

Sample &

Buy

Reference

Design

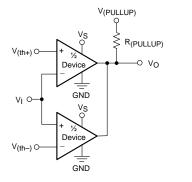
SLOS890A - NOVEMBER 2015 - REVISED DECEMBER 2015

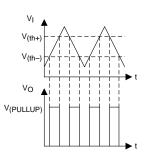
TLV170x-Q1 2.2-V to 36-V, microPower Comparator

Technical

Documents

1 Features


- Qualified for Automotive Applications
- AEC-Q100 Qualified With the Following Results:
 - Device Temperature Grade 1: –40°C to +125°C Ambient Operating Temperature Range
 - Device HBM Classification Level 1C
 - Device CDM Classification Level C6
- Supply Range: 2.2 V to 36 V or ±1.1 V to ±18 V
- Low Quiescent Current: 55 µA per Comparator
- Input Common-Mode Range Includes Both Rails
- Low Propagation Delay: 560 ns
- Low Input Offset Voltage: 300 μV
- Open Collector Outputs:
 - Up to 36 V Above Negative Supply Regardless of Supply Voltage
- Industrial Temperature Range: –40°C to +125°C
- Small Packages:
 - Dual: VSSOP-8
 - Quad: TSSOP-14


2 Applications

- Overvoltage and Undervoltage Detectors
- Window Comparators
- Overcurrent Detectors
- Zero-Crossing Detectors
- System Monitoring for:
 - Power Supplies
 - White Goods
 - Industrial Sensors
 - Automotive
 - Medical

AA

TLV1702-Q1 as a Window Comparator

3 Description

Tools &

Software

The TLV1702-Q1 and TLV1704-Q1 (TLV170x-Q1) devices offers a wide supply range, rail-to-rail inputs, low quiescent current, and low propagation delay. All these features come in industry-standard, extremely-small packages, making these devices the best general-purpose comparators available.

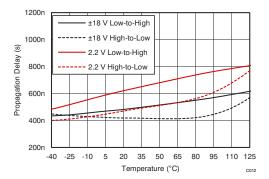
Support &

Community

2.2

The open collector output offers the advantage of allowing the output to be pulled to any voltage rail up to 36 V above the negative power supply, regardless of the TLV170x-Q1 supply voltage.

The device is a dual channel microPower comparator. Low input offset voltage, low input bias currents, low supply current, and open-collector configuration make the TLV170x-Q1 device flexible enough to handle almost any application, from simple voltage detection to driving a single relay.


The device is specified for operation across the expanded industrial temperature range of -40° C to $+125^{\circ}$ C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TLV1702-Q1	VSSOP (8)	3.00 mm × 3.00 mm
TLV1704-Q1	TSSOP (14)	5.00 mm × 4.4 mm

(1) For all available packages, see the package option addendum at the end of the datasheet.

Stable Propagation Delay vs Temperature

2

Table of Contents

1	Feat	tures 1
2	Арр	lications1
3	Des	cription1
4		ision History 2
5	Rela	ated Products 3
6	Pin	Configuration and Functions 4
7	Spe	cifications5
	7.1	Absolute Maximum Ratings 5
	7.2	ESD Ratings5
	7.3	Recommended Operating Conditions5
	7.4	Thermal Information 5
	7.5	Electrical Characteristics
	7.6	Switching Characteristics 6
	7.7	Typical Characteristics 7
8	Deta	ailed Description 10
	8.1	Overview 10
	8.2	Functional Block Diagram 10

	8.3	Feature Description	11
	8.4	Device Functional Modes	11
9	App	lication and Implementation	12
	9.1	Application Information	12
	9.2	Typical Application	12
10	Pow	ver Supply Recommendations	13
11	Lay	out	14
	11.1	Layout Guidelines	14
	11.2	Layout Example	14
12	Dev	ice and Documentation Support	15
	12.1	Documentation Support	15
	12.2	Related Links	15
	12.3	Community Resources	15
	12.4	Trademarks	15
	12.5	Electrostatic Discharge Caution	15
	12.6	Glossary	15
13	Mec	hanical, Packaging, and Orderable	
	Infor	mation	15

4 Revision History

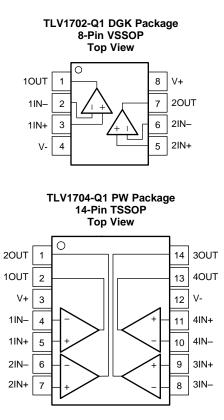
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Origina	l (November 2015) to Revision A
----------------------	---------------------------------

Added TLV1704-Q1	device to data sheet	1

www.ti.com

Page


5 Related Products

DEVICE	FEATURES	
TLC3702-Q1	Buch null 20 u.A. 20 mA drive	
TLC3704-Q1	— Push-pull, 20-μΑ, 20-mA drive	
TLV3012-Q1	Push-pull, 5-µA, integrated 1.242-V reference	
TLV3501-Q1	Duch Dull 2.2 mA 4.5 no propagation dolor	
TLV3502-Q1	 Push-Pull, 3.2 mA, 4.5-ns propagation delay 	
TLV3701-Q1	Push-pull, 560-nA, reverse battery to 16 V	
TLV3702-Q1		
REF50xx-Q1	Series reference, 0.1% tolerance, 8 ppm/°C	
TL4050xx-Q1	Shunt reference, 0.1% tolerance, 50 ppm/°C	
TLVH431-Q1	Adjustable Shunt Reference, 1.24 V to 18 V	

TLV1702-Q1, TLV1704-Q1 SLOS890A – NOVEMBER 2015 – REVISED DECEMBER 2015 TEXAS INSTRUMENTS

www.ti.com

6 Pin Configuration and Functions

Pin Functions

	PIN			
NAME	TLV1702 DGK	TLV1704 PW	I/O	DESCRIPTION
IN+	_	—	I	Noninverting input
1IN+	3	5	I	Noninverting input, channel 1
2IN+	5	7	I	Noninverting input, channel 2
3IN+	—	9	I	Noninverting input, channel 3
4IN+	—	11	I	Noninverting input, channel 4
IN-	—	—	I	Inverting input
1IN-	2	4	I	Inverting input, channel 1
2IN-	6	6	I	Inverting input, channel 2
3IN-	—	8	I	Inverting input, channel 3
4IN-	—	10	I	Inverting input, channel 4
OUT	—	—	0	Output
10UT	1	2	0	Output, channel 1
20UT	7	1	0	Output, channel 2
3OUT		14	0	Output, channel 3
4OUT	_	13	0	Output, channel 4
V+	8	3	—	Positive (highest) power supply
V–	4	12	—	Negative (lowest) power supply

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		M	IN	МАХ	UNIT
Supply voltage	al input pins Voltage ⁽²⁾ Current ⁽²⁾		40	0 (±20)	V
Signal input pipe	Voltage ⁽²⁾	(V _S –)	-0.5 (V _S	+) + 0.5	V
Signal input pins	Current ⁽²⁾			±10	mA
Output short-circuit ⁽³)		Continuous		mA
Operating temperatu	re	-5	55	150	°C
Junction temperature	e, T _J			150	°C
Storage temperature	, T _{stg}	-6	65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails must be current limited to 10 mA or less.

(3) Short-circuit to ground; one comparator per package.

7.2 ESD Ratings

				VALUE	UNIT
	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±1000	V		
	V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011	±1000	V

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	NOM MAX	UNIT
Supply voltage $V_S = (V_S+) - (V_S-)$	2.2 (±1.1)	36 (±18)	V
Specified temperature	-40	125	°C

7.4 Thermal Information

		TLV1702-Q1	TLV1704-Q1	
	THERMAL METRIC ⁽¹⁾	DGK (VSSOP)	PW (TSSOP)	UNIT
		8 PINS	14 PINS	
$R_{ extsf{ heta}JA}$	Junction-to-ambient thermal resistance	199	128.1	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	89.5	56.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	120.4	69.9	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	22	9.1	°C/W
ΨJB	Junction-to-board characterization parameter	118.7	69.3	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

TLV1702-Q1, TLV1704-Q1

SLOS890A - NOVEMBER 2015 - REVISED DECEMBER 2015

www.ti.com

STRUMENTS

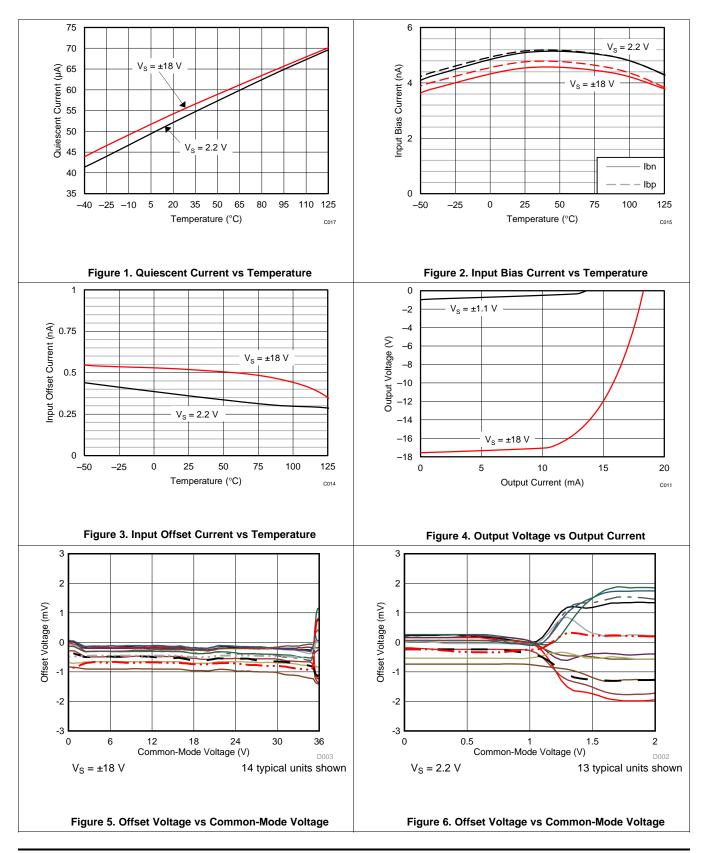
EXAS

7.5 Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFFSET V	OLTAGE					
		$T_A = 25^{\circ}C, V_S = 2.2 V$		±0.5	±3.5	mV
V _{OS}	Input offset voltage	$T_A = 25^{\circ}C, V_S = 36 V$		±0.3	±2.5	mV
		$T_A = -40^{\circ}C$ to $+125^{\circ}C$			±5.5	mV
dV _{OS} /dT	Input offset voltage drift	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±4	±20	µV/°C
PSRR	Power-supply rejection ratio	$T_A = 25^{\circ}C$		15	100	μV/V
PSKK	Power-supply rejection ratio	$T_A = -40^{\circ}C$ to $+125^{\circ}C$		20		μV/V
INPUT VO	LTAGE RANGE					
V _{CM}	Common-mode voltage range	$T_A = -40^{\circ}C$ to $+125^{\circ}C$	(V–)		(V+)	V
INPUT BIA	SCURRENT					
		$T_A = 25^{\circ}C$		5	15	nA
IB	Input bias current	$T_A = -40^{\circ}C$ to $+125^{\circ}C$			20	nA
l _{os}	Input offset current			0.5		nA
CLOAD	Capacitive load drive		See Typica	al Characteristics		
OUTPUT						
		$I_0 \le 4$ mA, input overdrive = 100 mV, V _S = 36 V			900	mV
Vo	Voltage output swing from rail	I_{O} = 0 mA, input overdrive = 100 mV, V _S = 36 V			600	mV
I _{SC}	Short circuit sink current			20		mA
	Output leakage current	$V_{IN+} > V_{IN-}$		70		nA
POWER S	UPPLY					
Vs	Specified voltage range		2.2		36	V
		I _O = 0 A		55	75	μA
l _Q	Quiescent current (per channel)	$I_{O} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$			100	μA

7.6 Switching Characteristics

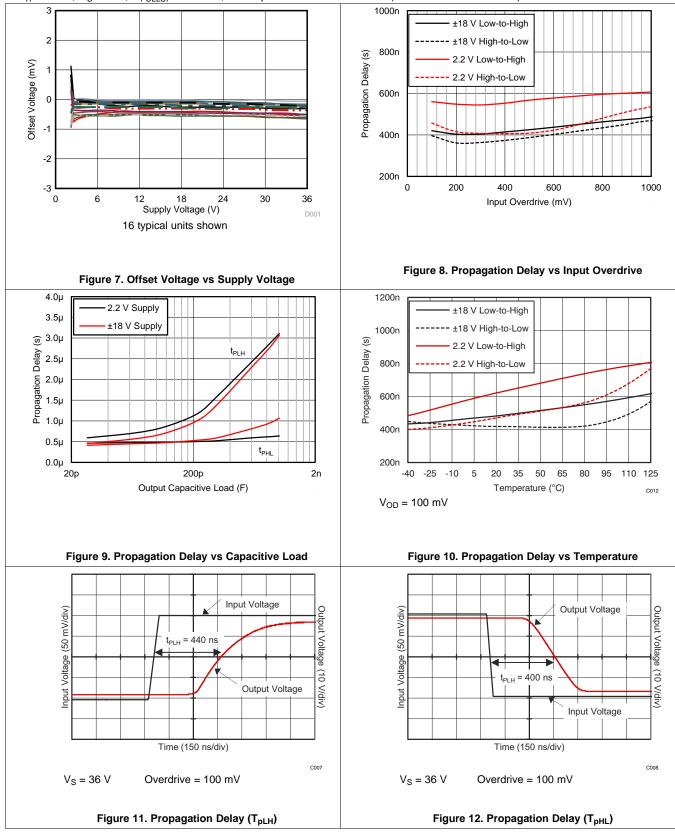
at $T_A = 25^{\circ}$ C, $V_S = +2.2$ V to +36 V, $C_L = 15$ pF, $R_{PULLUP} = 5.1$ k Ω , $V_{CM} = V_S / 2$, and $V_S = V_{PULLUP}$ (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{pHL}	Propagation delay time, high-to-low	Input overdrive = 100 mV		460		ns
t _{pLH}	Propagation delay time, low-to-high	Input overdrive = 100 mV		560		ns
t _R	Rise time	Input overdrive = 100 mV		365		ns
t _F	Fall time	Input overdrive = 100 mV		240		ns

6

7.7 Typical Characteristics

at $T_A = 25^{\circ}$ C, $V_S = 5$ V, $R_{PULLUP} = 5.1$ k Ω , and input overdrive = 100 mV (unless otherwise noted)

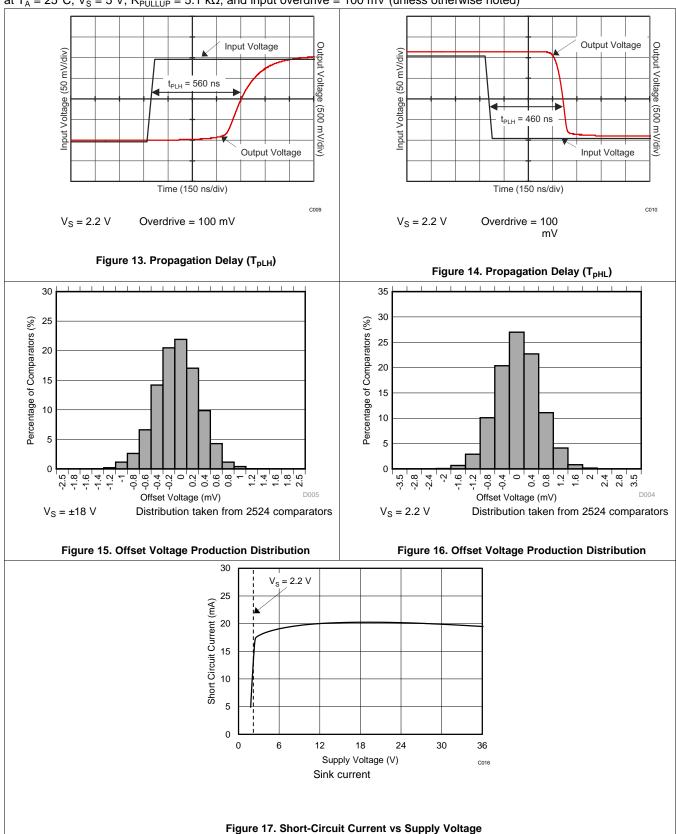

TLV1702-Q1, TLV1704-Q1 SLOS890A – NOVEMBER 2015 – REVISED DECEMBER 2015

Texas Instruments

www.ti.com

Typical Characteristics (continued)

at $T_A = 25^{\circ}$ C, $V_S = 5$ V, $R_{PULLUP} = 5.1$ k Ω , and input overdrive = 100 mV (unless otherwise noted)

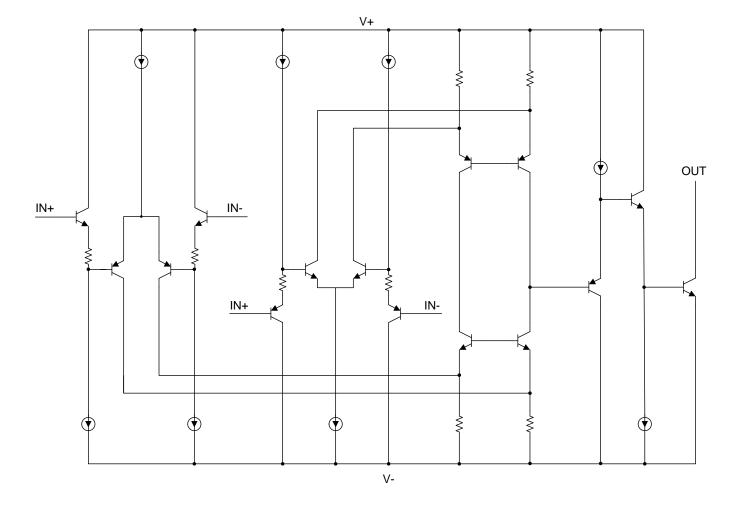


8

Copyright © 2015, Texas Instruments Incorporated

Typical Characteristics (continued)

at $T_A = 25^{\circ}$ C, $V_S = 5$ V, $R_{PULLUP} = 5.1$ k Ω , and input overdrive = 100 mV (unless otherwise noted)

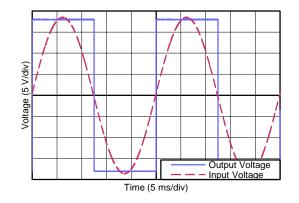

9

8 Detailed Description

8.1 Overview

The TLV170x-Q1 comparator features rail-to-rail input and output on supply voltages as high as 36 V. The rail-torail input stage enables detection of signals close to the supply and ground. The open collector configuration allows the device to be used in wired-OR configurations, such as a window comparator. A low supply current of 55 μ A per channel with small, space-saving packages, makes these comparators versatile for use in a wide range of applications, from portable to industrial.

8.2 Functional Block Diagram



8.3 Feature Description

8.3.1 Comparator Inputs

The TLV170x-Q1 device is a rail-to-rail input comparator, with an input common-mode range that includes the supply rails. The TLV170x-Q1 device is designed to prevent phase inversion when the input pins exceed the supply voltage. Figure 18 shows the TLV170x-Q1 device response when input voltages exceed the supply, resulting in no phase inversion.

Figure 18. No Phase Inversion: Comparator Response to Input Voltage (Propagation Delay Included)

8.4 Device Functional Modes

8.4.1 Setting Reference Voltage

Using a stable reference is important when setting the transition point for the TLV170x-Q1 device. The REF3333, as shown in Figure 19, provides a 3.3-V reference voltage with low drift and only 3.9 µA of quiescent current.

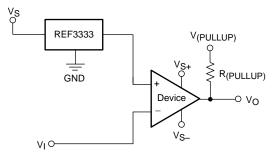


Figure 19. Reference Voltage for the TLV170x-Q1

TEXAS INSTRUMENTS

www.ti.com

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TLV170x-Q1 device can be used in a wide variety of applications, such as zero crossing detectors, window comparators, over and undervoltage detectors, and high-side voltage sense circuits.

9.2 Typical Application

Comparators are used to differentiate between two different signal levels. For example, a comparator differentiates between an overtemperature and normal-temperature condition. However, noise or signal variation at the comparison threshold causes multiple transitions. This application example sets upper and lower hysteresis thresholds to eliminate the multiple transitions caused by noise.

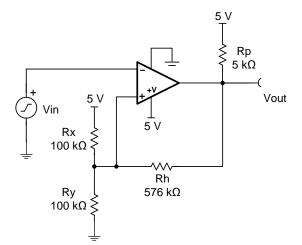


Figure 20. Comparator Schematic with Hysteresis

9.2.1 Design Requirements

The design requirements are as follows:

- Supply voltage: 5 V
- Input: 0 V to 5 V
- Lower threshold (VL) = $2.3 \text{ V} \pm 0.1 \text{ V}$
- Upper threshold (VH) = $2.7 \text{ V} \pm 0.1 \text{ V}$
- VH VL = 2.4 V ±0.1 V
- Low-power consumption

Typical Application (continued)

9.2.2 Detailed Design Procedure

Make a small change to the comparator circuit to add hysteresis. Hysteresis uses two different threshold voltages to avoid the multiple transitions introduced in the previous circuit. The input signal must exceed the upper threshold (VH) to transition low, or below the lower threshold (VL) to transition high.

Figure 20 illustrates hysteresis on a comparator. Resistor Rh sets the hysteresis level. An open-collector output stage requires a pullup resistor (Rp). The pullup resistor creates a voltage divider at the comparator output that introduces an error when the output is at logic high. This error can be minimized if Rh > 100 Rp.

When the output is at a logic high (5 V), Rh is in parallel with Rx (ignoring Rp). This configuration drives more current into Ry, and raises the threshold voltage (VH) to 2.7 V. The input signal must drive above VH = 2.7 V to cause the output to transition to logic low (0 V).

When the output is at logic low (0 V), Rh is in parallel with Ry. This configuration reduces the current into Ry, and reduces the threshold voltage to 2.3 V. The input signal must drive below VL = 2.3 V to cause the output to transition to logic high (5 V).

For more details on this design and other alternative devices that can be used in place of the TLV1702, refer to Precision Design TIPD144, *Comparator with Hysteresis Reference Design*.

9.2.3 Application Curve

Figure 21 shows the upper and lower thresholds for hysteresis. The upper threshold is 2.76 V and the lower threshold is 2.34 V, both of which are close to the design target.

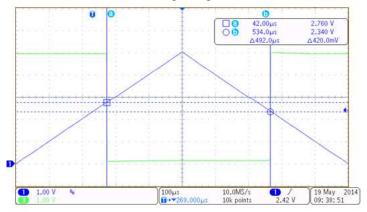


Figure 21. TLV1701 Upper and Lower Threshold with Hysteresis

10 Power Supply Recommendations

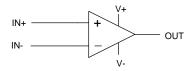
The TLV170x-Q1 device is specified for operation from 2.2 V to 36 V (\pm 1.1 to \pm 18 V); many specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in the *Typical Characteristics* section.

CAUTION

Supply voltages larger than 40 V can permanently damage the device; see the *Absolute Maximum Ratings*.

Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or highimpedance power supplies. For more detailed information on bypass capacitor placement; see the *Layout Guidelines* section.

Copyright © 2015, Texas Instruments Incorporated


11 Layout

11.1 Layout Guidelines

Comparators are very sensitive to input noise. For best results, maintain the following layout guidelines:

- Use a printed circuit board (PCB) with a good, unbroken low-inductance ground plane. Proper grounding (use of ground plane) helps maintain specified performance of the TLV170x-Q1 device.
- To minimize supply noise, place a decoupling capacitor (0.1-µF ceramic, surface-mount capacitor) as close as possible to V_S as shown in Figure 22.
- On the inputs and the output, keep lead lengths as short as possible to avoid unwanted parasitic feedback around the comparator. Keep inputs away from the output.
- Solder the device directly to the PCB rather than using a socket.
- For slow-moving input signals, take care to prevent parasitic feedback. A small capacitor (1000 pF or less) placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes some degradation to propagation delay when the impedance is low. Run the topside ground plane between the output and inputs.
- Run the ground pin ground trace under the device up to the bypass capacitor, shielding the inputs from the outputs.

11.2 Layout Example

(Schematic Representation)

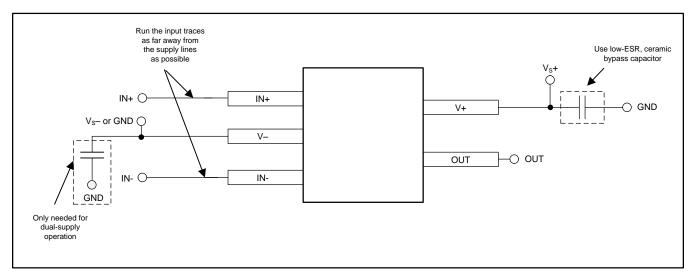


Figure 22. Comparator Board Layout

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

- Precision Design, Comparator with Hysteresis Reference Design, TIDU020
- REF33xx 3.9-µA, SC70-3, SOT-23-3, and UQFN-8, 30-ppm/°C Drift Voltage Reference, SBOS392

12.2 Related Links

Table 1 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS		TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
TLV1702-Q1	Click here	Click here	Click here	Click here	Click here	
TLV1704-Q1	Click here	Click here	Click here	Click here	Click here	

Table 1. Related Links

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

7-Jan-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TLV1702AQDGKRQ1	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	1702Q	Samples
TLV1704AQPWQ1	PREVIEW	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	T1704Q1	
TLV1704AQPWRQ1	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	T1704Q1	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

7-Jan-2016

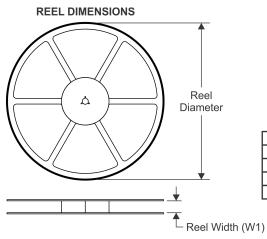
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

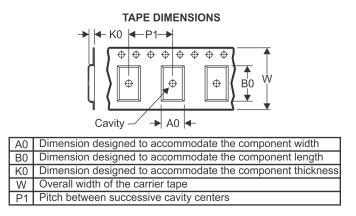
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLV1702-Q1, TLV1704-Q1 :

• Catalog: TLV1702, TLV1704

NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product

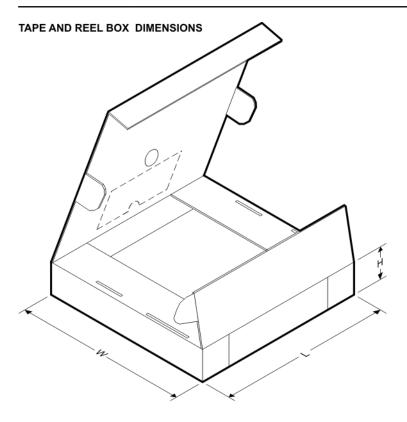

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

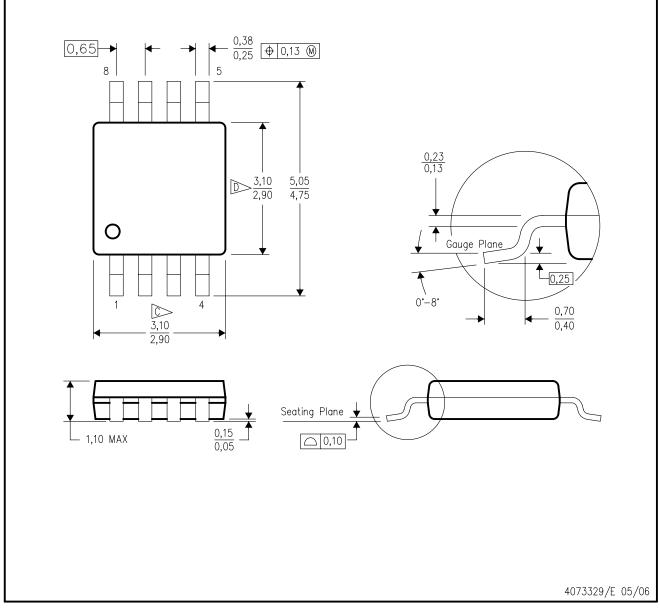

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV1702AQDGKRQ1	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV1704AQPWRQ1	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

8-Jan-2016



*All dimensions are nominal

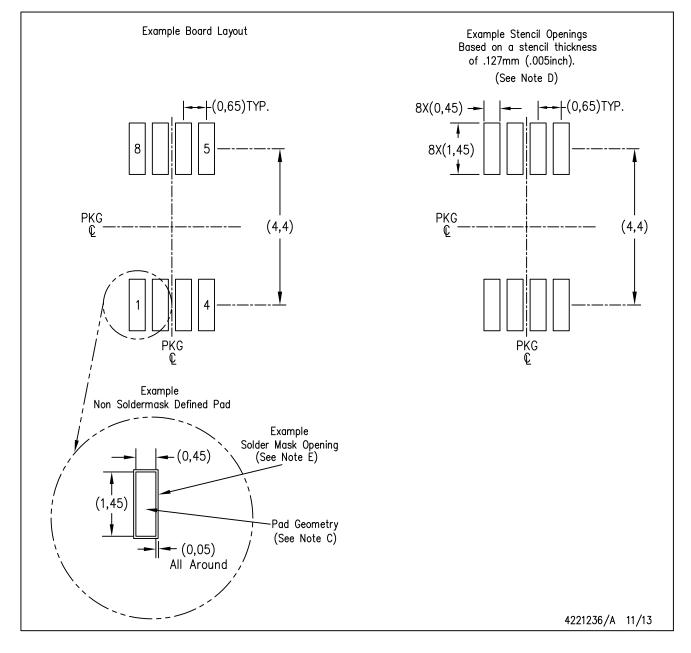
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV1702AQDGKRQ1	VSSOP	DGK	8	2500	366.0	364.0	50.0
TLV1704AQPWRQ1	TSSOP	PW	14	2000	367.0	367.0	35.0

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

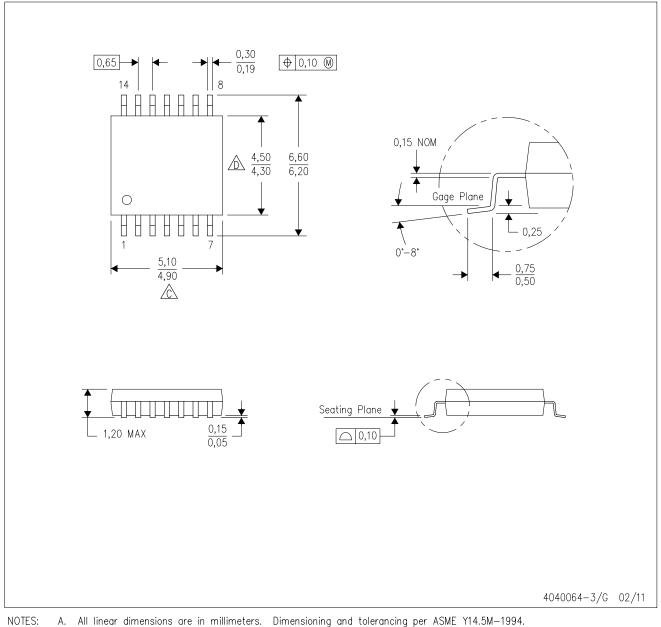
B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

- D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

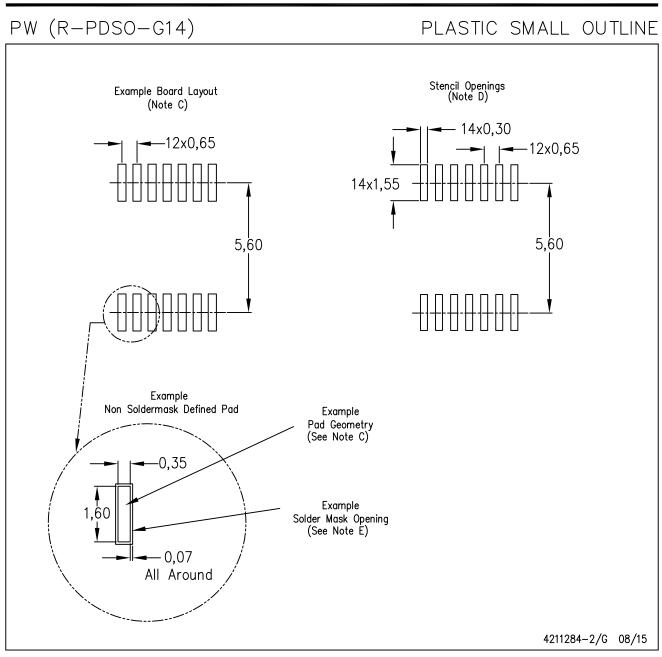
PLASTIC SMALL OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE


A. An integration of the information o

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated