Description

The ICS252 is a low cost, dual-output, field programmable clock synthesizer. The ICS252 can generate two output frequencies from 314 kHz to 200 MHz using up to two independently configurable PLLs. The outputs may employ Spread Spectrum techniques to reduce system electro-magnetic interference (EMI).
Using IDT's VersaClock ${ }^{\text {TM }}$ software to configure the PLL and output, the ICS252 contains a One-Time Programmable (OTP) ROM to allow field programmability. Programming features include 4 selectable configuration registers.
The device employs Phase-Locked Loop (PLL) techniques to run from a standard fundamental mode, inexpensive crystal, or clock. It can replace multiple crystals and oscillators, saving board space and cost.
The device also has a power-down feature that tri-states the clock outputs and turns off the PLLs when the PDTS pin is taken low.
The ICS252 is also available in factory programmed custom versions for high-volume applications.

Features

- 8-pin SOIC package
- Two addressable registers
- Input crystal frequency of 5 to 27 MHz
- Clock input frequency of 3 to 150 MHz
- Output clock frequencies up to 200 MHz
- Configurable Spread Spectrum Modulation
- Operating voltage of 3.3 V
- Replaces multiple crystals and oscillators
- Controllable output drive levels
- Advanced, low-power CMOS process
- Available in RoHS 5 (green) or RoHS 6 (green and lead free) compliant package

Block Diagram

Pin Assignment

8-pin (150 mil) SOIC

Output Clock Selection Table

SEL	CLK1 (MHz)	CLK2 (MHz)	Spread Percentage
0	User Configurable	User Configurable	User Configurable
1	User Configurable	User Configurable	User Configurable

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description
1	SEL	Input	Select pin for frequency selection on CLK1 and CLK2. Internal pull-up resistor.
2	VDD	Power	Connect to +3.3 V.
3	X1/ICLK	XI	Connect this pin to a crystal or external clock input.
4	X2	XO	Connect this pin to a crystal, or float for clock input.
5	CLK1	Output	Clock1 output. Weak internal pull-down, low when power down.
6	CLK2	Output	Clock2 output. Weak internal pull-down, low when power down.
7	GND	Power	Connect this to ground.
8	$\overline{\text { PDTS }}$	Input	Powers down entire chip. Tri-states CLK outputs when low. No internal pull-up resistor. The pin must be tied either directly or through the external resistor to VDD ro GND. External resistor value must be less than 15kOhm.

External Components

The ICS252 requires a minimum number of external components for proper operation.

Series Termination Resistor

Clock output traces over one inch should use series termination. To series terminate a 50Ω trace (a commonly used trace impedance), place a 33Ω resistor in series with the clock line, as close to the clock output pin as possible. The nominal impedance of the clock output is 20Ω

Decoupling Capacitor

As with any high-performance mixed-signal IC, the ICS252 must be isolated from system power supply noise to perform optimally.

A decoupling capacitor of $0.01 \mu \mathrm{~F}$ must be connected between VDD and the PCB ground plane.

Crystal Load Capacitors

The device crystal connections should include pads for small capacitors from X1 to ground and from X2 to ground. These capacitors are used to adjust the stray capacitance of the board to match the nominally required crystal load capacitance. Because load capacitance can only be increased in this trimming process, it is important to keep stray capacitance to a minimum by using very short PCB traces (and no vias) been the crystal and device. Crystal capacitors must be connected from each of the pins X1 and X2 to ground.

The value (in pF) of these crystal caps should equal ($\mathrm{C}_{\mathrm{L}}-6$ $\mathrm{pF})^{*} 2$. In this equation, $\mathrm{C}_{\mathrm{L}}=$ crystal load capacitance in pF . Example: For a crystal with a 16 pF load capacitance, each crystal capacitor would be $20 \mathrm{pF}[(16-6) \times 2=20]$.

PCB Layout Recommendations

For optimum device performance and lowest output phase
noise, the following guidelines should be observed.

1) The $0.01 \mu \mathrm{~F}$ decoupling capacitor should be mounted on the component side of the board as close to the VDD pin as possible. No vias should be used between the decoupling capacitor and VDD pin. The PCB trace to VDD pin should be kept as short as possible, as should the PCB trace to the ground via. Distance of the ferrite bead and bulk decoupling from the device is less critical.
2) The external crystal should be mounted just next to the device with short traces. The X1 and X2 traces should not be routed next to each other with minimum spaces, instead they should be separated and away from other traces.
3) To minimize EMI, the 33Ω series termination resistor (if needed) should be placed close to the clock output.
4) An optimum layout is one with all components on the same side of the board, minimizing vias through other signal layers. Other signal traces should be routed away from the ICS252. This includes signal traces just underneath the device, or on layers adjacent to the ground plane layer used by the device.

ICS252 Configuration Capabilities

The architecture of the ICS252 allows the user to easily configure the device to a wide range of output frequencies, for a given input reference frequency.

The frequency multiplier PLL provides a high degree of precision. The M / N values (the multiplier/divide values available to generate the target VCO frequency) can be set within the range of $\mathrm{M}=1$ to 2048 and $\mathrm{N}=1$ to 1024 .

The ICS252 also provides separate output divide values, from 2 through 20, to allow the two output clock banks to support widely differing frequency values from the same PLL.

Each output frequency can be represented as:

$$
\text { JutputFreq }=\frac{\text { REFFreq }}{\text { OutputDivide }} \cdot \frac{\mathrm{M}}{\mathrm{~N}}
$$

Output Drive Control

The ICS252 has two output drive settings. Low drive should
be selected when outputs are less than 100 MHz . High drive should be selected when outputs are greater than 100 MHz . (Consult the AC Electrical Characteristics for output rise and fall times for each drive option.)

IDT VersaClock Software

IDT applies years of PLL optimization experience into a user friendly software that accepts the user's target reference clock and output frequencies and generates the lowest jitter, lowest power configuration, with only a press of a button. The user does not need to have prior PLL experience or determine the optimal VCO frequency to support multiple output frequencies.

VersaClock software quickly evaluates accessible VCO frequencies with available output divide values and provides an easy to understand, bar code rating for the target output frequencies. The user may evaluate output accuracy, performance trade-off scenarios in seconds.

Spread Spectrum Modulation

The ICS252 utilizes frequency modulation (FM) to distribute energy over a range of frequencies. By modulating the output clock frequencies, the device effectively lowers energy across a broader range of frequencies; thus, lowering a system's electro-magnetic interference (EMI). The modulation rate is the time from transitioning from a minimum frequency to a maximum frequency and then back to the minimum.

Spread Spectrum Modulation can be applied as either "center spread" or "down spread". During center spread modulation, the deviation from the target frequency is equal in the positive and negative directions. The effective average frequency is equal to the target frequency. In applications where the clock is driving a component with a maximum frequency rating, down spread should be applied. In this case, the maximum frequency, including modulation, is the target frequency. The effective average frequency is less than the target frequency.

The ICS252 operates in both center spread and down spread modes. For center spread, the frequency can be modulated between $+/-0.125 \%$ to $+/-2.0 \%$. For down spread, the frequency can be modulated between -0.25% to -4.0%.

Both output frequency banks will utilize identical spread spectrum percentage deviations and modulation rates, if a
common VCO frequency can be identified.

Spread Spectrum Modulation Rate

The spread spectrum modulation frequency applied to the output clock frequency may occur at a variety of rates. For applications requiring the driving of "down-circuit" PLLs,

Zero Delay Buffers, or those adhering to PCl standards, the spread spectrum modulation rate should be set to 30-33 kHz . For other applications, a 120 kHz modulation option is available.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS252. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Parameter	Condition	Min.	Typ.	Max.	Units
Supply Voltage, VDD	Referenced to GND	-0.5		7	V
Inputs	Referenced to GND	-0.5		VDD +0.5	V
Clock Outputs	Referenced to GND	-0.5		VDD +0.5	V
Storage Temperature		-65		150	${ }^{\circ} \mathrm{C}$
Soldering Temperature	Max 10 seconds			260	${ }^{\circ} \mathrm{C}$
Junction Temperature				125	${ }^{\circ} \mathrm{C}$

Recommended Operation Conditions

Parameter	Min.	Typ.	Max.	Units
Ambient Operating Temperature (ICS252M)	0		+70	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature (ICS252MI)	-40		+85	${ }^{\circ} \mathrm{C}$
Power Supply Voltage (measured in respect to GND)	+3.135	+3.3	+3.465	V
Power Supply Ramp Time			4	ms

DC Electrical Characteristics

Unless stated otherwise, VDD $=3.3 \mathrm{~V} \pm 5 \%$, Ambient Temperature -40 to $+85^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Operating Voltage	VDD		3.135	3.3	3.465	V
Operating Supply Current Input High Voltage	IDD	Configuration Dependent - See VersaClock ${ }^{\text {TM }}$				mA
		Two 33.3333 MHz output, $\overline{\mathrm{PDTS}}=1$, no load Note 1		16		mA
		$\overline{\text { PDTS }}=0$		500		$\mu \mathrm{A}$
Input High Voltage	V_{IH}	SEL	VDD/2+1			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	SEL			0.4	V
Input High Voltage, PDTS	V_{IH}		VDD-0.5			V
Input Low Voltage, $\overline{\text { PDTS }}$	$\mathrm{V}_{\text {IL }}$				0.4	V
Input High Voltage	V_{IH}	ICLK	VDD/2+1			V
Input Low Voltage	V_{IL}	ICLK			VDD/2-1	V
Output High Voltage (CMOS High)	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	VDD-0.4			V
Output High Voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$ (Low Drive); $\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$ (High Drive)	$\begin{gathered} 2.4 \\ \text { VDD-0.4 } \end{gathered}$			V
Output Low Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ (Low Drive); $\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$ (High Drive)			0.4	V
Short Circuit Current	los			± 70		mA
Nominal Output Impedance	Z_{O}			20		Ω
Internal Pull-up Resistor	$\mathrm{R}_{\text {PUP }}$	SEL		120		k Ω
Internal Pull-down Resistor	R_{PD}	Clock outputs CLK1 and CLK2		120		k Ω
Input Capacitance	$\mathrm{C}_{\text {IN }}$	inputs		4		pF

Note 1: Example with 25 MHz crystal input with output of $33 . \overline{3} \mathrm{MHz}$, no load, and VDD $=3.3 \mathrm{~V}$.

AC Electrical Characteristics

Unless stated otherwise, VDD $=3.3 \mathrm{~V} \pm 5 \%$, Ambient Temperature -40 to $+85^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Input Frequency	F_{IN}	Fundamental Crystal	5		27	MHz
		Input Clock	2		150	MHz
Output Frequency			0.314		200	MHz
Output Rise Time	$\mathrm{t}_{\text {OR }}$	20\% to 80\%, Note 1		1		ns
Output Fall Time	t_{OF}	80\% to 20\%, Note 1		1		ns
Duty Cycle		Note 2	40	49-51	60	\%
Power-up Time		PLL lock time from power-up		4	10	ms
		$\overline{\text { PDTS }}$ goes high until stable CLK output, Spread Spectrum Off		. 6	2	ms
		PDTS goes high until stable CLK output, Spread Spectrum On		4	7	ms
One Sigma Clock Period Jitter		Configuration Dependent		50		ps
Maximum Absolute Jitter	t_{ja}	Deviation from Mean. Configuration Dependent		± 200		ps

Note 1: Measured with 15 pF load.
Note 2: Duty Cycle is configuration dependent. Most configurations are minimum 45\% and maximum 55\%.

Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Thermal Ambient	θ_{JA}	Still air		150		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	θ_{JA}	$1 \mathrm{~m} / \mathrm{s}$ air flow		140		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	θ_{JA}	$3 \mathrm{~m} / \mathrm{s}$ air flow		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Case	θ_{JC}			40		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Marking Diagram

Marking Diagram (Pb free)

Notes:

1. \#\#\#\#\#\# is the lot number.
2. YYWW is the last two digits of the year and week that the part was assembled.
3. "l" denotes industrial temperature range (if applicable).
4. "L" denotes RoHS compliant package.
5. Bottom marking: country of origin.

Package Outline and Package Dimensions (8-pin SOIC, 150 Mil. Body)

Package dimensions are kept current with JEDEC Publication No. 95

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
ICS252PM	See Page 7 Above	Tubes	8 -pin SOIC	0 to $+70^{\circ} \mathrm{C}$
ICS252PMI		Tubes	8 -pin SOIC	-40 to $+85^{\circ} \mathrm{C}$
ICS252PMLF		Tubes	8 -pin SOIC	0 to $+70^{\circ} \mathrm{C}$
ICS252PMILF		Tubes	8 -pin SOIC	-40 to $+85^{\circ} \mathrm{C}$
ICS252M-XX	252M-XX	Tubes	8 -pin SOIC	0 to $+70^{\circ} \mathrm{C}$
ICS252MI-XX	252MIXX	Tubes	8 -pin SOIC	-40 to $+85^{\circ} \mathrm{C}$
ICS252M-XXLF	252MXXL	Tubes	8 -pin SOIC	0 to $+70^{\circ} \mathrm{C}$
ICS252MI-XXLF	252MIXXL	Tubes	8 -pin SOIC	-40 to $+85^{\circ} \mathrm{C}$
ICS252M-XXT	252M-XX	Tape and Reel	8 -pin SOIC	0 to $+70^{\circ} \mathrm{C}$
ICS252MI-XXT	252MIXX	Tape and Reel	8 -pin SOIC	-40 to $+85^{\circ} \mathrm{C}$
ICS252M-XXLFT	252MXXL	Tape and Reel	8 -pin SOIC	0 to $+70^{\circ} \mathrm{C}$
ICS252MI-XXLFT	252MIXXL	Tape and Reel	8 -pin SOIC	-40 to $+85^{\circ} \mathrm{C}$

Parts that are ordered with a "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.
The ICS252M-XX, ICS252M-XXLF, ICS252MI-XX, and ICS252MI-XXLF are factory programmed versions of the ICS252PM, ICS252PMLF, ICS252PMI, and ICS252PMILF. A unique "-XX" suffix is assigned by the factory for each custom configuration, and a separate data sheet is kept on file. For more information on custom part numbers programmed at the factory, please contact your local IDT sales and marketing representative.
While the information presented herein has been checked for both accuracy and reliability, IDT assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Originator	Date	Description of Change
A	R.Willner	$04 / 08 / 05$	Preliminary release.
B	R.Willner	$01 / 16 / 06$	Corrected Block Diagram. Released from Prelim to Final.
C	R.Willner	$06 / 13 / 06$	Added "-XX" part ordering information and specific note pertaining to custom configurations of device.
D		$08 / 10 / 07$	Removed "Inernal pull-up resistor" info from PDTS pin description and added extrenal pull-up resistor statement/information.
E		$08 / 20 / 07$	Changed S1 pin name to "SEL"; removed references to PDTS pin; changed pull-up resistor value from 190 to 120 kOhms.

For Sales
800-345-7015
408-284-8200
Fax: 408-284-2775

For Tech Support
408-284-4522
www.idt.com/go/clockhelp

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

