VTM2 Series, Off-Delay, Timing Module

Product Facts

- Off-delay timing mode
- Reliable solid state timing circuitry
- Excellent transient protection
- **■** Compact design
- Flame retardant, solvent resistant housing
- File E60363, File LR33434

Timing Specifications

Timing Mode — Off-Delay

Timing Ranges — 0.5 to 10 / 3 to 60 sec.; 3 to 60 min.

Timing Adjustment — External resistor or potentiometer. An external resistance of 1 megohm is required to obtain the maximum time for all ranges. To determine the actual resistance needed to obtain the required time delay, use the following formula:

$$R_T = \frac{(T_{REQ} - T_{MIN})}{T_{MAX} - T_{MIN}} \times 1,000,000 \text{ ohms}$$

Accuracy -

Repeat Accuracy — $\pm 1\%$ Overall Accuracy — $\pm 2\%$ at R = 1 megohm

Reset Time — 50 ms, max.

Output Switch Data

Arrangement — Solid state 1 Form A (SPST-NO)

Rating — 1A, inductive, at nominal operating voltage.

Expected Electrical Life —

10,000,000 operations at rated load.

Initial Dielectric Strength -

Between Terminals and Mounting – 3,000VAC rms.
Between Input and Output — 1,500VAC rms.

Input Data @ 25°C

Voltage (±10%) — 12 VAC/VDC, 24VAC/VDC, 120 VAC/VDC.

Power Requirement — 4W with rated load

Transient Protection -

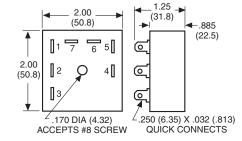
Non-repetitive transients of the following magnitudes will not cause spurious operation of affect function and accuracy.

Operating Voltage	<0.1 ms	<1 ms
12, 24 VAC/VDC	860V*	208V*
120 VAC/VDC	2,580V	2,150V*

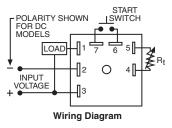
^{*} Min. source impedance of 100 ohm.

Environmental Data

Temperature Range -

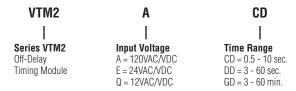

Storage — -40° C to $+85^{\circ}$ C Operating — -40° C to $+65^{\circ}$ C

Mechanical Data


Mounting — Panel mount with one #8 screw.

Termination — 0.250 in (6.35) quick connect terminals.

Weight — 4 oz. (112g) approximately


Outline Dimensions

An external resistance of 1 megohm is required to obtain the maximum time for all ranges. To determine the actual resistance needed to obtain the required time delay, use the following formula:

$$R_T = \frac{(T_{REQ} - T_{MIN})}{T_{MAX} - T_{MIN}} \times 1,000,000 \text{ ohms}$$

Ordering Information

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Authorized distributors are likely to stock the following:

None at present.