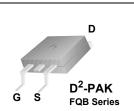
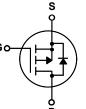


ON Semiconductor®

FQB34P10TM-F085

100V P-Channel MOSFET

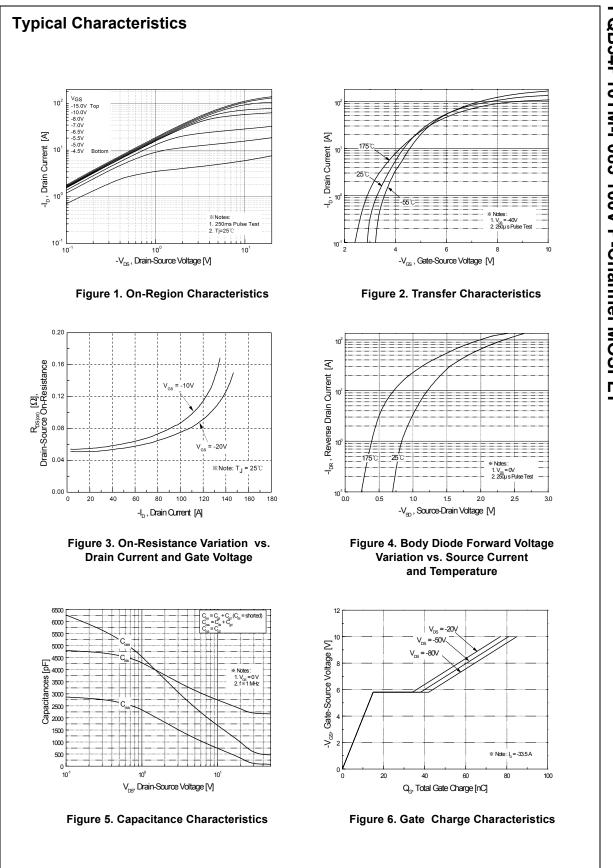

General Description


These P-Channel enhancement mode power field effect transistors are produced using ON Semiconductor's proprietary, planar stripe, DMOS technology.

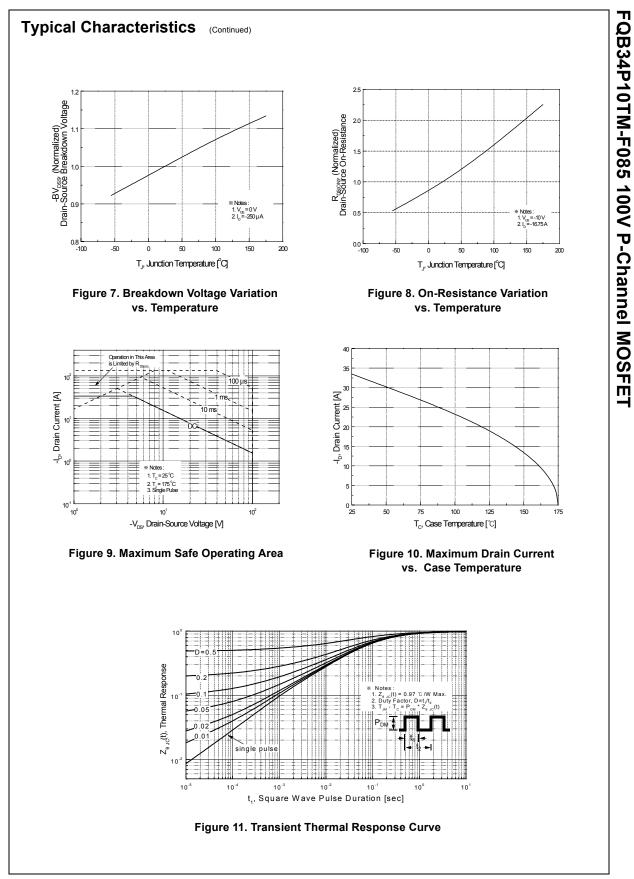
This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for low voltage applications such as audio amplifier, high efficiency switching DC/DC converters, and DC motor control.

Features

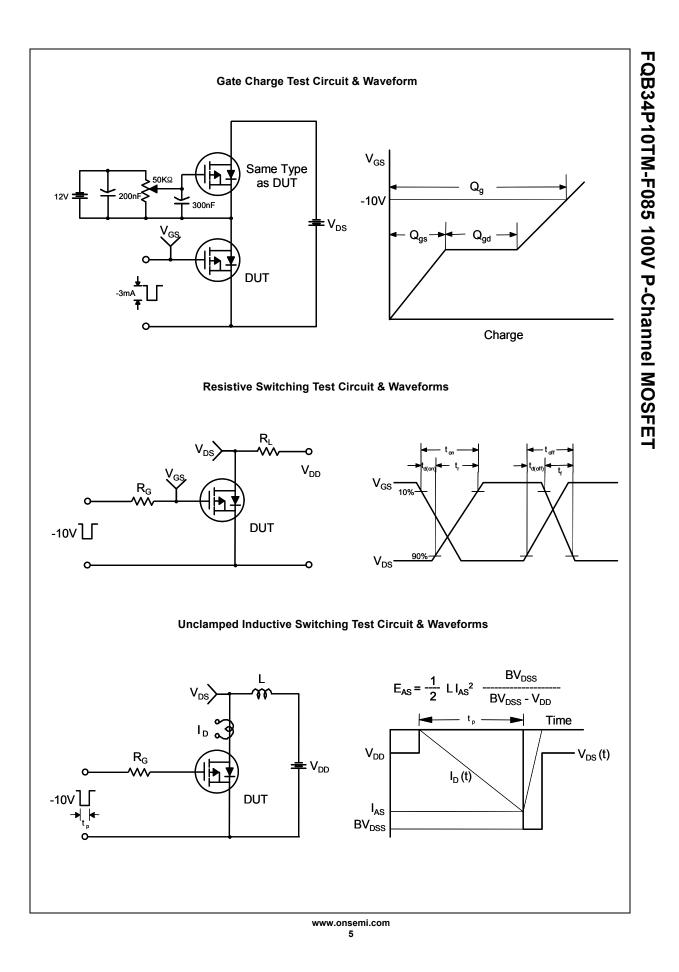
- -33.5A, -100V, R_{DS(on)} = 0.06Ω @V_{GS} = -10 V
- Low gate charge (typical 85 nC)
- Low Crss (typical 170 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- 175°C maximum junction temperature rating
- Qualified to AEC Q101
- RoHS Compliant

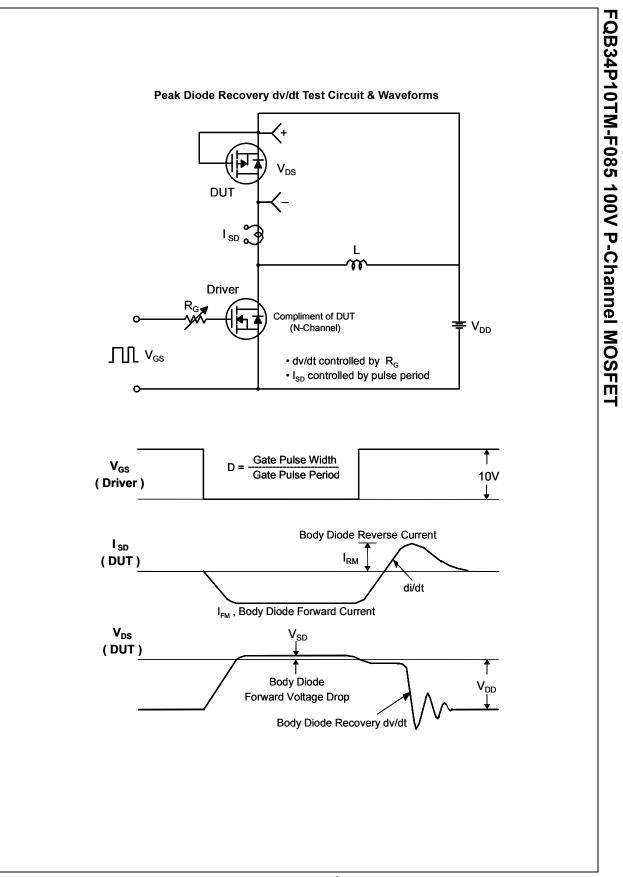

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

Symbol	Parameter		FQB34P10TM-F085		Units
V _{DSS}	Drain-Source Voltage		-100		V
I _D	Drain Current - Continuous (T _C = 25°C)		-33.5		А
	- Continuous (T _C = 100°C)		-23.5		А
I _{DM}	Drain Current - Pulsed	(Note 1)	-134		А
V _{GSS}	Gate-Source Voltage		±2	25	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	2200		mJ
I _{AR}	Avalanche Current	(Note 1)	-33.5		А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	15.5		mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	-6.0		V/ns
P _D	Power Dissipation (T _A = 25°C) *		3.75		W
	Power Dissipation (T _C = 25°C)		155		W
	- Derate above 25°C		1.03		W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175		°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300		°C
Symbol	Parameter		Тур	Max	Units
R _{0.IC}	Thermal Resistance, Junction-to-Case			0.97	°C/W


Symbol	Parameter	тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		0.97	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W
* When mounted o	on the minimum pad size recommended (PCB Mount)			

FREE


Off Cha	Parameter	Test Conditions	Min	Тур	Max	Units
	racteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = -250 μA	-100			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		-0.1		V/°C
I _{DSS}		V _{DS} = -100 V, V _{GS} = 0 V			-1	μA
	Zero Gate Voltage Drain Current	V _{DS} = -80 V, T _C = 150°C			-10	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	V_{GS} = -25 V, V_{DS} = 0 V			-100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V_{GS} = 25 V, V_{DS} = 0 V			100	nA
On Cha	racteristics					
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = -250 μA	-2.0		-4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = -10 V, I _D = -16.75 A		0.049	0.06	Ω
9 _{FS}	Forward Transconductance	V _{DS} = -40 V, I _D = -16.75 A (Note 4)		23		S
	c Characteristics			0040	0040	
C _{iss}	Input Capacitance	$V_{DS} = -25 V, V_{GS} = 0 V,$		2240	2910	pF
C _{oss} C _{rss}	Output Capacitance Reverse Transfer Capacitance	f = 1.0 MHz		730 170	950 220	pF pF
Switchi	ng Characteristics			25	60	ns
						113
t _{d(on)}	Turn-On Delay Time Turn-On Rise Time	V _{DD} = -50 V, I _D = -33.5 A,				ns
t _{d(on)} t _r	Turn-On Rise Time	V_{DD} = -50 V, I _D = -33.5 A, R _G = 25 Ω		250 160	510	ns ns
t _{d(on)} t _r t _{d(off)}		55 5		250		
t _{d(on)} tr t _{d(off)} t _f	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	R _G = 25 Ω (Note 4, 5)		250 160	510 330	ns
t _{d(on)} t _r t _{d(off)} t _f Q _g	Turn-On Rise Time Turn-Off Delay Time	$R_G = 25 \Omega$ (Note 4, 5) V _{DS} = -80 V, I _D = -33.5 A,		250 160 210	510 330 430	ns ns
t _{d(on)} tr t _{d(off)} t _f	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	R _G = 25 Ω (Note 4, 5)	 	250 160 210 85	510 330 430 110	ns ns nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = -80 V, I_{D} = -33.5 A,$ $V_{GS} = -10 V$ (Note 4, 5)	 	250 160 210 85 15	510 330 430 110 	ns ns nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics an Maximum Continuous Drain-Source Dio	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = -80 V, I_{D} = -33.5 A,$ $V_{GS} = -10 V$ (Note 4, 5) (Note 4, 5	 	250 160 210 85 15	510 330 430 110 	ns ns nC nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gd} Drain-S Is	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Ource Diode Characteristics an Maximum Continuous Drain-Source Diode Maximum Pulsed Drain-Source Diode F	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = -80 V, I_{D} = -33.5 A,$ $V_{GS} = -10 V$ (Note 4, 5) (Note 4, 5	 	250 160 210 85 15 45	510 330 430 110 	ns ns nC nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gd} Drain-S Is Is V _{SD}	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Ource Diode Characteristics an Maximum Continuous Drain-Source Diode F Drain-Source Diode Forward Voltage	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = -80 V, I_{D} = -33.5 A,$ $V_{GS} = -10 V$ (Note 4, 5) (Note 4, 5	 	250 160 210 85 15 45 	510 330 430 110 	ns ns nC nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gd} Drain-S Is	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Ource Diode Characteristics an Maximum Continuous Drain-Source Diode Maximum Pulsed Drain-Source Diode F	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = -80 V, I_{D} = -33.5 A,$ $V_{GS} = -10 V$ (Note 4, 5) (Note 4, 5	 	250 160 210 85 15 45 	510 330 430 110 	ns ns nC nC nC A



FQB34P10TM-F085 100V P-Channel MOSFET

www.onsemi.com 4

www.onsemi.com 6

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative