

Voidless Hermetically Sealed Unidirectional Transient Voltage Suppressors

Qualified per MIL-PRF-19500/434

Qualified Levels: JAN, JANTX, and JANTXV

DESCRIPTION

This series of industry recognized voidless hermetically sealed unidirectional Transient Voltage Suppressor (TVS) designs is military qualified and are ideal for high-reliability applications where a failure cannot be tolerated. They provide a Working Peak "Standoff" Voltage selection from 30.5 to 175 volts with 1500 watt ratings. They are very robust in hard-glass construction and also use an internal metallurgical bond identified as "Category 1" for high reliability applications. These devices are also available in a surface mount MELF package configuration as a special order. Microsemi also offers numerous other TVS products to meet higher and lower peak pulse power and voltage ratings in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- High surge current and peak pulse power provides transient voltage protection for sensitive circuits.
- Triple-layer passivation.
- Internal "Category 1" metallurgical bonds.
- · Voidless hermetically sealed glass package.
- JAN, JANTX, and JANTXV military qualifications available per MIL-PRF-19500/434.
- Further options for screening in accordance with MIL-PRF-19500 for JANS equivalent level by using a "SP" prefix.
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Military and other high reliability transient protection.
- Extremely robust construction.
- Working Peak "Standoff" Voltage (V_{WM}) from 30.5 to 175 V.
- Available as 1500 watt Peak Pulse Power (PPP).
- ESD and EFT protection per IEC61000-4-2 and IEC61000-4-4 respectively.
- Secondary lightning protection per select levels in IEC61000-4-5.
- Flexible axial-leaded mounting terminals.
- Non-sensitive to ESD per MIL-STD-750 method 1020.
- Inherently radiation hard as described in Microsemi "MicroNote 050".

MAXIMUM RATINGS @ $T_A = 25$ °C unless otherwise noted.

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_J and T_{STG}	-55 to +175	°C
Peak Pulse Power @ t _p = 1.0 ms	P _{PP}	1500	W
Rated Forward Surge Current @ t _p = 8.33 ms	I _{FSM}	150	A (pk)
Impulse repetition rate (duty factor)	I _{PP}	0.01	%
Steady-State Power (Figure 4)	P _D	3.0	W
Solder Temperature @ 10 s	T _{SP}	260	°C

Notes: 1. Derate at 20 mW°C above T_A = +25 °C. Steady-state power ratings with reference to ambient are for PC boards where thermal resistance from mounting point to ambient is sufficiently controlled where T_{J(MAX)} is not exceeded.

"G" Package

Also available by Special order:

MELF Surface Mount

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed voidless hard glass with tungsten slugs.
- TERMINATIONS: Axial-leads are tin/lead (Sn/Pb) over copper. RoHS compliant matte-tin available for commercial only.
- MARKING: Body painted and part number.
- POLARITY: Cathode band.
- Tape & Reel option: Standard per EIA-296. Consult factory for quantities.
- Weight: 1270 milligrams.
- See Package Dimensions on last page.

PART NOMENCLATURE JAN 1N5610 (e3)**Reliability Level RoHS Compliance** JAN = JAN Level e3 = RoHS compliant (available JANTX = JANTX Level on commercial grade only) JANTXV = JANTXV Level Blank = non-RoHS compliant SP = Reference JANS Blank = Commercial JEDEC type number See Electrical Characteristics table

SYMBOLS & DEFINITIONS				
Symbol	Definition			
I _(BR)	Breakdown Current: The current used for measuring Breakdown Voltage V _(BR) .			
I_D	Maximum Standoff Current: The maximum current that will flow at the specified voltage and temperature.			
I _{PP}	Peak Pulse Current: The peak current during the impulse.			
P_{PP}	Peak Pulse Power: The peak power dissipation resulting from the peak impulse current I _{PP} .			
T _{SP}	Temperature Solder Pad: The maximum solder temperature that can be safely applied to the terminal.			
α _{V(BR)}	Temperature Coefficient of Minimum Breakdown Voltage: The minimum voltage the device will exhibit at a specified current temperature.			
V _(BR)	Minimum Breakdown Voltage: The minimum voltage the device will exhibit at a specified current.			
V _C	Maximum clamping voltage at specified I _{PP} (Peak Pulse Current) at the specified pulse conditions.			
V_{WM}	Working Peak Voltage: The maximum peak voltage that can be applied over the operating temperature range. This is also referred to as Standoff Voltage.			

ELECTRICAL CHARACTERISTICS

TYPE	MINIMUM BREAK DOWN VOLTAGE	BREAKDOWN CURRENT MAXIMUM dc CURRENT	WORKING PEAK REVERSE VOLTAGE	MAX STANDOFF CURRENT I _D	MAXIMUM CLAMPING VOLTAGE V _C	MAXIMUM PEAK PULSE CURRENT IPP		MAXIMUM TEMP. COEF. OF V _(BR)
	V _(BR) @ 1.0 mA	T _A = +25 °C I _(BR)	V _{WM}	@ V _{wm}	@ 10/1000 μs	@8/20 µs	@10/1000 μs	α _{V(BR)}
	Volts	mA	V (pk)	μΑ	V (pk)	A (pk)	A (pk)	%/°C
1N5610	33.0	75.0	30.5	5	47.6	193	32.0	.093
1N5611	43.7	53.0	40.3	5	63.5	136	24.0	.094
1N5612	54.0	43.0	49.0	5	78.5	116	19.0	.096
1N5613	191	12.5	175	5	265	33	5.7	.100

GRAPHS

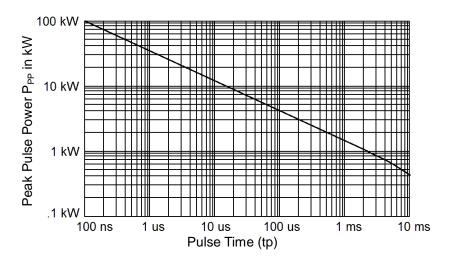


FIG. 1 – Non-repetitive peak pulse power rating curve NOTE: Peak power defined as peak voltage times peak current.

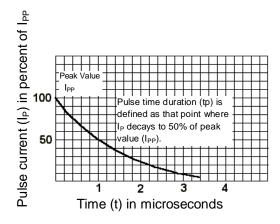


FIG. 2 Pulse wave form for exponential surge for 10/1000 µs

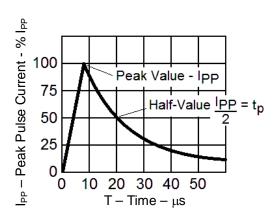
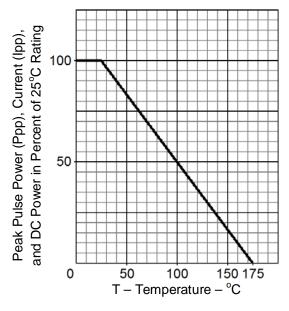
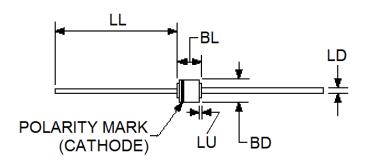
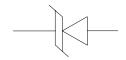


FIGURE 3 8/20 μs CURRENT IMPULSE WAVEFORM TEST WAVEFORM PARAMETERS: $t_r = 8 \mu sec$ $t_p = 20 \mu sec$


FIGURE 4
DERATING CURVE

PACKAGE DIMENSIONS

Ltr	Inches		Millimeters		Notes
	Min	Max	Min	Max	
BD	.150	.185	3.81	4.70	3
BL	.160	.375	4.06	9.53	3
LD	.037	.042	0.94	1.07	
LL	.900	1.300	22.86	33.02	
LU		.050		1.27	4

Schematic Symbol

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Package contour optional within BD and length BL.
- 4. Within this zone lead diameter may vary to allow for lead finishes and irregularities other than heat slugs.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

 MPT-12C
 MPT-36
 MPT-12
 MPT-8C
 MPT-45C
 MPT-45
 MPT-8
 MPT-36C
 MPT-5
 1N5610e3
 MXP5KE120CAe3

 MXP5KE14CA
 M15KP58A
 MSMCJ85CAe3
 MXLP5KE40CA
 MXLP5KE110Ae3
 M15KP85CAe3
 MSMCJ36CAe3

 MXP5KE20A
 MSMCJ15CA
 MXLP5KE8.5A
 MXP5KE5.0Ae3
 MXLP5KE9.0CA
 MXP5KE18CA

 M15KP64CAe3
 MXLSMBJSAC36
 MXP5KE13CA
 MXLP5KE17CA
 MXLP5KE58Ae3
 EPS24
 MXLP5KE54CA

 SM1624/TR13
 MSMCJ110CAe3
 MSMCJ15Ae3
 M15KP100A
 MXLP5KE58CA
 MXLSMBJSAC26
 MXP5KE120A

 MXLSMBJSAC22
 M15KP28Ae3
 MXLP5KE22CAe3
 MPT-18C
 MXLP5KE43CA
 MXLP5KE45A
 MXLP5KE110Ae3

 MSMCJ78Ae3
 MXLP5KE54CAe3
 EPS28
 MSMCJ33Ae3
 MXLP5KE6.5Ae3
 MXLP5KE5.0A
 MXLP5KE5.0A

 MXLP5KE12A
 MXP5KE14Ae3
 MXP5KE90CA
 M15KP48A
 EPS24SM
 MXLP5KE100CA
 MSMCJ6.0Ae3

 MXLSMBJSAC18e3
 MXLP5KE14Ae3
 MXLP5KE64CA
 MXLP5KE10Ae3
 MSMCJ7.0CAe3
 MXP5KE58A

 MXP5KE11CAe3
 MXP