = 3 A Test Circuit 5			280		ns
Rise Time	t _r				890		ns
Turn-OFF Delay Time	t _d (off)				4,100		ns
Fall Time	tf				2,800		ns
Total Gate Charge	Qg	VSS = 10 V, VGS = 4.5 \	/, IS = 23 A Test Circuit 6		75		nC
Forward Source to Source Voltage	VF(S-S)	Is = 3 A, Vgs = 0 V	Test Circuit 7		0.74	1.2	V


Note 4 : Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


Note 5 : Refer to the JIS 7030 measuring methods for transistors for measuring.

Test circuits are example of measuring FET1 side

When FET2 is measured, the position of FET1 and FET2 is switched.



PACKAGE DIMENSIONS

unit: mm

WLCSP6, 1.77x3.05 CASE 567KS ISSUE O

ORDERING INFORMATION

Device	Marking	Package	Shipping (Qty / Packing)
EFC3J018NUZTDG	MT	WLCSP6, 1.77 × 3.05 (Pb-Free / Halogen Free)	5,000 / Tape & Reel

[†] For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub_link/Collateral/BRD8011-D.PDF

Note on usage: Since the EFC3J018NUZ is a MOSFET product, please avoid using this device in the vicinity of highly charged objects. Please contact sales for use except the designated application.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer