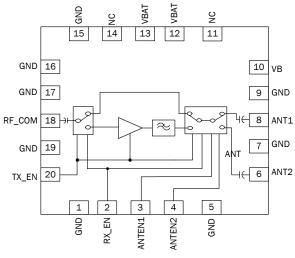


RF6545

3.0V TO 3.6V, 2.4GHz FRONT END MODULE

Package Style: QFN, 20-Pin, 3.5mmx3.5mmx0.5mm



Features

- Tx Output Power=22dBm
- Integrated RF Front End Module with TX/RX switch, PA, filter, and DP2T switch.
- 50Ω single-ended bidirectional Transceiver interface.

Applications

- ZigBee[®] 802.15.4 Based Systems for Remote Monitoring and Control
- WiFi 802.11b/g
- 2.4GHz ISM band applications
- Smart Meters for Energy Management

Functional Block Diagram

Product Description

The RF6545 integrates a complete solution in a single Front End Module (FEM) for WiFi and ZigBee $^{\$}$ applications in the 2.4GHz to 2.5GHz band. This FEM integrates the PA plus harmonic filter in the transmit path. It provides a single balanced TDD access for Rx and Tx paths along with two ports on the output for connecting a diversity solution or a test port. The device is provided in a 3.5mm x 0.5mm, 20 pin QFN package.

Ordering Information

RF6545SQ Standard 25 piece bag RF6545SR Standard 100 piece reel RF6545TR7 Standard 750 piece reel RF6545TR13 Standard 2500 piece reel

RF6545PCK-410 Fully assembled evaluation board and 5 loose pieces

Optimum Technology Matching® Applied

☐ GaAs HBT	☐ SiGe BiCMOS	▼ GaAs pHEMT	☐ GaN HEMT
☐ GaAs MESFET ✓ InGaP HBT	☐ Si BiCMOS	☐ Si CMOS	☐ BiFET HBT
✓ InGaP HBT	☐ SiGe HBT	☐ Si BJT	☐ LDMOS

RF6545

Absolute Maximum Ratings

Parameter	Rating	Unit
DC Supply Voltage	5.0	V
DC Supply Current	300	mA
Operating Case Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C
ESD Human Body Model RF Pins	1000	V
ESD Human Body Model All Other Pins	500	V
ESD Charge Device Model All Pins	500	V
Moisture Sensitivity Level	MSL 2	
Maximum Input Power to PA	+10	dBm

Caution! ESD sensitive device.

Caution! ESD sensitive device.

Exceeding any neor a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied. The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, inc. ("RFMD") for its use, nor for any infringement of patients, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patient or patient rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

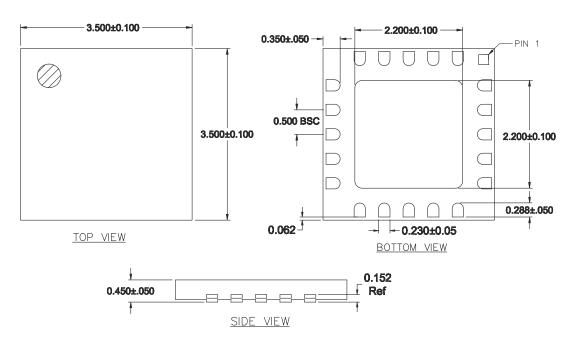
RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimory trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Doromotor	Specification		Unit	Condition		
Parameter	Min.	Тур.	Max.	Unit	Condition	
Overall					Specifications must be met across supply voltage, control voltage, and temperature ranges unless otherwise specified.	
V _{BATT}	3.0	3.3	3.6	V _{DC}		
Operating Temperature Range	-40	+25	+85	°C		
Z _O		50		Ω		
Off Mode Current		1		μΑ	All logic low; V _{LOW} ≤0.1V	
TX Path						
Frequency	2400		2483	MHz		
Input Return Loss	12			dB		
Output Return Loss	10			dB		
Transmit Path Gain	25	28		dB		
Gain Flatness	-0.8		+0.8	dB		
Rated Output Power		22		dBm	Nominal conditions	
	20			dBm		
Supply Current		200		mA	P ₀ =22dBm 802.15.4 OQPSK	
		170		mA	P ₀ =20 dBm 802.15.4 OQPSK	
Thermal Resistance		66		°C/W	V _{CC} = 3.6V, P _{OUT} = 22dBm, T _{REF} = 85°C	
2nd harmonic level			-42	dBm/MHz	P ₀ =20dBm	
3rd harmonic level			-42	dBm/MHz	P ₀ =20dBm; V _{CC} ≥3.3V	
VSWR Stability and Load	4:1					
VSWR No Damage	8:1					
Gain Settling Time		1	2	uS		

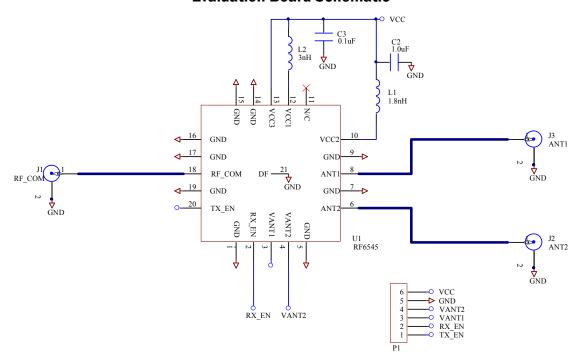
Parameter	Specification		Unit	Condition		
rafailleter	Min.	Тур.	Max.	UIIIL	Condition	
RX Path						
Frequency	2400		2483	MHz		
Insertion Loss/Noise Figure		1.5	2.0	dB		
Gain Flatness	-0.5		+0.5	dB		
Input Return Loss	12	15		dB		
Output Return Loss	12			dB		
Antenna Switch						
RF-to-Control Isolation	50			dB		
RF-to-ANT Isolation	17	20		dB		
RF-to-RF Isolation	18	20		dB		
T/R Switching Time			1	μs		
Logic Level "HIGH" Input Voltage	V _{CC} -0.3		=V _{CC}	V		
Logic Level "LOW" Input Voltage	0.0		+0.2	V		
Input Source Current at Logic "HIGH"		2		uA		
Switch Leakage Current at Logic "LOW"		0.1		uA		

Control Logic

2011.0. 208.0					
Switch Control Logic	TX_EN	RX_EN	ANT1_EN	ANT2_EN	
Tx, Antenna 1	High	Low	High	Low	
Tx, Antenna 2	High	Low	Low	High	
Rx, Antenna 1	Low	High	High	Low	
Rx, Antenna 2	Low	High	Low	High	
All Off	Low	Low	Low	Low	


RF6545

Pin	Function	Description
1	GND	Ground.
2	RX_EN	Enable voltage for the LNA and receive switch. See logic table for operation.
3	V ANT1	Control pin for Antenna 1 switch. See logic table for operation.
4	V ANT2	Control pin for Antenna 2 switch. See logic table for operation.
5	GND	Ground.
6	ANT2	This is a common port (antenna). It is matched to 50Ω and DC block is provided internally.
7	GND	Ground.
8	ANT1	This is a common port (antenna). It is matched to 50Ω and DC block is provided internally.
9	GND	Ground.
10	VCC	Voltage supply for PA 2nd stage. An external 1uF capacitor might be needed for low frequency decoupling.
11	N/C	No connect.
12	VCC	Voltage supply for PA 1st stage. An external 1uF capacitor might be needed for low frequency decoupling.
13	VCC	Voltage supply (control circuitry). An external 1uF capacitor might be needed for low frequency decoupling.
14	GND	Ground.
15	GND	Ground.
16	GND	Ground.
17	GND	Ground.
18	RF_COM	Bi-directional transmit/receive port for interfacing to TXVR SOIC. It is matched to 50Ω and DC block is provided internally.
19	GND	Ground.
20	TX_EN	Enable voltage for the PA and transmit switch. See logic table for operation.

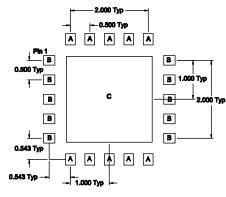


Package Drawing

Evaluation Board Schematic

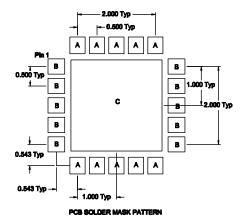
PCB Design Requirements

PCB Surface Finish


The PCB surface finish used for RFMD's qualification process is electroless nickel, immersion gold. Typical thickness is 3μ inch to 8μ inch gold over 180μ inch nickel.

PCB Land Pattern Recommendation

PCB land patterns for RFMD components are based on IPC-7351 standards and RFMD empirical data. The pad pattern shown has been developed and tested for optimized assembly at RFMD. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.

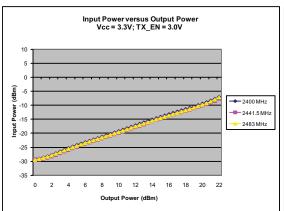

PCB Metal Land and Solder Mask Pattern

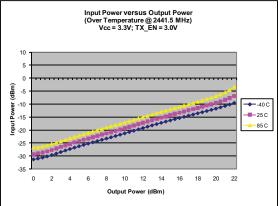
A = 0.250 x 0.290 (mm) Typ Rounded Rectangle 50% B = 0.290 x 0.250 (mm) Typ Rounded Rectangle 50%

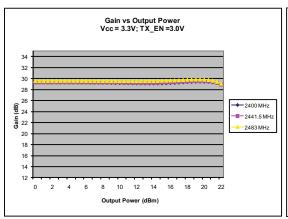
PCB METAL LAND PATTERN

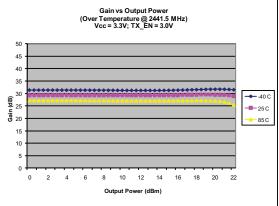
A = 0.390 x 0.430 (mm) Typ Rounded Rectangle 50% B = 0.430 x 0.390 (mm) Typ Rounded Rectangle 50% C = 2.340 (mm) Sq Rounded Rectangle 5%

A = 0.225 x 0.261 (mm) Typ Rounded Rectangle 10% B = 0.261 x 0.225 (mm) Typ Rounded Rectangle 10%

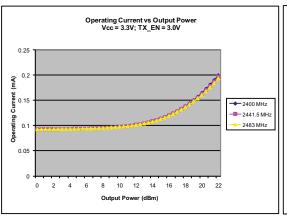

2.000 Typ -0.500 Typ A A A A A В B 0.500 Typ 0.400 Tvo C C B В 1.600 Typ В В 2.000 Typ В В C C В В 0.543 Typ A A \square \square 0.400 Typ 0.543 Typ 1.600 Typ PCS STENCIL PATTERN

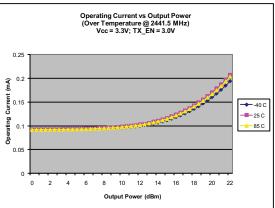

Thermal vias for center slug "C" should be incorporated into the PCB design. The number and size of thermal vias will depend on the application, the power dissipation, and this electrical requirements. Example of the number and size of vias can be found on the RFMD evaluation board layout.

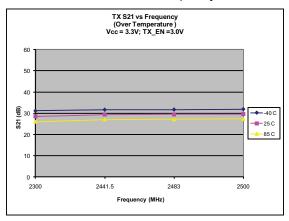

RF6545 2.4 GHz Front End Module


Input Power versus Output Power

Gain versus Output Power






RF6545 2.4 GHz Front End Module

Operating Current versus Output Power

TX S21 versus Frequency

