
Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 9077025002 Printed: 2013-07-03









Part Number: 9077025002

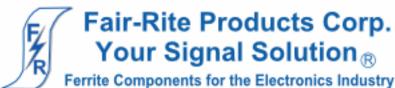
Frequency Range: MnZn 77 material

Description: 77 U CORE

Application: Inductive Components

Where Used: Closed Magnetic Circuit

Part Type: U Cores


## **Mechanical Specifications**

Weight: 17.500 (g) per Set

## Part Type Information

The U core offers an economical core design with a nearly uniform cross-sectional area. In a power ferrite material they are frequently used in output chokes, power input filters and transformers for switched-mode power supplies and HF fluorescent ballasts.

- -These U cores have the same minimum cross-sectional area as the listed effective cross-sectional area.
- -AL value is measured at 1kHz, < 10 gauss.
- -For any U core requirement not listed in the catalog, please contact our customer service group for availability and pricing.
- -Explanation of Part Numbers: Digits 1&2 = product class, 3&4 = material grade.
- -Weight indicated is per pair or set.



Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 9077025002 Printed: 2013-07-03









## **Mechanical Specifications**

| Dim | mm    | mm    | nominal | inch  |
|-----|-------|-------|---------|-------|
|     |       | tol   | inch    | misc. |
| Α   | 25.40 | ±0.75 | 1.000   | -     |
| В   | 15.75 | +0.25 | 0.625   | -     |
| С   | 6.60  | -0.50 | 0.250   | -     |
| D   | 9.40  | Min   | 0.370   | Min   |
| Е   | 12.45 | Min   | 0.490   | Min   |
| F   | -     | -     | -       | -     |
| G   | -     | -     | -       | -     |
| Н   | -     | -     | -       | -     |
| J   | -     | -     | -       | -     |
| K   | -     | -     | -       | -     |

## **Electrical Specifications**

| Typical Impedance ( $\Omega$ )    |         |  |  |
|-----------------------------------|---------|--|--|
|                                   |         |  |  |
| Electrical Properties             |         |  |  |
| A <sub>L</sub> (nH)               | 790 Min |  |  |
| Ae(cm <sup>2</sup> )              | 0.40000 |  |  |
| $\Sigma$ I/A(cm <sup>-1</sup> )   | 20.70   |  |  |
| I <sub>e</sub> (cm)               | 8.40    |  |  |
| V <sub>e</sub> (cm <sup>3</sup> ) | 3.36000 |  |  |

#### **Land Patterns**

| V | W | Х | Υ | Z |
|---|---|---|---|---|
| - | - | - |   | - |

## Winding Information

| Turns  | Wire | 1st Wire | 2nd Wire |
|--------|------|----------|----------|
| Tested | Size | Length   | Length   |
| -      | -    | -        | -        |

### **Reel Information**

| Tape Width | Pitch | Parts 7 " | Parts 13 " | Parts 14 " |
|------------|-------|-----------|------------|------------|
| mm         | mm    | Reel      | Reel       | Reel       |
| -          | -     | -         | -          | -          |

## Package Size

| Pkg Size |
|----------|
| -        |
| (-)      |

#### Connector Plate

| # Holes | # Rows |
|---------|--------|
| -       | -      |

#### Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A ½ turn is defined as a single pass through a hole.

∠I/A - Core Constant

A<sub>e</sub>: Effective Cross-Sectional Area

 $A_1$  - Inductance Factor  $\left(\frac{L}{N^2}\right)$ 

I e: Effective Path Length

Ve: Effective Core Volume

NI - Value of dc Ampere-turns

N/AWG - Number of Turns/Wire Size for Test Coil



Fair-Rite Product's Catalog Part Data Sheet, 9077025002 Printed: 2013-07-03



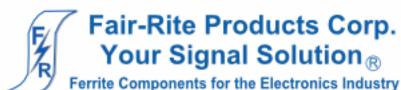




## **Ferrite Material Constants**

Specific Heat ...... 0.25 cal/g/°C

Coefficient of Linear Expansion ...... 8 - 10x10<sup>-6</sup>/°C


Compressive Strength ...... 42 kgf/mm<sup>2</sup>

Young's Modulus ...... 15x10<sup>3</sup> kgf/mm<sup>2</sup>

Specific Gravity ......  $\approx 4.7 \text{ g/cm}^3$ 

The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.

See next page for further material specifications.



Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

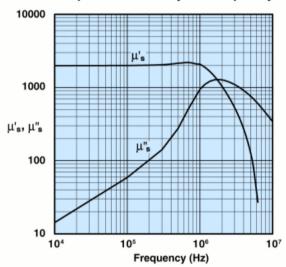
A MnZn ferrite for use in a wide range of high and low flux density inductive designs for frequencies up to 100 kHz.

Pot cores, E&I cores, U cores, rods, toroids, and bobbins are all available in 77 material.

Fair-Rite Product's Catalog Part Data Sheet, 9077025002

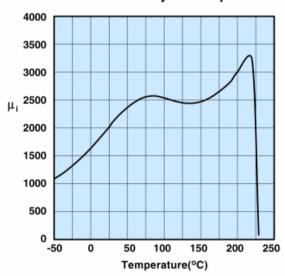
Printed: 2013-07-03





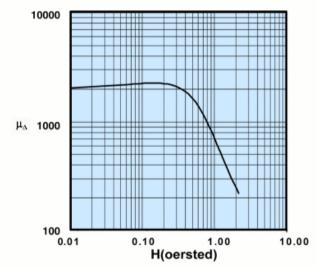



#### 77 Material Characteristics:

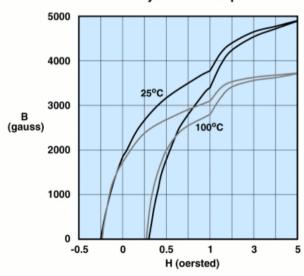

| Property                                                   | Unit    | Symbol         | Value             |
|------------------------------------------------------------|---------|----------------|-------------------|
| Initial Permeability<br>B < 10 gauss                       |         | $\mu_{i}$      | 2000              |
| Flux Density                                               | gauss   | В              | 4900              |
| @ Field Strength                                           | oersted | н              | 5                 |
| Residual Flux Density                                      | gauss   | B,             | 1800              |
| Coercive Force                                             | oersted | H <sub>c</sub> | 0.30              |
| Loss Factor                                                | 10-6    | tan δ/μ,       | 15                |
| @ Frequency                                                | MHz     |                | 0.1               |
| Temperature Coefficient of Initial Permeability (20 -70°C) | %/°C    |                | 0.7               |
| Curie Temperature                                          | °C      | T.             | >200              |
| Resistivity                                                | Ωcm     | ρ              | 1x10 <sup>2</sup> |

#### Complex Permeability vs. Frequency




Measured on an 18/10/6mm toroid using the HP 4284A and the HP 4291A.

#### Initial Permeability vs. Temperature



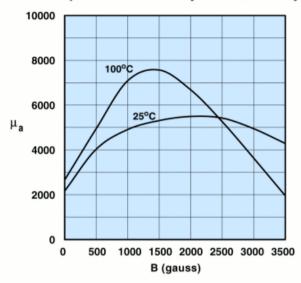

Measured on an 18/10/6mm toroid at 100kHz.

#### Incremental Permeability vs. H



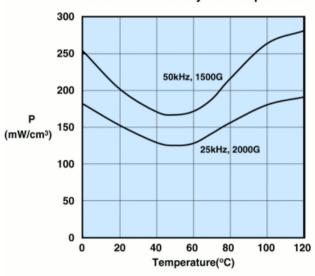
#### **Hysteresis Loop**




Measured on an 18/10/6mm toroid at 10kHz.

# Fair-Rite Products Corp. Your Signal Solution®

Ferrite Components for the Electronics Industry


Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

#### Amplitude Permeability vs. Flux Density

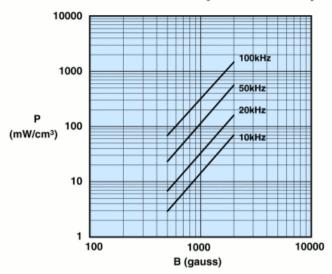


Measured on an 18/10/6mm toroid at 10kHz.

#### Power Loss Density vs. Temperature

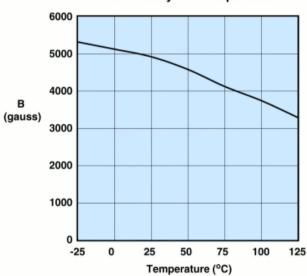


Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW.


Fair-Rite Product's Catalog Part Data Sheet, 9077025002

Printed: 2013-07-03






#### Power Loss Density vs. Flux Density



Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW at 100°C

#### Flux Density vs. Temperature



Measured on an 18/10/6mm toroid at 10kHz and H=5 oersted.