Sam Buy Technical Documents

Tools \& Software

TPS25942x/44x 2.7V-18V, 5A eFuse Power MUX with Multiple Protection Modes

1 Features

- $2.7 \mathrm{~V}-18 \mathrm{~V}$ Operating Voltage, 20 V (Max)
- $42 \mathrm{~m} \Omega \mathrm{R}_{\mathrm{ON}}$ (Typical)
- 0.6 A to 5.3 A Adjustable Current Limit ($\pm 8 \%$)
- IMON Current Indicator Output ($\pm 8 \%$)
- $200 \mu \mathrm{~A}$ Operating I_{Q} (Typical)
- $15 \mu \mathrm{~A}$ Disabled I_{Q} (Typical)
- $\pm 2 \%$ Overvoltage, Undervoltage Thresholds
- Reverse Current Blocking
- $1 \mu \mathrm{~s}$ Reverse Voltage Shutoff
- Programmable $\mathrm{dV}_{\mathrm{o}} / \mathrm{dt}$ Control
- Power Good and Fault Outputs
- Two Overcurrent Fault Response Options
- TPS25942: $1_{\text {(LIMIT) }}$ with Thermal Shutdown
- TPS25944: 4 ms Fault Timer then Shutoff
- $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Junction Temperature Range
- UL 2367 Recognized
- File No. 169910
- $R_{\text {ILIM }} \geq 20 \mathrm{k} \Omega$ (4.81 A max)
- UL60950 Safe during Single Point Failure
- Open/Short ILIM detection

2 Applications

- Power Path Management
- Redundant Power Supply Systems
- PCle cards, NICs and RAID Systems
- USB Power Banks, Power MUXes
- SSDs and HDDs
- Tablets and Notebooks
- Adapter Power Devices
- PLCs, SS Relays and Fan Control

4 Simplified Schematic

3 Description

The TPS25942, TPS25944 eFuse Power MUX is a compact, feature rich power management device with a full suite of protection functions. The wide operating range allows control of many popular DC bus voltages. Integrated back-to-back FETs provide bidirectional current control making the device well suited for power muxing and systems with multiple power sources.
Load, source and device protection are provided with many programmable features. Thresholds for undervoltage, overvoltage, overcurrent, $\mathrm{dV}_{\mathrm{o}} / \mathrm{dt}$ ramp rate, power good, and in-rush current protection are all programmable to suit specific system requirements. For system status monitoring and downstream load control, the device provides PGOOD, FLT and precise current monitor output.
The TPS25942, TPS25944 monitor $\mathrm{V}_{(\mathbb{I N})}$ and $\mathrm{V}_{(\mathrm{OUT})}$ to provide true reverse blocking from output when $\mathrm{V}_{(\mathrm{N})}<$ ($\mathrm{V}_{\text {(OUT) }}$ - 10 mV). The device can be configured to assign Main/Auxiliary supply priority using the FLT and DMODE pins.

Device Information ${ }^{(1)}$

PART NUMBER $^{(2)}$	PACKAGE	BODY SIZE (NOM)
TPS25942L		
TPS25942A	WQFN (20)	$3.00 \mathrm{~mm} \times 4.00 \mathrm{~mm}$
TPS25944L		
TPS25944A		

(1) For all available packages, see the orderable addendum at the end of the datasheet
(2) TPS2594xL = Latched, TPS2594xA = Auto Retry

Failover of $\mathrm{V}_{(\mathrm{MAIN})}=12 \mathrm{~V}$ to $\mathrm{V}_{(\mathrm{AUX})}=12.3 \mathrm{~V}$ Using Diode Mode Control

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Simplified Schematic 1
5 Revision History. 2
6 Device Comparison Table 4
7 Pin Configuration and Functions 4
8 Specifications 5
8.1 Absolute Maximum Ratings 5
8.2 ESD Ratings 5
8.3 Recommended Operating Conditions 5
8.4 Thermal Characteristics 5
8.5 Electrical Characteristics 6
8.6 Timing Requirements 8
8.7 Typical Characteristics 9
9 Parametric Measurement Information 17
10 Detailed Description 18
10.1 Overview 18
10.2 Functional Block Diagram 19
10.3 Feature Description 21
10.4 Device Functional Modes 25
11 Application and Implementation 27
11.1 Application Information. 27
11.2 Typical Application 27
11.3 System Examples 35
12 Power Supply Recommendations 42
12.1 Transient Protection 42
12.2 Output Short-Circuit Measurements 43
13 Layout. 44
13.1 Layout Guidelines 44
13.2 Layout Example 45
14 Device and Documentation Support 46
14.1 Related Links 46
14.2 Trademarks 46
14.3 Electrostatic Discharge Caution 46
14.4 Glossary 46
15 Mechanical, Packaging, and Orderable Information 46

5 Revision History

Changes from Original (June 2014) to Revision A Page

- Changed Features From: UL2367 Recognition Pending To: UL 2367 Recognized, $\mathrm{R}_{\text {ILIM }} \geq 20 \mathrm{k} \Omega$ (4.81 A max), File No. 169910 1
- Changed text in the Description From: $\overline{\text { FLT }}$ and ENBLK pins To: $\overline{\text { FLT }}$ and DMODE pins 1
- Deleted Note "Product Preview" from the Device Information table 1
- Changed Pin 1 From $\overline{\text { ENBLK }}$ To: DMODE throughout the data sheet 4
- Changed ENBLK To: DMODE in the Pin Functions table and updated the DESCRIPTION 4
- Moved the Storage Temperature From the Handling Ratings table To Absolute Maximum Ratings table 5
- Changed the Handling Ratings table To: ESD Ratings table 5
- Changed DIODE MODE INPUT ($\overline{\text { ENBLK }}$): ACTIVE LOW To: DIODE MODE INPUT (DMODE): ACTIVE HIGH in the Electrical Characteristics 6
- Added Test Condition to $\mathrm{I}_{(\mathrm{LIM})}$: $\mathrm{R}_{(\text {(LIM })}=20 \mathrm{k} \Omega$ " in the Electrical Characteristics 6
- Changed Test Condition in $\mathrm{I}_{(\mathrm{LIM})}$ From: " $\overline{E N B L K}=$ High; Diode Mode" To: "DMODE = High; Non-ideal Diode Mode" in the Electrical Characteristics 6
- Changed "DIODE MODE INPUT: ACTIVE LOW ($\overline{(\mathrm{ENBLK}})$ " To: DIODE MODE INPUT: ACTIVE HIGH (DMODE)" in the Timing Requirements 8
- Changed Figure 22. 11
- Added condition $\mathrm{R}_{\text {(LIM) }}=17.8 \mathrm{~K} \Omega$ to Figure 39 and Figure 40 14
- Changed Figure 43. Added Figure 44, Figure 45, and Figure 46 15
- Changed Figure 48: $\overline{\text { ENBLK To: DMODE and Diode Mode To: Non-Ideal Diode Mode }}$ 19
- Changed Figure 49: ENBLK To: DMODE and Diode Mode To Non-Ideal Diode Mode 20
- Changed Equation 5 to include $I_{\text {(IMON_OS) }}$ 24
- Change text in Diode Mode From:" ENBLK...active low terminal" To: "DMODE ...active high terminal". 25
- Changed text in the last sentence of Diode Mode From: "In this mode, the overload current..." To:"In this mode, the circuit breaker functionality.." 25
- Added the NOTE to Application and Implementation 27
- Added Note A to Figure 60 31

Revision History (continued)

- Changed Equation 36 From: $\mathrm{V}_{(\mathbb{I N})} \times \mathrm{I}_{(\mathrm{LOAD})} \mathrm{To}: \mathrm{V}_{(\mathrm{IN})}+\mathrm{I}_{(\mathrm{LOAD}) \cdots \ldots . ~} 42$

6 Device Comparison Table

DEVICE	T_{J}	OPERATION ${ }^{(1)}$	TYPE
TPS25942A	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Current Limiter	Auto Retry
TPS25942L		Current Limiter	Latched
TPS25944A		Circuit Breaker	Auto Retry
TPS25944L		Circuit Breaker	Latched

(1) Refer to Operational Differences between TPS25942 and TPS25944 for detailed information.

7 Pin Configuration and Functions

Pin Functions

PIN NAME	PIN NO.	I/O	DESCRIPTION
DMODE	1	I	Diode Mode control pin. A high at this pin will activate the Non-ideal Diode Mode.
PGOOD	2	O	Active High. A high indicates PGTH has crossed the threshold value. It is an open drain output.
PGTH	3	I	Positive input of PGOOD comparator.
OUT	$9-13$	O	Power Output of the device.
IN	14	I	Power Input and supply voltage.
EN/UVLO	15	I	Input for setting programmable undervoltage lockout threshold. An undervoltage event will open internal FET and assert FLT to indicate power-failure. When pulled to GND, resets the fault latch in TPS25942L, TPS25944L.
OVP	17	Input for setting programmable overvoltage protection threshold. An overvoltage event will open the internal FET and assert FLT to indicate overvoltage.	
GND	18	I/O	Around.
ILIM	19	O resistor from this pin to GND sets the overload and short-circuit current limit.	
dVdT	20	A capacitor from this pin to GND sets the ramp rate of output voltage.	

8 Specifications

8.1 Absolute Maximum Ratings

over operating temperature range (unless otherwise noted) ${ }^{(1)}$

		VALUE		UNIT
		MIN	MAX	
Input voltage range	IN, OUT, PGTH, PGOOD, EN, OVP, DMODE, FLT	-0.3	20	V
	IN (10 ms Transient)		22	
	dVdT, ILIM	-0.3	3.6	
	IMON	-0.3	7	
Sink current	PGOOD, $\overline{F L T}, \mathrm{dVdT}$		10	mA
Source current	dVdT, ILIM, IMON	Internally Limited		
Maximum junction, T_{J}		-40	150	${ }^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$		-65	150	${ }^{\circ} \mathrm{C}$
Continuous power dissipation		See the Thermal Characteristics		

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

8.2 ESD Ratings

$\mathrm{V}_{\text {ESD }}$		Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001s ${ }^{(1)}$	VALUE
	Charged device model (CDM), per JEDEC specification JESD22- C101	± 2000		

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

8.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
Input voltage range	IN	2.7		18	V
	EN, OVP, DMODE, OUT, PGTH, PGOOD, FLT	0		18	
	dVdT, ILIM	0		3	
	IMON	0		6	
Resistance	ILIM	16.9		150	$k \Omega$
	IMON	1			
External capacitance	OUT	0.1			$\mu \mathrm{F}$
	dVdT			470	nF
Operating junction temperature range, T_{J}		-40	25	125	${ }^{\circ} \mathrm{C}$

8.4 Thermal Characteristics

THERMAL METRIC ${ }^{(1)}$		TPS25942, 44	UNIT
		RVC (20) PINS	
$\mathrm{R}_{\theta \mathrm{JA}}$	Junction-to-ambient thermal resistance	38.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJCtop }}$	Junction-to-case (top) thermal resistance	40.5	
$\mathrm{R}_{\text {өJB }}$	Junction-to-board thermal resistance	13.6	
$\Psi_{J T}$	Junction-to-top characterization parameter	0.6	
Ψ_{JB}	Junction-to-board characterization parameter	13.7	
$\mathrm{R}_{\theta \text { JCbot }}$	Junction-to-case (bottom) thermal resistance	3.4	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

8.5 Electrical Characteristics

Conditions are $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{(\mathrm{IN})} \leq 18 \mathrm{~V}, \mathrm{~V}_{(\mathrm{EN} / \mathrm{UVLO})}=2 \mathrm{~V}, \mathrm{~V}_{(\mathrm{OVP})}=\mathrm{V}_{(\mathrm{DMODE})}=\mathrm{V}_{(\mathrm{PGTH})}=0 \mathrm{~V}, \mathrm{R}_{(\mathrm{LLIM})}=150$ $\mathrm{k} \Omega, \mathrm{C}_{(\mathrm{OUT})}=1 \mu \mathrm{~F}, \mathrm{C}_{(\mathrm{dVdT})}=\mathrm{OPEN}, \mathrm{PGOOD}=\overline{\mathrm{FLT}}=\mathrm{IMON}=\mathrm{OPEN}$. Positive current into terminals. All voltages referenced to GND (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY VOLTAGE AND INTERNAL UNDERVOLTAGE LOCKOUT						
$\mathrm{V}_{\text {(IN) }}$	Operating Input Voltage		2.7		18	V
$\mathrm{V}_{\text {(UVR) }}$	Internal UVLO threshold, rising		2.2	2.3	2.4	V
$\mathrm{V}_{\text {(UVRhys) }}$	Internal UVLO hysteresis		105	116	125	mV
$\mathrm{I}_{\text {(ON })}$	Supply current, Enabled	$\mathrm{V}_{(\text {EN/UVLO) }}=2 \mathrm{~V}, \mathrm{~V}_{(\text {(I) })}=3 \mathrm{~V}$	140	210	300	$\mu \mathrm{A}$
		$\mathrm{V}_{(\text {EN/UVLO) }}=2 \mathrm{~V}, \mathrm{~V}_{(\mathrm{IN})}=12 \mathrm{~V}$	140	199	260	
		$\mathrm{V}_{(\text {EN/UVLO) }}=2 \mathrm{~V}, \mathrm{~V}_{(\mathrm{IN})}=18 \mathrm{~V}$	140	202	270	
$\mathrm{I}_{\text {Q(OFF) }}$	Supply current, Disabled	$\mathrm{V}_{\text {(EN/UVLO) }}=0 \mathrm{~V}, \mathrm{~V}_{(\mathrm{IN})}=3 \mathrm{~V}$	4	8.6	15	$\mu \mathrm{A}$
		$\mathrm{V}_{(\mathrm{EN} / \mathrm{UVLO})}=0 \mathrm{~V}, \mathrm{~V}_{(\mathrm{IN})}=12 \mathrm{~V}$	6	15	20	
		$\mathrm{V}_{(\mathrm{EN} / \mathrm{UVLO})}=0 \mathrm{~V}, \mathrm{~V}_{(\mathrm{IN})}=18 \mathrm{~V}$	8	18.5	25	
ENABLE AND UNDERVOLTAGE LOCKOUT (EN/UVLO) INPUT						
$\mathrm{V}_{\text {(ENR) }}$	EN/UVLO threshold voltage, rising		0.97	0.99	1.01	V
$\mathrm{V}_{\text {(ENF) }}$	EN/UVLO threshold voltage, falling		0.9	0.92	0.94	V
$\mathrm{V}_{\text {(SHUTF) }}$	EN threshold voltage for Low I_{Q} shutdown, falling		0.3	0.47	0.63	V
$\mathrm{V}_{\text {(SHUTFhys) }}$	EN hysteresis for low I_{Q} shutdown, hysteresis ${ }^{(1)}$			66		mV
$\mathrm{I}_{\text {EN }}$	EN Input leakage current	$0 \mathrm{~V} \leq \mathrm{V}_{(\text {EN/UVLO) }} \leq 18 \mathrm{~V}$	-100	0	100	nA
OVER VOLTAGE PROTECTION (OVP) INPUT						
$\mathrm{V}_{\text {(}}$ (VPR)	Overvoltage Threshold Voltage, Rising,		0.97	0.99	1.01	V
$\mathrm{V}_{\text {(} \mathrm{OVPF} \text {) }}$	Overvoltage Threshold Voltage, Falling		0.9	0.92	0.94	V
${ }^{\prime}$ (OVP)	OVP Input Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{(\mathrm{OVP})} \leq 5 \mathrm{~V}$	-100	0	100	nA
DIODE MODE INPUT (DMODE): ACTIVE HIGH						
$V_{\text {(DMODE) }}$	DMODE threshold voltage, rising		1.6	1.85	2	V
	DMODE threshold voltage, falling		0.8	0.96	1.1	V
${ }^{\text {(DMODE) }}$	DMODE input leakage current	$0.2 \mathrm{~V} \leq \mathrm{V}_{\text {(DMODE) }} \leq 18 \mathrm{~V}$	0.6	1	1.25	$\mu \mathrm{A}$
OUTPUT RAMP CONTROL (dVdT)						
$\mathrm{I}_{(\mathrm{dVdT}}$	dVdT charging current	$\mathrm{V}_{(\mathrm{dVdT})}=0 \mathrm{~V}$	0.85	1	1.15	$\mu \mathrm{A}$
$\mathrm{R}_{\text {(dVdT) }}$	dVdT discharging resistance	$\mathrm{EN} / \mathrm{UVLO}=0 \mathrm{~V}, \mathrm{I}_{(\mathrm{dVdT})}=10 \mathrm{~mA}$ sinking		16	24	Ω
$\mathrm{V}_{\text {(dVdTmax) }}$	dVdT maximum capacitor voltage		2.6	2.88	3.1	V
$\mathrm{GAIN}_{(\mathrm{dVat})}$	dVdT to OUT gain	$\Delta \mathrm{V}_{\text {(OUT) }} \Delta \mathrm{V}_{\text {(dVat) }}$	11.65	11.9	12.05	V/V
CURRENT LIMIT PROGRAMMING (ILIM)						
$\mathrm{V}_{\text {(LIM) }}$	ILIM bias voltage			0.87		V
$\mathrm{I}_{(\text {LIM })}$	Current limit $\mathrm{I}_{\text {(LIM) }}$ for TPS25942 ${ }^{(2)}$ $\mathrm{I}_{\text {(FAULT }}$) forTPS25944 ${ }^{(2)(3)}$	$\mathrm{R}_{\text {(ILIM) }}=150 \mathrm{k} \Omega,\left(\mathrm{V}_{(\text {IN })}-\mathrm{V}_{(\mathrm{OUT})}\right)=1 \mathrm{~V}$	0.53	0.58	0.63	A
		$\mathrm{R}_{\text {(LLIM) }}=88.7 \mathrm{k} \Omega,\left(\mathrm{V}_{(\text {IN })}-\mathrm{V}_{(\text {OUT) }}\right)=1 \mathrm{~V}$	0.9	0.99	1.07	
		$\mathrm{R}_{(\text {(LIM })}=42.2 \mathrm{k} \Omega,\left(\mathrm{V}_{(\text {IN })}-\mathrm{V}_{(\text {OUT })}\right)=1 \mathrm{~V}$	1.92	2.08	2.25	
		$\mathrm{R}_{\text {(LIM) }}=24.9 \mathrm{k} \Omega$, $\left(\mathrm{V}_{(\text {IN })}-\mathrm{V}_{(\text {OUT })}\right)=1 \mathrm{~V}$	3.25	3.53	3.81	
		$\mathrm{R}_{\text {(ILIM) }}=20 \mathrm{k} \Omega,\left(\mathrm{V}_{(\text {IN })}-\mathrm{V}_{\text {(OUT) }}\right)=1 \mathrm{~V}$	4.09	4.45	4.81	
		$\mathrm{R}_{\text {(LIIM) }}=16.9 \mathrm{k} \Omega,\left(\mathrm{V}_{(\text {IN })}-\mathrm{V}_{(\text {OUT })}\right)=1 \mathrm{~V}$	4.78	5.2	5.62	
		$\mathrm{R}_{\text {(LIM) }}=$ OPEN, Open resistor current limit (Single Point Failure Test: UL60950)	0.35	0.45	0.55	
		$\mathrm{R}_{\text {(ILIM) }}=$ SHORT, Shorted resistor current limit (Single Point Failure Test: UL60950)	0.55	0.67	0.8	
		DMODE $=$ High; Non-ideal Diode Mode ${ }^{(1)}$	$0.5 \times \mathrm{I}_{\text {(LIM) }}$			

(1) These parameters are provided for reference only and do not constitute part of Tl's published device specifications for purposes of TI's product warranty.
(2) Pulse-testing techniques maintain junction temperature close to ambient temperature. Thermal effects must be taken into account separately.
(3) The TPS25942 limits current to the programmed $\mathrm{I}_{(\mathrm{LIM})}$ level. TPS25944 does not limit current but runs the fault timer when $\mathrm{I}_{(\text {LOAD })}>$ $I_{\text {(LIM) }}$.

Electrical Characteristics (continued)

Conditions are $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{(\mathrm{IN})} \leq 18 \mathrm{~V}, \mathrm{~V}_{(\mathrm{EN} / \mathrm{UVLO})}=2 \mathrm{~V}, \mathrm{~V}_{(\mathrm{OVP})}=\mathrm{V}_{(\mathrm{DMODE})}=\mathrm{V}_{(\mathrm{PGTH})}=0 \mathrm{~V}, \mathrm{R}_{(\mathrm{LIM})}=150$ $\mathrm{k} \Omega, \mathrm{C}_{(\mathrm{OUT})}=1 \mu \mathrm{~F}, \mathrm{C}_{(\mathrm{dVdT})}=\mathrm{OPEN}, \mathrm{PGOOD}=\overline{\mathrm{FLT}}=\mathrm{IMON}=\mathrm{OPEN}$. Positive current into terminals. All voltages referenced to GND (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {(OS }}$)	Short-circuit current limit	$\mathrm{R}_{\text {(LIM) }}=42.2 \mathrm{k} \Omega, \mathrm{V}_{(\mathrm{VIN})}=12 \mathrm{~V},\left(\mathrm{~V}_{(\text {IN })}-\mathrm{V}_{(\mathrm{OUT})}\right)=5 \mathrm{~V}$	1.91	2.07	2.24	A
		$\mathrm{R}_{\text {(LIIM) }}=24.9 \mathrm{k} \Omega, \mathrm{V}_{(\mathrm{VIN})}=12 \mathrm{~V},\left(\mathrm{~V}_{(\text {IN })}-\mathrm{V}_{(\text {OUT) }}\right)=5 \mathrm{~V}$	3.21	3.49	3.77	
		$\begin{aligned} & \mathrm{R}_{(\text {(LIM })}=16.9 \mathrm{k} \Omega, \mathrm{~V}_{(\mathrm{VIN})}=12 \mathrm{~V},\left(\mathrm{~V}_{(\mathrm{IN})}-\mathrm{V}_{(\mathrm{OUT})}\right)=5 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	4.7	5.11	5.52	
$\mathrm{I}_{\text {(FASTRIP) }}$	Fast-Trip comparator threshold ${ }^{(1)(2)}$			$\begin{aligned} & (\text { LIM })+ \\ & 0.375 \end{aligned}$		A
CURRENT MONITOR OUTPUT (IMON)						
$\mathrm{GAIN}_{(\text {IMON })}$	Gain Factor $\mathrm{I}_{(\text {IMON })} \mathrm{l}_{\text {(OUT) }}$	$1 \mathrm{~A} \leq \mathrm{I}_{\text {(OUT) }} \leq 5 \mathrm{~A}$	47.78	52.3	57.23	$\mu \mathrm{A} / \mathrm{A}$
MOSFET - POWER SWITCH						
R_{ON}	IN to OUT - ON Resistance	$1 \mathrm{~A} \leq \mathrm{I}_{\text {(OUT) }} \leq 5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	34	42	49	$\mathrm{m} \Omega$
		$1 \mathrm{~A} \leq \mathrm{I}_{\text {(OUT) }} \leq 5 \mathrm{~A},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 85^{\circ} \mathrm{C}$	26	42	58	
		$1 \mathrm{~A} \leq \mathrm{I}_{\text {(OUT) }} \leq 5 \mathrm{~A},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	26	42	64	
PASS FET OUTPUT (OUT)						
$\mathrm{I}_{\text {kg(OUT) }}$	OUT leakage current in off state	$\mathrm{V}_{(\text {IN })}=18 \mathrm{~V}, \mathrm{~V}_{(\mathrm{EN} / \mathrm{UVLO})}=0 \mathrm{~V}, \mathrm{~V}_{(\mathrm{OUT})}=0 \mathrm{~V}$ (Sourcing)	-2	0	2	$\mu \mathrm{A}$
		$\mathrm{V}_{(\mathrm{IN})}=2.7 \mathrm{~V}, \mathrm{~V}_{(\mathrm{EN} / \mathrm{UVLO})}=0 \mathrm{~V}, \mathrm{~V}_{(\mathrm{OUT})}=18 \mathrm{~V}$ (Sinking)	6	13	20	
$\mathrm{V}_{\text {(REVTH) }}$	$\mathrm{V}_{\text {(IN) }}-\mathrm{V}_{\text {(OUT) }}$ threshold for reverse protection comparator, falling		-15	-9.3	-3	mV
$\mathrm{V}_{\text {(FWDTH) }}$	$\mathrm{V}_{(\text {IN })}-\mathrm{V}_{(\text {OUT })}$ threshold for reverse protection comparator, rising		86	100	114	mV

FAULT FLAG (FLT): ACTIVE LOW

$\mathrm{R}_{\text {(FLT) }}$	FLT internal pull-down resistance	$\mathrm{V}_{(0 \mathrm{OP})}=2 \mathrm{~V}, \mathrm{l}_{(\overline{\mathrm{FLT})}}=5 \mathrm{~mA}$ sinking	10	18	30	Ω
$\mathrm{l} \overline{\text { (FLT) }}$	FLT input leakage current	$0 \mathrm{~V} \leq \mathrm{V}_{(\mathrm{FLT})} \leq 18 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$
POSITIVE INPUT for POWER-GOOD COMPARATOR (PGTH)						
$\mathrm{V}_{\text {(PGTHR) }}$	PGTH threshold voltage, rising		0.97	0.99	1.01	V
$\mathrm{V}_{\text {(PGTHF) }}$	PGTH threshold voltage, falling		0.9	0.92	0.94	V
$\mathrm{I}_{\text {(PGTH) }}$	PGTH input leakage current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {(PGTH) }} \leq 18 \mathrm{~V}$	-100	0	100	nA
POWER-GOOD COMPARATOR OUTPUT (PGOOD): ACTIVE HIGH						
$\mathrm{R}_{\text {(PGOOD) }}$	PGOOD internal pull-down resistance	$\mathrm{V}_{\text {(PGTH) }}=0 \mathrm{~V}, \mathrm{I}_{\text {(PGOOD) }}=5 \mathrm{~mA}$ sinking	10	20	35	Ω
$\mathrm{l}_{\text {(PGOOD) }}$	PGOOD input leakage current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {(PGOOD) }} \leq 18 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$
THERMAL SHUT DOWN (TSD)						
$\mathrm{T}_{\text {(TSD) }}$	TSD Threshold ${ }^{(1)}$			160		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {(TSDhys) }}$	TSD Hysteresis ${ }^{(1)}$			12		${ }^{\circ} \mathrm{C}$
	Thermal Fault: (Latched or AutoRetry)	TPS25942L, TPS25944L		HED		
		TPS25942A, TPS25944A		$\begin{aligned} & \text { UTO- } \\ & \text { ETRY } \end{aligned}$		

8.6 Timing Requirements

Conditions are $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{(\mathrm{IN})} \leq 18 \mathrm{~V}, \mathrm{~V}_{(\mathrm{EN} / \mathrm{UVLO})}=2 \mathrm{~V}, \mathrm{~V}_{(\mathrm{OVP})}=\mathrm{V}_{(\mathrm{DMODE})}=\mathrm{V}_{(\mathrm{PGTH})}=0 \mathrm{~V}, \mathrm{R}_{(\mathrm{LLIM})}=150$ $k \Omega, \mathrm{C}_{(\mathrm{OUT})}=1 \mu \mathrm{~F}, \mathrm{C}_{(\mathrm{dVdT})}=\mathrm{OPEN}, \mathrm{PGOOD}=\overline{\mathrm{FLT}}=\mathrm{IMON}=\mathrm{OPEN}$. Positive current into terminals. All voltages referenced to GND (unless otherwise noted). Refer to Figure 47 for timing diagrams.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ENABLE and UVLO INPUT						
$\mathrm{t}_{\mathrm{ON} \text { (dly) }}$	EN turn on delay	EN/UVLO $\uparrow\left(100 \mathrm{mV}\right.$ above $\left.\mathrm{V}_{(\text {ENR })}\right)$ to $\mathrm{V}_{(\mathrm{OUT})}=100 \mathrm{mV}$, $\mathrm{C}_{(\mathrm{dVdT})}<0.8 \mathrm{nF}$		220		$\mu \mathrm{s}$
		EN/UVLO $\uparrow\left(100 \mathrm{mV}\right.$ above $\left.\mathrm{V}_{(\text {ENR })}\right)$ to $\mathrm{V}_{(\mathrm{OUT})}=100 \mathrm{mV}$, $\mathrm{C}_{(\mathrm{dVdT})} \geq 0.8 \mathrm{nF}$, see, $\left[\mathrm{C}_{(\mathrm{dVdT})}\right.$ in nF$]$		$\begin{array}{r} 100+150 x \\ C_{(\mathrm{dVdT})} \end{array}$		$\mu \mathrm{s}$
$\mathrm{t}_{\text {OFF(dy) }}$	EN turn off delay	EN/UVLO $\downarrow\left(100 \mathrm{mV}\right.$ below $\left.\mathrm{V}_{(\text {ENF) }}\right)$ to $\overline{\mathrm{FLT}} \downarrow$		2		$\mu \mathrm{s}$
OVERVOLTAGE PROTECTION INPUT (OVP)						
tovP(dy)	OVP disable delay	OVP $\uparrow\left(100 \mathrm{mV}\right.$ above $\left.\mathrm{V}_{(\text {OVPR) }}\right)$ to $\overline{\mathrm{FLT}} \downarrow$		2		$\mu \mathrm{s}$
DIODE MODE INPUT: ACTIVE HIGH (DMODE)						
tomode	DMODE turn-on delay	DMODE \downarrow to $\left(\mathrm{V}_{(\mathrm{IN})}-\mathrm{V}_{(\mathrm{OUT})}\right) \leq 200 \mathrm{mV}$, with 1 A resistive load at OUT		2		$\mu \mathrm{s}$
	DMODE turn-off delay	DMODE \uparrow to $\left(\mathrm{V}_{(\mathrm{IN})}-\mathrm{V}_{(\text {OUT })}\right)>200 \mathrm{mV}, 1 \mathrm{~A}$ resistive load at OUT		220		ns
OUTPUT RAMP CONTROL (dVdT)						
$\mathrm{t}_{\mathrm{dV} \text { dT }}$	Output ramp time	$\mathrm{EN} / \mathrm{UVLO} \uparrow$ to $\mathrm{V}_{(\mathrm{OUT})}=4.5 \mathrm{~V}$, with $\mathrm{C}_{(\mathrm{dVdT})}=$ open		0.12		ms
		EN/UVLO \uparrow to $\mathrm{V}_{(\mathrm{OUT})}=11 \mathrm{~V}$, with $\mathrm{C}_{(\mathrm{dVdT})}=$ open	0.25	0.37	0.5	
		EN/UVLO \uparrow to $\mathrm{V}_{(\mathrm{OUT})}=11 \mathrm{~V}$, with $\mathrm{C}_{(\mathrm{dVaT})}=1 \mathrm{nF}$		0.97		
CURRENT LIMIT						
$\mathrm{t}_{\text {FASTRIP(dly) }}$	Fast-Trip comparator delay	$\mathrm{I}_{\text {(OUT) }}>\mathrm{I}_{\text {(FASTRIP) }}$		200		ns
REVERSE PROTECTION COMPARATOR						
$\mathrm{t}_{\mathrm{REV} \text { (dly }}$	Reverse protection comparator delay	$\left(\mathrm{V}_{(\text {(IN })}-\mathrm{V}_{(\text {OUT })}\right) \downarrow\left(1 \mathrm{mV}\right.$ overdrive below $\left.\mathrm{V}_{(\text {REVTH }}\right)$ to $\overline{\mathrm{FLT}} \downarrow$		10		$\mu \mathrm{s}$
		$\left(\mathrm{V}_{(\text {IN })}-\mathrm{V}_{(\mathrm{OUT})}\right) \downarrow\left(10 \mathrm{mV}\right.$ overdrive below $\left.\mathrm{V}_{\text {(REVTH) }}\right)$ to $\overline{\mathrm{FLT}} \downarrow$		1		
$\mathrm{t}_{\text {FWD (dy }}$)		$\left(\mathrm{V}_{(\text {IN })}-\mathrm{V}_{(\text {OUT })}\right) \uparrow\left(10 \mathrm{mV}\right.$ overdrive above $\left.\mathrm{V}_{(\text {(FWDTH) }}\right)$ to $\overline{\mathrm{FLT}} \uparrow$		3.1		
POWER-GOOD COMPARATOR OUTPUT (PGOOD): ACTIVE HIGH						
$\mathrm{t}_{\text {PGOODR }}$	PGOOD delay (de-glitch) time	TPS25942: Rising edge	0.42	0.54	0.66	ms
		TPS25944: Rising edge		4		
tpgoodf		TPS25942 and TPS25944: Falling edge		10		$\mu \mathrm{s}$
FAULT FLAG (FLT)						
$\mathrm{t}_{\mathrm{CB} \text { (dly) }}$	FLT assertion delay in Circuit Breaker mode	TPS25944 Only; Delay from $\mathrm{I}_{(\mathrm{OUT})}>\mathrm{I}_{\text {(LIM) }}$ to $\overline{\mathrm{FLT}} \downarrow$ (and internal FET turned off)		4		ms
${ }^{\text {t }}$ CB(Retrydy)	Retry Delay in Circuit Breaker Mode	TPS25944A Only; Circuit breaker fault asserted, Delay from to FLT \downarrow to $\operatorname{FLT} \uparrow$ edge		128		ms
THERMAL SHUT DOWN (TSD)						
	Retry delay in TSD	TPS25942A and TPS25944A Only		128		ms

8.7 Typical Characteristics

Conditions are $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{(\mathrm{IN})}=12 \mathrm{~V}, \mathrm{~V}_{(\text {EN/UVLO })}=2 \mathrm{~V}, \mathrm{~V}_{(\mathrm{OVP)}}=\mathrm{V}_{\text {(DMODE) }}=\mathrm{V}_{(\mathrm{PGTH})}=0 \mathrm{~V}, \mathrm{R}_{(\mathrm{LIM})}=150 \mathrm{k} \Omega$, $\mathrm{C}_{(\mathrm{OUT})}=1 \mu \mathrm{~F}, \mathrm{C}_{(\mathrm{dVdT})}=\mathrm{OPEN}, \mathrm{PGOOD}=\mathrm{FLT}=\mathrm{IMON}=\mathrm{OPEN}$. (unless stated otherwise)

Figure 1. Internal UVLO Threshold Voltage vs Temperature

Figure 3. Input Supply Current vs Supply Voltage at Shutdown

Figure 5. OVP Threshold Voltage vs Temperature

Figure 2. Input Supply Current vs Supply Voltage During Normal Operation

Figure 4. EN Threshold Voltage vs Temperature

Figure 6. PGTH Threshold Voltage vs Temperature

Typical Characteristics (continued)

Conditions are $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{(\mathrm{IN})}=12 \mathrm{~V}, \mathrm{~V}_{(\text {EN/UVLO })}=2 \mathrm{~V}, \mathrm{~V}_{(\mathrm{OVP})}=\mathrm{V}_{(\mathrm{DMODE})}=\mathrm{V}_{(\text {PGTH })}=0 \mathrm{~V}, \mathrm{R}_{(\text {(LIM })}=150 \mathrm{k} \Omega$, $\mathrm{C}_{(\mathrm{OUT})}=1 \mu \mathrm{~F}, \mathrm{C}_{(\mathrm{dVat})}=\mathrm{OPEN}, \mathrm{PGOOD}=\overline{\mathrm{FLT}}=\mathrm{IMON}=\mathrm{OPEN}$. (unless stated otherwise)

Figure 7. EN Threshold Voltage for Low IQ mode vs Temperature

Figure 9. Enable Turn OFF Delay vs Temperature

Figure 11. DMODE Threshold Voltage vs Temperature

Figure 8. Enable Turn ON Delay vs Temperature

Figure 10. OVP Disable Delay vs Temperature

Figure 12. DMODE Pull down Current vs Temperature
www.ti.com

Typical Characteristics (continued)

Conditions are $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{(\mathrm{IN})}=12 \mathrm{~V}, \mathrm{~V}_{(\text {EN/UVLO) }}=2 \mathrm{~V}, \mathrm{~V}_{(\mathrm{OVP)}}=\mathrm{V}_{(\mathrm{DMODE})}=\mathrm{V}_{(\mathrm{PGTH})}=0 \mathrm{~V}, \mathrm{R}_{(\text {(LIM) }}=150 \mathrm{k} \Omega$, $\mathrm{C}_{(\mathrm{OUT})}=1 \mu \mathrm{~F}, \mathrm{C}_{(\mathrm{dVat})}=\mathrm{OPEN}, \mathrm{PGOOD}=\mathrm{FLT}=\mathrm{IMON}=\mathrm{OPEN}$. (unless stated otherwise)

Figure 13. GAIN $_{(\mathrm{dVdT})}$ vs Temperature

Figure 15. Current Limit vs Current Limit Resistor

Figure 17. Current Limit vs Temperature Across $\mathbf{R}_{\text {(LLIM) }}$

Figure 14. Output Ramp Time vs $\mathrm{C}_{(\mathrm{dVdT})}$

Figure 16. Current Limit Accuracy vs Current Limit

Figure 18. Current Limit (\% Normalized) vs Temperature

Typical Characteristics (continued)

Conditions are $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{(\mathrm{IN})}=12 \mathrm{~V}, \mathrm{~V}_{(\text {EN/UVLO })}=2 \mathrm{~V}, \mathrm{~V}_{(\mathrm{OVP})}=\mathrm{V}_{(\mathrm{DMODE})}=\mathrm{V}_{(\text {PGTH })}=0 \mathrm{~V}, \mathrm{R}_{(\text {(LIM })}=150 \mathrm{k} \Omega$, $\mathrm{C}_{(\mathrm{OUT})}=1 \mu \mathrm{~F}, \mathrm{C}_{(\mathrm{dVat})}=\mathrm{OPEN}, \mathrm{PGOOD}=\mathrm{FLT}=\mathrm{IMON}=\mathrm{OPEN}$. (unless stated otherwise)

For $I_{(\text {LIM })}=5.3 \mathrm{~A}$, device goes into thermal shutdown for $\left[\mathrm{V}_{(\text {IN })}-\mathrm{V}_{\text {(OUT) }}\right]>8 \mathrm{~V}$

Figure 19. Current Limit Normalized (\%) vs $\mathrm{V}_{\text {(IN) }}-\mathrm{V}_{\text {(OUT) }}$

Figure 21. Fast Trip Threshold vs Current Limit

Figure 23. GAIN $_{(\text {IMON })}$ vs Temperature

Figure 20. Current Limit for $\mathbf{R}_{(\text {(LIM) }}=$ Open and Short vs Temperature

Figure 22. IMON Offset vs Temperature

Figure 24. Current Monitor Output vs Output Current

Typical Characteristics (continued)

Conditions are $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{(\mathrm{IN})}=12 \mathrm{~V}, \mathrm{~V}_{(\text {EN/UVLO })}=2 \mathrm{~V}, \mathrm{~V}_{(\mathrm{OVP})}=\mathrm{V}_{(\mathrm{DMODE})}=\mathrm{V}_{(\text {PGTH })}=0 \mathrm{~V}, \mathrm{R}_{(\text {(LIM })}=150 \mathrm{k} \Omega$, $\mathrm{C}_{(\mathrm{OUT})}=1 \mu \mathrm{~F}, \mathrm{C}_{(\mathrm{dVat})}=\mathrm{OPEN}, \mathrm{PGOOD}=\mathrm{FLT}=\mathrm{IMON}=\mathrm{OPEN}$. (unless stated otherwise)

Figure 25. Row vs Temperature Across Load Current

Figure 27. $\mathrm{V}_{\text {(REVTH) }}$ vs Temperature

Figure 29. Circuit Breaker Timer Fault Assertion delay Vs Temperature

Figure 26. OUT Leakage Current in Off State vs Temperature

Figure 28. $\mathbf{V}_{\text {(FWDTH) }}$ vs Temperature

Taken on 2-Layer board, 2oz.(0.08-mm thick) with GND plane area: $14 \mathrm{~cm}^{2}$ (Top) and $20 \mathrm{~cm}^{2}$ (bottom)

Figure 30. Thermal Shutdown Time vs Power Dissipation

Typical Characteristics (continued)

Conditions are $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{(\mathrm{IN})}=12 \mathrm{~V}, \mathrm{~V}_{(\text {EN/UVLO })}=2 \mathrm{~V}, \mathrm{~V}_{(\mathrm{OVP})}=\mathrm{V}_{(\mathrm{DMODE})}=\mathrm{V}_{(\mathrm{PGTH})}=0 \mathrm{~V}, \mathrm{R}_{(\text {(LIM })}=150 \mathrm{k} \Omega$, $\mathrm{C}_{(\mathrm{OUT})}=1 \mu \mathrm{~F}, \mathrm{C}_{(\mathrm{dVat})}=\mathrm{OPEN}, \mathrm{PGOOD}=\overline{\mathrm{FLT}}=\mathrm{IMON}=\mathrm{OPEN}$. (unless stated otherwise)

Figure 31. Turn ON with Enable

Figure 33. EN Turn ON Delay : EN \uparrow to Output Ramp \uparrow

Figure 35. OVP Turn OFF delay: OVP \uparrow to Fault \downarrow

Figure 32. Turn ON and OFF with Enable

Figure 34. EN Turn OFF Delay : EN \downarrow to Fault \downarrow

Figure 36. OVP Turn ON delay: OVP \downarrow to Output Ramp \uparrow

Typical Characteristics (continued)

Conditions are $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{(\mathrm{IN})}=12 \mathrm{~V}, \mathrm{~V}_{(\text {EN/UVLO) }}=2 \mathrm{~V}, \mathrm{~V}_{(\mathrm{OVP)}}=\mathrm{V}_{(\mathrm{DMODE})}=\mathrm{V}_{(\mathrm{PGTH})}=0 \mathrm{~V}, \mathrm{R}_{(\text {(LIM) }}=150 \mathrm{k} \Omega$, $\mathrm{C}_{(\mathrm{OUT})}=1 \mu \mathrm{~F}, \mathrm{C}_{(\mathrm{dVat})}=\mathrm{OPEN}, \mathrm{PGOOD}=\overline{\mathrm{FLT}}=\mathrm{IMON}=\mathrm{OPEN}$. (unless stated otherwise)

Figure 37. Power Good Delay (Rising)

Figure 39. Hot-Short: Fast Trip Response and Current Regulation

Figure 41. Transition from Normal Mode to Non-Ideal Diode Mode

Figure 38. Power Good Delay (Falling)

Figure 40. Hot-Short: Fast Trip Response (Zoomed)

Figure 42. Transition from Non-Ideal Diode Mode to Normal Mode

Typical Characteristics (continued)

Conditions are $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{(\mathrm{IN})}=12 \mathrm{~V}, \mathrm{~V}_{(\text {EN/UVLO) }}=2 \mathrm{~V}, \mathrm{~V}_{(\mathrm{OVP)}}=\mathrm{V}_{(\mathrm{DMODE})}=\mathrm{V}_{(\mathrm{PGTH})}=0 \mathrm{~V}, \mathrm{R}_{(\text {(LIM) }}=150 \mathrm{k} \Omega$, $\mathrm{C}_{(\mathrm{OUT})}=1 \mu \mathrm{~F}, \mathrm{C}_{(\mathrm{dVat})}=\mathrm{OPEN}, \mathrm{PGOOD}=\mathrm{FLT}=\mathrm{IMON}=\mathrm{OPEN}$. (unless stated otherwise)

Figure 43. Overload: TPS25944A Circuit Break Function

Figure 45. Hot Short Response: TPS25944A
Device Turns Off after the Fault Timer $\mathrm{t}_{\mathrm{CB} \text { (diy) }}(4 \mathrm{~ms})$ Expires

Figure 44. Overload: Zoomed In (First Cycle)

Figure 46. Hot Short Response: TPS25944A Device Turns Off When $\mathrm{T}_{\mathrm{J}}>\mathrm{T}_{\text {(TSD) }}$ Before Timer Expires

9 Parametric Measurement Information

Figure 47. Timing Diagrams

10 Detailed Description

10.1 Overview

TPS25942, TPS25944 is a eFuse Power Mux with integrated back-to-back FETs and enhanced built-in protection circuitry. It provides robust protection for all systems and applications powered from 2.7 V to 18 V .
For hot-plug-in boards, the device provides hot-swap power management with in-rush current control and programmable output ramp-rate. The device integrates overcurrent and short circuit protection. The precision overcurrent limit helps to minimize over design of the input power supply, while the fast response short circuit protection immediately isolates the load from input when a short circuit is detected. The device allows the user to program the overcurrent limit threshold between 0.6 A and 5.3 A via an external resistor.
The device provides precise monitoring of voltage bus for brown-out and overvoltage conditions and asserts fault for downstream system. Its overall threshold accuracy of 2% ensures tight supervision of bus, eliminating the need for a separate supply voltage supervisor chip. The TPS25942, TPS25944 is designed to control redundant power supply systems. The devices monitor $\mathrm{V}_{(\mathbb{N})}$ and $\mathrm{V}_{(\mathrm{OUT})}$ to provide true reverse blocking from output when reverse condition or input power fail condition is detected. Also, a pair of TPS25942 or TPS25944 devices can be configured to assign priority to the main power supply over the auxiliary power supply.
The additional features include:

- Precise current monitor output for health monitoring of the system
- Additional power good comparator with precision internal reference for output or any other rail voltage monitoring
- Electronic circuit breaker operation with overload timeout - TPS25944 only
- Over temperature protection to safely shutdown in the event of an overcurrent event
- De-glitched fault reporting for brown-out and overvoltage faults
- A choice of latched or automatic restart mode

10.2 Functional Block Diagram

Figure 48. TPS25942A/L Block Diagram

Functional Block Diagram (continued)

Figure 49. TPS25944A/L Block Diagram

10.3 Feature Description

10.3.1 Enable and Adjusting Undervoltage Lockout

The EN/UVLO pin controls the ON/OFF state of the internal FET. A voltage $\mathrm{V}_{\text {(EN/UvLO) }}<\mathrm{V}_{(\text {ENF })}$ on this pin will turn off the internal FET, thus disconnecting IN from OUT, while voltage below 0.6 V will take the device into shutdown mode, with I_{Q} less than $20 \mu \mathrm{~A}$ to ensure minimal power loss. Cycling EN/UVLO low and then back high resets the TPS2594xL that has latched off due to a fault condition.

The internal de-glitch delay on EN/UVLO falling edge is kept low for quick detection of power failure. For applications where a higher de-glitch delay on EN/UVLO is desired, or when the supply is particularly noisy, it is recommended to use an external bypass capacitor from EN/UVLO terminal to GND.
The undervoltage lock out can be programmed by using an external resistor divider from supply IN terminal to EN/UVLO terminal to GND as shown in Figure 50. When an undervoltage or input power fail event is detected, the internal FET is quickly turned off, and FLT is asserted. If the Under-Voltage Lock-Out function is not needed, the EN/UVLO terminal should be connected to the IN terminal. EN/UVLO terminal should not be left floating.
The device also implements internal undervoltage-lockout (UVLO) circuitry on the IN terminal. The device disables when the IN terminal voltage falls below internal UVLO Threshold $\mathrm{V}_{\text {(UVF) }}$. The internal UVLO threshold has a hysteresis of 115 mV .

Figure 50. UVLO and OVP Thresholds Set By $\mathbf{R}_{1}, \mathbf{R}_{\mathbf{2}}$ and $\mathbf{R}_{\mathbf{3}}$

10.3.2 Overvoltage Protection (OVP)

The device incorporates circuit to protect system during overvoltage conditions. A resistor divider connected from the supply to OVP terminal to GND (as shown in Figure 50) programs the overvoltage threshold. A voltage more than $\mathrm{V}_{\text {(OVPR) }}$ on OVP pin turns off the internal FET and protects the downstream load. This pin should be tied to GND when not used.

10.3.3 Hot Plug-in and In-Rush Current Control

The device is designed to control the in-rush current upon insertion of a card into a live backplane or other "hot" power source. This limits the voltage sag on the backplane's supply voltage and prevents unintended resets of the system power. A slew rate controlled startup (dVdT) also helps to eliminate conductive and radiative interferences. An external capacitor connected from the dVdT pin to GND defines the slew rate of the output voltage at power-on (as shown in Figure 51). Equation governing slew rate at start-up is shown in Equation 1 :

Feature Description (continued)

Figure 51. Output Ramp Up Time $t_{d V d T}$ is Set by $C_{(d V d T)}$

$$
\begin{equation*}
\mathrm{I}_{(\mathrm{dVdT})}=\left(\frac{\mathrm{C}_{(\mathrm{dVdT})}}{\operatorname{GAIN}_{(\mathrm{dVdT})}}\right) \times\left(\frac{\mathrm{dV}_{(\mathrm{OUT})}}{\mathrm{dt}}\right) \tag{1}
\end{equation*}
$$

Where:

- $\mathrm{I}_{\text {(dVaT) }}=1 \mu \mathrm{~A}$ (typical)
- $\frac{\mathrm{dV}_{(\mathrm{OUT})}}{\mathrm{dt}}=$ Desired output slew rate
- $\operatorname{GAIN}_{(\mathrm{dVaT})}=\mathrm{dVdT}$ to OUT gain $=12$

The total ramp time ($\mathrm{t}_{\mathrm{dVaT}}$) of $\mathrm{V}_{(\mathrm{OUT})}$ for 0 to $\mathrm{V}_{(\mathrm{IN})}$ can be calculated using Equation 2:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{dVdT}}=8.3 \times 10^{4} \times \mathrm{V}_{(\mathbb{N})} \times \mathrm{C}_{(\mathrm{dVdT})} \tag{2}
\end{equation*}
$$

The inrush current, $\mathrm{I}_{(\text {INRUSH })}$ can be calculated as

$$
\begin{equation*}
\mathrm{I}_{(\mathrm{INRUSH})}=\mathrm{C}_{(\mathrm{OUT})} \times \mathrm{V}_{(\mathrm{IN})} / \mathrm{t}_{\mathrm{dVVT}} \tag{3}
\end{equation*}
$$

The dVdT pin can be left floating to obtain a predetermined slew rate ($\mathrm{t}_{\mathrm{dVd}}$) on the output. When terminal is left floating, the device sets an internal ramp rate of $12 \mathrm{~V} / \mathrm{ms}$ for output ($\mathrm{V}_{(\text {OUT })}$) ramp.
Figure 61 and Figure 62 illustrate the inrush current control behavior of TPS25942, TPS25944. For systems where load is present during start-up, the current never exceeds the overcurrent limit set by $\mathrm{R}_{\text {(LIM) }}$ resistor for the application. For defining appropriate charging time/rate under different load conditions, refer to the Setting Output Voltage Ramp time ($t_{\text {dVat }}$) section.

10.3.4 Overload and Short Circuit Protection :

The device monitors load current by sensing the voltage across the internal sense resistor. The FET current is monitored at both the start-up and during normal operation. During overload events, the device keeps the over current limited to the overcurrent limit (l)$\left(_{(L I M)}\right)$ programmed by $\mathrm{R}_{\text {(LIIM) }}$ resistor

$$
\begin{equation*}
I_{(L I M)}=\frac{89}{R_{(I L I M)}} \tag{4}
\end{equation*}
$$

Where,

- $I_{\text {(LIM) }}$ is overload current limit in Ampere.
- $\mathrm{R}_{\text {(LIIM) }}$ is the current limit resistor in $\mathrm{k} \Omega$
 illustration of fast trip and current limit operation is shown in Figure 52.
Since the bias current on ILIM pin directly controls the current-limiting behavior of the device, the PCB routing of this node must be kept away from any noisy (switching) signals.

Feature Description (continued)

10.3.4.1 Overload Protection

During overload conditions, the internal current-limit amplifier in TPS25942 regulates the output current to $I_{(L I M)}$. The output voltage droops during current regulation, resulting in increased device power dissipation. If the device junction temperature reaches the thermal shutdown threshold ($\mathrm{T}_{\text {(TSD) }}$), the internal FET is turned off. Once in thermal shutdown, The TPS25942L and 44L version stays latched off, whereas TPS25942A and 44A commences an auto-retry cycle 128 ms after $\mathrm{T}_{\mathrm{J}}<\left[\mathrm{T}_{\text {(TSD) }}-12^{\circ} \mathrm{C}\right]$. During thermal shutdown, the fault pin FLT pulls low to signal a fault condition. Figure 65 and Figure 66 illustrate the behavior of the system for overload conditions in TPS25942.
The TPS25944 allows the overload current to flow through the device until $\mathrm{I}_{\text {(LOAD) }}<\mathrm{l}_{\text {(FASTRIP). }}$. It starts the timer when $\left.\mathrm{I}_{(\text {LIM })}<\mathrm{I}_{\text {(LOAD) }}<\mathrm{I}_{\text {(FASTRIP }}\right)$, and once the timer exceeds $\mathrm{I}_{\mathrm{CB}(\mathrm{dly})}$, the internal FET is turned off and FLT is asserted.

10.3.4.2 Short Circuit Protection

During a transient short circuit event, the current through the device increases very rapidly. As current-limit amplifier cannot respond quickly to this event due to its limited bandwidth, the device incorporates a fast-trip comparator, with a threshold $\mathrm{I}_{(\text {FASTRIP })}$. This comparator shuts down the pass device within $1 \mu \mathrm{~s}$, when the current through internal FET exceeds $\mathrm{I}_{\text {(FASTRIP) }}\left(\mathrm{l}_{\text {(OUT) }}>\mathrm{I}_{\text {(FASTRIP) }}\right)$, and terminates the rapid short-circuit peak current. The trip threshold is set to more than 50% of the programmed overload current limit ($\mathrm{I}_{\text {(FASTRIP) }}=1.5 \times \mathrm{I}_{(\mathrm{LIM})}+0.375$). The fast-trip circuit holds the internal FET off for only a few microseconds, after which the device turns back on slowly, allowing the current-limit loop to regulate the output current to $I_{\text {(LIM) }}$. Then, device behaves similar to overload condition. Figure 67 through Figure 69 illustrate the behavior of the system when the current exceeds the fast-trip threshold.

10.3.4.3 Start-Up with Short on Output

During start-up with short, the device limits the current to $\mathbf{I}_{(\text {LIM })}$ and behaves similar to the overload condition afterwards. Figure 70 and Figure 71 illustrate the behavior of the device for start-up with short on the output. This feature helps in quick isolation of the fault and hence ensures stability of the DC bus.

10.3.4.4 Constant Current Limit Behavior During Overcurrent Faults

If during current limit, power dissipation of the internal FET $\left.P_{D}=\left(V_{(\mathbb{I N})}-V_{(\mathrm{OUT})}\right) \times \mathrm{I}_{(\mathrm{OUT})}\right]$ exceeds 10 W , there is a ~ 0 to 5% thermal fold back in the current limit value so that $\mathrm{I}_{\text {(LIM) }}$ drops to $\mathrm{l}_{\text {Os. }}$. Eventually, the device shuts down due to over temperature.

Figure 52. Fast-Trip Current

Feature Description (continued)

10.3.5 FAULT Response

The $\overline{F L T}$ open-drain output is asserted (active low) during undervoltage, overvoltage, reverse voltage/current and thermal shutdown conditions. Additionally, in TPS25944, the FLT is asserted when overload condition exists for more than the fault time period $\left(\mathrm{t}_{\mathrm{CB}(\mathrm{dly}}\right)$). The $\overline{\mathrm{FLT}}$ signal remains asserted until the fault condition is removed and the device resumes normal operation. The device is designed to eliminate false fault reporting by using an internal "de-glitch" circuit for undervoltage and overvoltage (2.2- $\mu \mathrm{s}$ typical) conditions without the need for external circuitry. This ensures that fault is not accidentally asserted during transients on input bus.
Connect $\overline{\text { FLT }}$ with a pull up resistor to Input or Output voltage rail. $\overline{F L T}$ may be left open or tied to ground when not used. $\mathrm{V}_{(I N)}$ falling below $\mathrm{V}_{(\mathrm{UVF})}=2.1 \mathrm{~V}$ resets FLT.

10.3.6 Current Monitoring:

The current source at IMON terminal is configured to be proportional to the current flowing from IN to OUT. This current can be converted to a voltage using a resistor $\mathrm{R}_{(\mathrm{IMON})}$ from IMON terminal to GND terminal. This voltage, computed using Equation 6, can be used as a means of monitoring current flow through the system.
The maximum voltage range for monitoring the current $\left(\mathrm{V}_{(\mathrm{IMONmax})}\right)$ is limited to minimum $\left(\left[\mathrm{V}_{(I N)^{-}} 2.2 \mathrm{~V}\right], 6.0 \mathrm{~V}\right)$ to ensure linear output. This puts limitation on maximum value of $R_{(I M O N)}$ resistor and is determined by Equation 5.

$$
\begin{equation*}
\mathrm{R}_{(\mathrm{IMONmax})}=\frac{\text { minimum }\left(\mathrm{V}_{(\mathrm{IN})}-2.2,6\right)}{1.6 \times \mathrm{I}_{(\mathrm{LIM})} \times \mathrm{GAIN}_{(\mathrm{IMON})}} \tag{5}
\end{equation*}
$$

The output voltage at IMON terminal is calculated from Equation 6.

$$
\begin{equation*}
\mathrm{V}_{(I M O N)}=\left[\mathrm{I}_{(\text {OUT })} \times \operatorname{GAIN}_{(\text {IMON })}+\mathrm{I}_{(\text {IMON_OS })}\right] \times \mathrm{R}_{(\text {IMON })} \tag{6}
\end{equation*}
$$

Where

- $\operatorname{GAIN}_{(I M O N)}=$ Gain factor $I_{(I M O N)}: l_{(\text {OUT })}=52 \mu \mathrm{~A} / \mathrm{A}$
- $I_{(\text {OUT })}=$ Load current
- $\mathrm{I}_{\text {(IMON_Os) }}=0.8 \mu \mathrm{~A}$ (typ)

This pin should not have a bypass capacitor to avoid delay in the current monitoring information.
The voltage at IMON pin can be digitized using an ADC (such as ADS1100, SBAS239) to read the current monitor information over an I2C bus.

10.3.7 Power Good Comparator

The devices incorporate a Power Good comparator for co-ordination of status to downstream DC-DC converters or system monitoring circuits. The comparator has an internal reference of $\mathrm{V}_{(\mathrm{PGTHR})}=0.99 \mathrm{~V}$ at negative terminal and positive terminal PGTH can be utilized for monitoring of either input or output of the device. The comparator output PGOOD is an open-drain active high signal, which can be used to indicate the status to downstream units. PGOOD is asserted high when internal FET is fully enhanced and PGTH pin voltage is higher than internal reference $\mathrm{V}_{\text {(PGTHR) }}$.
The PGOOD signal has deglitch time incorporated to ensure that internal FET is fully enhanced before heavy load is applied by downstream converters. Rising deglitch delay is determined by Equation 7.

$$
\begin{equation*}
\mathrm{t}_{\mathrm{PGOOD}(\mathrm{deg} \mid)}=\text { Maximum }\left\{\left(3.5 \times 10^{6} \times \mathrm{C}_{(\mathrm{dVdT})}\right), \mathrm{t}_{\mathrm{PGOODR}}\right\} \tag{7}
\end{equation*}
$$

Connect the PGOOD pin with a pull up resistor to Input or Output voltage rail. PGOOD may be left open or tied to ground when not used.

10.3.8 IN, OUT and GND Pins

The device has multiple pins for input (IN) and output (OUT).
All IN pins should be connected together and to the power source. A ceramic bypass capacitor close to the device from IN to GND is recommended to alleviate bus transients. The recommended operating voltage range is $2.7 \mathrm{~V}-18 \mathrm{~V}$.
Similarly all OUT pins should be connected together and to the load. $\mathrm{V}_{(\mathrm{OUT})}$ in the ON condition, is calculated using the Equation 8

Feature Description (continued)

$$
\begin{equation*}
\mathrm{V}_{(\mathrm{OUT})}=\mathrm{V}_{(\mathrm{IN})}-\left(\mathrm{R}_{\mathrm{ON}} \times \mathrm{I}_{(\mathrm{OUT})}\right) \tag{8}
\end{equation*}
$$

where, R_{ON} is the total ON resistance of the internal FET.
GND terminal is the most negative voltage in the circuit and is used as a reference for all voltage reference unless otherwise specified.

10.3.9 Thermal Shutdown:

The device has built-in over temperature shutdown circuitry designed to disable the internal FET, if the junction temperature exceeds $160^{\circ} \mathrm{C}$ (typical). The TPS25942L, 44L version latches off the internal FET, whereas TPS25942A, 44A commences an auto-retry cycle 128 ms after $\mathrm{T}_{\mathrm{J}}<\left[\mathrm{T}_{(\mathrm{TSD})}-12^{\circ} \mathrm{C}\right]$. During the thermal shutdown, the fault pin FLT pulls low to signal a fault condition.

10.4 Device Functional Modes

10.4.1 Diode Mode

The device provides a Diode Mode, where the power path from IN to OUT acts as a non-ideal diode rather than a FET, as shown in Figure 53. This mode is activated through DMODE terminal. This is an active high terminal with internal pull-down. The terminal is useful in Power-Mux applications to switch over from master to slave supplies and vice-versa smoothly, when two supplies are within a diode drop of each other. A high at this terminal activates the non-ideal diode mode. In this mode, the circuit breaker functionality (TPS25944x) is disabled and the overload current limit is set to 50% of current limit determined by $\mathrm{R}_{\text {(LIM) }}$ resistor.

Figure 53. Diode Mode: IN to OUT Power Path

10.4.2 Shutdown Control

The internal FET and hence the load current can be remotely switched off by taking the UVLO pin below its 0.6 V threshold with an open collector or open drain device as shown in Figure 54. The device quiescent current is reduced to less than $20 \mu \mathrm{~A}$ in this state. Upon releasing the UVLO pin the device turns on with soft-start cycle.

Figure 54. Shutdown Control

Device Functional Modes (continued)

10.4.3 Operational Differences between TPS25942 and TPS25944

TPS25942 and TPS25944 respond differently to overload and short circuit conditions. The operational differences are explained in Table 1.

Table 1. Device Operational Differences

Device	TPS25942 (Current Limiter)	TPS25944 (Circuit Breaker)
Start Up	Inrush ramp controlled by dVdT	Inrush ramp controlled by dVdT
	Inrush limited to $\mathrm{I}_{(\text {LIM })}$ level as set by $\mathrm{R}_{\text {(LIM) }}$	Inrush limited to $\mathrm{I}_{(\text {LIM })}$ level as set by $\mathrm{R}_{\text {(LIM) }}$
		Fault Timer runs when current is limited to $\mathrm{I}_{\text {(LIM) }}$
		Fault timer expires after $\mathrm{t}_{\mathrm{CB} \text { (dly) }}(4 \mathrm{~ms})$ causing device shutoff
	If $\mathrm{T}_{J}>\mathrm{T}_{\text {(TSD) }}$ device shuts off	Device turns off if $\mathrm{T}_{J}>\mathrm{T}_{\text {(TSD) }}$ before timer expires
Over Current Response	Current is limited to $\mathrm{I}_{(\text {LIM })}$ level as set by $\mathrm{R}_{\text {(ILIM) }}$	Current is allowed through the device if $\mathrm{I}_{\text {(LOAD) }}<$ $\mathrm{I}_{\text {(FASTRIP) }}$
	Power dissipation increases as $\mathrm{V}_{(\text {IN })}-\mathrm{V}_{(\text {OUT }}$ grows	Fault Timer runs when current goes above $\mathrm{I}_{(\text {LIM })}$
		Fault timer expires after $\mathrm{t}_{\mathrm{CB} \text { (dly) }}(4 \mathrm{~ms})$ causing device shutoff
	Device turns off when $\mathrm{T}_{\mathrm{J}}>\mathrm{T}_{\text {(TSD) }}$	Device turns off if $\mathrm{T}_{J}>\mathrm{T}_{\text {(TSD) }}$ before timer expires
	'L' Version remains off	'L' Version remains off
	'A' Version will attempt restart 128 ms after $\mathrm{T}_{\mathrm{J}}<\left[\mathrm{T}_{(\text {TSD })}-\right.$ $\left.12^{\circ} \mathrm{C}\right]$	'A' Version will attempt restart 128 ms after $\mathrm{T}_{\mathrm{J}}<\left[\mathrm{T}_{\text {(TSD) }}\right.$ $\left.-12^{\circ} \mathrm{C}\right]$
Short -Circuit Response	Fast shut off when $\mathrm{I}_{\text {(LOAD) }}>\mathrm{l}_{\text {(FASTRIP) }}$	Fast shut off when $\mathrm{I}_{\text {(LOAD) }}>\mathrm{I}_{\text {(FASTRIP) }}$
	Quick restart and current limited to $\mathrm{I}_{\text {(LIM) }}$, follows standard TPS25942 startup	Quick restart and current limited to $\mathbf{I}_{\text {(LIM) }}$, follows standard TPS25944 startup

11 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

11.1 Application Information

The device is a smart eFuse. It is typically used for Active ORing and Power Multiplexing applications. It operates from 2.7 V to 18 V with programmable current limit, overvoltage and undervoltage protection. The device aids in controlling the in-rush current and in seamless power path management of multiple voltage rails for systems such as PCle cards, Network and Graphic Cards and SSDs. The device also provides robust protection for multiple faults on the sub-system rail.
The following design procedure can be used to select component values for the TPS25942, TPS25944.
Alternatively, the WEBENCH® software may be used to generate a complete design. The WEBENCH® software uses an iterative design procedure and accesses a comprehensive database of components when generating a design. Additionally, a spreadsheet design tool TPS25942_44 Design Calculator is available on web folder.

This section presents a simplified discussion of the design process.

11.2 Typical Application

11.2.1 Current Limiting Active ORing Circuit

A. $\quad \mathrm{C}_{\mathrm{IN}}$: Optional and only for noise suppression.

Figure 55. Typical Application Schematics: Active ORing Configuration

Typical Application (continued)

11.2.1.1 Design Requirements

Table 2. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input voltage range, $\mathrm{V}_{(\mathrm{IN})}$	12 V
Undervoltage lockout set point, $\mathrm{V}_{(\mathrm{UV})}$	10.8 V
Overvoltage protection set point, $\mathrm{V}_{(\mathrm{OV})}$	16.5 V
Load at Start-Up, $\mathrm{R}_{\mathrm{L}(\mathrm{SU})}$	4.8Ω
Current limit, $\mathrm{I}_{(\mathrm{LIM})}$	5 A
Load capacitance, $\mathrm{C}_{(\mathrm{OUT})}$	$100 \mu \mathrm{~F}$
Maximum ambient temperatures, T_{A}	$85^{\circ} \mathrm{C}$

11.2.1.2 Detailed Design Procedure

The following design procedure can be used to select component values for the TPS25942, TPS25944.

11.2.1.2.1 Step by Step Design Procedure

To begin the design process a few parameters must be decided upon. The designer needs to know the following:

- Normal input operation voltage
- Maximum output capacitance
- Maximum current Limit
- Load during start-up
- Maximum ambient temperature of operation

This design procedure below seeks to control the junction temperature of device under both static and transient conditions by proper selection of output ramp-up time and associated support components. The designer can adjust this procedure to fit the application and design criteria.

11.2.1.2.2 Programming the Current-Limit Threshold: $\mathbf{R}_{(\text {(LIM) }}$ Selection

$\mathrm{R}_{\text {(LIIM) }}$ sets the current limit. Using Equation 4.

$$
\begin{equation*}
\mathrm{R}_{(\mathrm{LIM})}=\frac{89}{5}=17.8 \mathrm{k} \Omega \tag{9}
\end{equation*}
$$

Choose the closest standard value: $17.8 \mathrm{k}, 1 \%$ standard value resistor.

11.2.1.2.3 Undervoltage Lockout and Overvoltage Set Point

The undervoltage lockout (UVLO) and overvoltage trip point are adjusted using the external voltage divider network of R_{1}, R_{2} and R_{3} as connected between IN, EN, OVP and GND pins of the TPS25942, TPS25944 devices. The values required for setting the undervoltage and overvoltage are calculated solving Equation 10 and Equation 11.

$$
\begin{equation*}
V_{(\mathrm{OVPR})}=\frac{R_{3}}{R_{1}+R_{2}+R_{3}} \times V_{(\mathrm{OV})} \tag{10}
\end{equation*}
$$

where:

- $\mathrm{V}_{(\mathrm{OVPR})}=$ OVP Threshold for rising voltage

$$
\begin{equation*}
V_{(E N R)}=\frac{R_{2}+R_{3}}{R_{1}+R_{2}+R_{3}} \times V_{(U V)} \tag{11}
\end{equation*}
$$

where:

- $\mathrm{V}_{(\text {ENR })}$ = Enable threshold for rising voltage

For minimizing the input current drawn from the power supply $\left\{I_{(R 123)}=V_{(\mathbb{N})} /\left(R_{1}+R_{2}+R_{3}\right)\right\}$, it is recommended to use higher values of resistance for R_{1}, R_{2} and R_{3}.

However, leakage currents due to external active components connected to the resistor string can add error to these calculations. So, the resistor string current, $\mathrm{I}_{(\mathrm{R} 123)}$ must be chosen to be 20 x greater than the leakage current expected.
From the device electrical specifications, $\mathrm{V}_{(\mathrm{OVPR})}=0.99 \mathrm{~V}$ and $\mathrm{V}_{(\mathrm{ENR})}=0.99 \mathrm{~V}$. For design requirements, $\mathrm{V}_{(\mathrm{OV})}$ is 16.5 V and $\mathrm{V}_{(\mathrm{UV})}$ is 10.8 V . To solve the equation, first choose the value of $\mathrm{R}_{3}=31.2 \mathrm{k} \Omega$ and use Equation 10 to solve for $\left(R_{1}+R_{2}\right)=488.8 \mathrm{k} \Omega$. Use Equation 11 and value of ($R_{1}+R_{2}$) to solve for $R_{2}=16.47 \mathrm{k} \Omega$ and finally $R_{1}=$ $472.33 \mathrm{k} \Omega$.

Using the closest standard 1% resistor values gives $R_{1}=475 \mathrm{k} \Omega, R_{2}=16.7 \mathrm{k} \Omega$, and $R_{3}=31.2 \mathrm{k} \Omega$.
The power fail threshold $\mathrm{V}_{\text {(PFAIL) }}$ is detected on the falling edge of the power supply. The falling voltage threshold is 7% lower than the rising voltage threshold, so for a set $\mathrm{V}_{(\mathrm{UV})}$ the power fail voltage $\mathrm{V}_{\text {(PFALL) }}$ is given by Equation 12.

$$
\begin{equation*}
\mathrm{V}_{(\text {PFALL })}=0.93 \times \mathrm{V}_{(\mathrm{UV})} \tag{12}
\end{equation*}
$$

11.2.1.2.4 Programming Current Monitoring Resistor - $\mathrm{R}_{\text {IMON }}$

Voltage at IMON pin $\mathrm{V}_{(I M O N)}$ represents the voltage proportional to load current. This can be connected to an ADC of the downstream system for health monitoring of the system. The $\mathrm{R}_{\text {(IMON) }}$ need to be configured based on the maximum input voltage range of the ADC used. $\mathrm{R}_{(I M O N)}$ is set using Equation 13.

$$
\begin{equation*}
\mathrm{R}_{(\text {IMON })}=\frac{\mathrm{V}_{(\text {IMONmax })}}{\mathrm{I}_{(\text {LIM })} \times 52 \times 10^{-6}} \mathrm{k} \Omega \tag{13}
\end{equation*}
$$

For $\mathrm{I}_{\text {(LIM) }}=5 \mathrm{~A}$, and considering the operating range of ADC from 0 V to $5 \mathrm{~V}, \mathrm{~V}_{(\text {IMONmax) }}$ is 5 V and $\mathrm{R}_{(\text {IMON })}$ is determined by:

$$
\begin{equation*}
\mathrm{R}_{(\mathrm{IMON})}=\frac{5}{5 \times 52 \times 10^{-6}}=19.23 \mathrm{k} \Omega \tag{14}
\end{equation*}
$$

Selecting $\mathrm{R}_{(\mathrm{IMON})}$ value less than determined by Equation 14 ensures that ADC limits are not exceeded for maximum value of load current.
If the IMON pin voltage is not being digitized with an ADC, $\mathrm{R}_{\text {(IMON) }}$ can be selected to produce a $1 \mathrm{~V} / 1 \mathrm{~A}$ voltage at the IMON pin, using Equation 13.
Choose closest 1 \% standard value: $19.1 \mathrm{k} \Omega$.
If current monitoring up to $\mathrm{I}_{(\text {FASTRIP })}$ is desired, $\mathrm{R}_{(\text {IMON })}$ can be reduced by a factor of 1.6, as in Equation 5 .

11.2.1.2.5 Setting Output Voltage Ramp time ($\mathrm{t}_{\mathrm{dvat}}$)

For a successful design, the junction temperature of device should be kept below the absolute-maximum rating during both dynamic (start-up) and steady state conditions. Dynamic power stresses often are an order of magnitude greater than the static stresses, so it is important to determine the right start-up time and in-rush current limit required with system capacitance to avoid thermal shutdown during start-up with and without load.
The ramp-up capacitor $\mathrm{C}_{(\mathrm{dVd})}$ needed is calculated considering the two possible cases:

11.2.1.2.5.1 Case1: Start-up Without Load: Only Output Capacitance $C_{(\text {OUt }}$ Draws Current During Start-up

During start-up, as the output capacitor charges, the voltage difference across the internal FET decreases, and the power dissipated decreases as well. Typical ramp-up of output voltage $\mathrm{V}_{\text {(out) }}$ with inrush current limit of 1.2A and power dissipated in the device during start-up is shown in Figure 56 . The average power dissipated in the device during start-up is equal to area of triangular plot (red curve in Figure 57) averaged over $\mathrm{t}_{\mathrm{dvat}}$.

For TPS25944, TPS25944 device, the inrush current is determined as,

$$
\begin{equation*}
I=C \times \frac{d V}{d T}=>I_{(\text {INRUSH })}=C_{(\text {OUT })} \times \frac{V_{(I N)}}{t_{d V d T}} \tag{15}
\end{equation*}
$$

Power dissipation during start-up is:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{D}(\mathrm{INRUSH})}=0.5 \times \mathrm{V}_{(\mathrm{IN})} \times \mathrm{I}_{(\text {INRUSH })} \tag{16}
\end{equation*}
$$

Equation 16 assumes that load does not draw any current until the output voltage has reached its final value.

11.2.1.2.5.2 Case 2: Start-up With Load: Output Capacitance $C_{(O U T)}$ and Load Draws Current During Start-up

When load draws current during the turn-on sequence, there will be additional power dissipated. Considering a resistive load $R_{\text {L(SU) }}$ during start-up, load current ramps up proportionally with increase in output voltage during $\mathrm{t}_{\mathrm{dVd}}$ time. Typical ramp-up of output voltage, load current and power dissipated in the device is shown in Figure 58 and power dissipation with respect to time is plotted in Figure 59. The additional power dissipation during start-up phase is calculated as follows.

$$
\begin{align*}
& \left(V_{I}-V_{O}\right)(t)=V_{(I N)} \times\left(1-\frac{t}{t_{d V d T}}\right) \tag{17}\\
& L_{L}(t)=\left(\frac{V_{(I N)}}{R_{L(S U)}}\right) \times \frac{t}{t_{d V d T}} \tag{18}
\end{align*}
$$

Where $\mathrm{R}_{\mathrm{L}(\mathrm{SU)}}$ is the load resistance present during start-up. Average energy loss in internal FET during charging time due to resistive load is given by:

$$
\begin{equation*}
\mathrm{w}_{\mathrm{t}}=\int_{0}^{\mathrm{tdVdT}} \mathrm{~V}_{(\mathbb{N})} \times\left(1-\frac{\mathrm{t}}{\mathrm{t}_{\mathrm{dVdT}}}\right) \times\left(\frac{\mathrm{V}_{(\mathbb{N})}}{\mathrm{R}_{\mathrm{L}(\mathrm{SU})}} \times \frac{\mathrm{t}}{\mathrm{t}_{\mathrm{dVdT}}}\right) \mathrm{dt} \tag{19}
\end{equation*}
$$

Figure 58. Typical Start-up With Load

Figure 59. $\mathrm{P}_{\mathrm{D}(\text { LOAD })}$ in Load During Start-up

Solving Equation 19 the average power loss in the device due to load is:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{D}(\mathrm{LOAD})}=\left(\frac{1}{6}\right) \times \frac{\mathrm{v}^{2}\left({ }^{(I N)}\right.}{\mathrm{R}_{\mathrm{L}(\mathrm{SU})}} \tag{20}
\end{equation*}
$$

Total power dissipated in the device during startup is:
$\mathrm{P}_{\mathrm{D}(\mathrm{STARTUP})}=\mathrm{P}_{\mathrm{D}(\text { INRUSH })}+\mathrm{P}_{\mathrm{D}(\text { LOAD })}$
Total current during startup is given by:
${ }^{\prime}($ STARTUP $)={ }^{\prime}($ INRUSH $)+I_{\text {L }}(\mathrm{t})$
If $\mathrm{I}_{\text {(STARTUP) }}>\mathrm{I}_{\text {(LIM) }}$, the device limits the current to $\mathrm{I}_{\text {(LIM) }}$ and the current limited charging time is determined by:
$\mathrm{t}_{\mathrm{dVdT}}$ (current limited) $=\mathrm{C}_{\text {(OUT) }} \times \frac{\mathrm{V}_{\text {(IN) }}}{I_{(\text {LIM })}}$
The power dissipation, with and without load, for selected start-up time should not exceed the shutdown limits as shown in Figure 60.

A. Taken on 2-Layer board, 2oz.(0.08-mm thick) with GND plane area: 14 cm 2 (Top) and 20 cm 2 (bottom)

Figure 60. Thermal Shutdown Limit Plot
For the design example under discussion,
Select ramp-up capacitor $\mathrm{C}_{(\mathrm{dVdT})}=1 \mathrm{nF}$, using Equation 2.

$$
\begin{equation*}
t_{\text {dvdt }}=8.3 \times 10^{4} \times 12 \times 1 \times 10^{-9}=0.996 \mathrm{~ms}=\sim 1 \mathrm{~ms} \tag{24}
\end{equation*}
$$

The inrush current drawn by the load capacitance ($\mathrm{C}_{(\text {OUT })}$) during ramp-up is calculated using Equation 3.

$$
\begin{equation*}
\mathrm{I}_{(\text {INRUSH })}=\left(100 \times 10^{-6}\right) \times\left(\frac{12}{1 \times 10^{-3}}\right)=1.2 \mathrm{~A} \tag{25}
\end{equation*}
$$

The inrush Power dissipation is calculated, using Equation 16.

$$
\begin{equation*}
\mathrm{P}_{\mathrm{D}(\mathrm{INRUSH})}=0.5 \times 12 \times 1.2=7.2 \mathrm{~W} \tag{26}
\end{equation*}
$$

For 7.2 W of power loss, the thermal shut down time of the device should not be less than the ramp-up time $\mathrm{t}_{\mathrm{dva}}$ t to avoid the false trip at maximum operating temperature. From thermal shutdown limit graph Figure 60 at $T_{A}=$ $85^{\circ} \mathrm{C}$, for 7.2 W of power the shutdown time is $\sim 60 \mathrm{~ms}$. So it is safe to use 1 ms as start-up time without any load on output.
Considering the start-up with load 4.8Ω, the additional power dissipation, when load is present during start up is calculated, using Equation 20.

$$
\begin{equation*}
\mathrm{P}_{\mathrm{D}(\text { LOAD })}=\left(\frac{1}{6}\right) \times \frac{12 \times 12}{4.8}=5 \mathrm{~W} \tag{27}
\end{equation*}
$$

The total device power dissipation during start up is:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{D}(\mathrm{STARTUP})}=(7.2+5)=12.2 \mathrm{~W} \tag{28}
\end{equation*}
$$

From thermal shutdown limit graph at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$, the thermal shutdown time for 12.2 W is close to 7.5 ms . It is safe to have 30% margin to allow for variation of system parameters such as load, component tolerance, and input voltage. So it is well within acceptable limits to use the 1 nF capacitor with start-up load of 4.8Ω.
If there is a need to decrease the power loss during start-up, it can be done with increase of $\mathrm{C}_{(\text {dVdT })}$ capacitor.
To illustrate, choose $\mathrm{C}_{(\mathrm{dVdT})}=1.5 \mathrm{nF}$ as an option and recalculate:

$$
\begin{align*}
& \mathrm{t}_{\mathrm{dvdt}}=1.5 \mathrm{~ms} \tag{29}\\
& \mathrm{I}_{(\text {INRUSH })}=\left(100 \times 10^{-6}\right) \times\left(\frac{12}{1.5 \times 10^{-3}}\right)=0.8 \mathrm{~A} \tag{30}\\
& \mathrm{P}_{\mathrm{D}(\mathrm{INRUSH})}=0.5 \times 12 \times 0.8=4.8 \mathrm{~W} \tag{31}\\
& \mathrm{P}_{\mathrm{D}(\text { LOAD })}=\left(\frac{1}{6}\right) \times\left(\frac{12 \times 12}{4.8}\right)=5 \mathrm{~W} \tag{32}\\
& \mathrm{P}_{\mathrm{D}(\mathrm{STARTUP})}=4.8+5=9.8 \mathrm{~W} \tag{33}
\end{align*}
$$

From thermal shutdown limit graph at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$, the shutdown time for 10 W power dissipation is $\sim 17 \mathrm{~ms}$, which increases the margins further for shutdown time and ensures successful operation during start up and steady state conditions.

The spreadsheet tool available on the web can be used for iterative calculations.

11.2.1.2.6 Programing the Power Good Set Point

As shown in Figure $55, R_{4}$ and R_{5} sets the required limit for PGOOD signal as needed for the downstream converters. Considering a power good threshold of 11 V for this design, the values of R_{4} and R_{5} are calculated using Equation 34.

$$
\begin{equation*}
\mathrm{V}_{(\mathrm{PGTH})}=0.99 \times\left(1+\frac{\mathrm{R}_{4}}{\mathrm{R}_{5}}\right) \tag{34}
\end{equation*}
$$

It is recommended to have high values for these resistors to limit the current drawn from the output node. Choosing a value of $\mathrm{R}_{4}=475 \mathrm{k} \Omega, \mathrm{R}_{5}=47 \mathrm{k} \Omega$ provides $\mathrm{V}_{(\mathrm{PGTH})}=11 \mathrm{~V}$.

11.2.1.2.7 Support Component Selections - $\mathbf{R}_{6}, \mathbf{R}_{7}$ and C_{IN}

Reference to application schematics, R_{6} and R_{7} are required only if PGOOD and $\overline{\text { FLT }}$ are used; these resistors serve as pull-ups for the open-drain output drivers. The current sunk by each of these pins should not exceed 10 mA (refer to the Absolute Maximum Ratings table). C_{IN} is a bypass capacitor to help control transient voltages, unit emissions, and local supply noise. Where acceptable, a value in the range of $0.001 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ is recommended for $\mathrm{C}_{\mathbf{I N}}$.
www.ti.com

11.2.1.3 Application Curves

Figure 61. Hot-Plug Start-Up: Output Ramp Without Load on output

Figure 62. Hot-Plug Start-Up: Output Ramp With Start-up load of 4.8Ω

Figure 63. Overvoltage Shutdown

Figure 65. Over Load: Step Change in Load from 12Ω to 2Ω and Back

Figure 64. Overvoltage Recovery

Figure 66. Overload Condition: Auto Retry and Recovery TPS25942A

SLVSCE9A - JUNE 2014-REVISED MARCH 2015 www.ti.com

Figure 67. Hot Short: Fast Trip and Current Regulation

Figure 69. Hot Short: Auto-Retry and Recovery from Short Circuit - TPS25942A

Figure 71. Hot Plug-in with Short on Output: Auto-Retry TPS25942A

Figure 68. Hot Short: Latched - TPS25942L

Figure 70. Hot Plug-in with Short on Output: Latched TPS25942L

Figure 72. Power Good Response During Turn-ON

11.3 System Examples

The TPS25942 and TPS25944 provide a simple solution for power multiplexing applications through seamless transition between two power supplies, each operating at 2.7 V to 18 V and delivering up to 5 A . The devices with a distinctive feature set of true-reverse blocking, auto-forward conduction and fast switch over, support applications for both Active ORing and Priority power multiplexing.

11.3.1 Active ORing (Auto-Power Multiplexer) Operation

A typical redundant power supply configuration of the system is shown in Figure 74. Schottky ORing diodes have been popular for connecting parallel power supplies, such as parallel operation of wall adapter with a battery or a hold-up storage capacitor. The disadvantage of using ORing diodes is high voltage drop and associated power loss. TPS25942 and TPS25944 with an integrated, low-ohmic N -channel FET provide a simple and efficient solution. Figure 74 shows the Active ORing implementation using the devices.

System Examples (continued)

A. C_{IN} : Optional and only for noise suppression.

Figure 74. Active ORing Implementation
A fast reverse comparator controls the internal FET and it is turned ON or OFF with hysteresis as shown in Figure 75. The internal FET is turned ON in less than 4 us (typical) when the forward voltage drop $\mathrm{V}_{\text {(IN) }}-\mathrm{V}_{\text {(OUT) }}$ exceeds 100 mV and is turned off in $1 \mu \mathrm{~s}$ (typical) as soon as $\mathrm{V}_{(\mathrm{IN})}-\mathrm{V}_{\text {(OUT) }}$ falls below -10 mV . When internal FET is turned ON, the ORed input supply will experience momentary in-rush current drawn as the FET turns on charging the bus capacitance. In addition, device can be operated in Diode Mode by independently controlling DMODE pin.

Figure 75. Active ORing Thresholds
Figure 75 shows typical switch-over waveforms of Active ORing implementation using TPS25942 or TPS25944.
www.ti.com

System Examples (continued)

Figure 76. IN1 Power Recovery: Change over from IN2 to IN1 ($\mathrm{V}_{\text {(out) }}$ is AC Coupled)

Figure 77. IN1 Brownout Condition: Change over from IN2 to IN1 ($\mathrm{V}_{\text {(OUT) }}$ is AC Coupled)

When bus voltages (IN1 and $\operatorname{IN} 2$) are matched, device in each rail will see a forward voltage drop and is ON delivering the load current. During this period, current is shared between the rails in the ratio of differential voltage drop across each device.
In addition to above, the devices provide inrush current limit and protects each rail from potential overload and short circuit faults.

11.3.1.1 N+1 Power Supply Operation

The devices can be used to combine multiple power supplies to a common bus in an $\mathrm{N}+1$ configuration. The $\mathrm{N}+1$ power supply configuration as shown in Figure 78, is used where multiple power supplies are paralleled for either higher capacity, redundancy or both. If it takes N supplies to power the load, adding an extra identical unit in parallel permits the load to continue operation in the event that any one of the N supplies fails. The devices emulate the function of the ORing diode and provides with all protections as needed to isolate the rail during hotplug, overvoltage, undervoltage, overcurrent and short-circuit conditions.

Figure 78. $\mathrm{N}+\mathbf{1}$ Configuration Implementation

System Examples (continued)

11.3.1.2 Priority Power MUX Operation

Applications having two energy sources such as PCle cards, Tablets and Portable battery powered equipment require preference of one source to another. For example, mains power (wall-adapter) has the priority over the internal back-up power or auxiliary power. These applications demand for switch over from mains power to backup power only when main input voltage falls below a user defined threshold. The devices provide a simple solution for priority power multiplexing needs.
Figure 79 shows a typical priority power multiplexing implementation using devices. When primary power IN1 is present, the device in IN1 path powers the OUT bus irrespective of whether auxiliary power IN2 is greater than or less than IN1. Once the voltage on the IN1 rail falls below the user-defined threshold, the device IN1 issues a signal to switch over to auxiliary power IN2. The transition happens seamlessly in less than $125 \mu \mathrm{~s}$, with minimal voltage droop on the bus. The voltage droop during transition is a function of load current and bus capacitance (see Equation 35).

$$
\begin{equation*}
V_{(\text {droop })}=\frac{I_{(\text {Load })} \times 125 \mu \mathrm{~s}}{C_{(\text {BUS })}} \tag{35}
\end{equation*}
$$

Where,

- $\mathrm{V}_{\text {(droop) }}$ in Volts, $\mathrm{I}_{\text {(Load) }}$ is load current in Ampere, $\mathrm{C}_{(\text {BUS })}$ is bus capacitance in $\mu \mathrm{F}$

When the main voltage supply (IN1) is not present or during brown-out conditions, the device in auxiliary supply rail (IN2) provides power to the output. When IN1 recovers, the device connected to IN1 is turned on at defined slew rate and the device in IN2 path is turned off, allowing a seamless transition from auxiliary to the main voltage supply with minimal droop and with no shoot-through current.
Priority power multiplexing can be done either between two similar rails (such as 12 V Primary to 12 V Aux, 3.3 V Primary to 3.3 V Aux) or between dissimilar rails (such as 12 V Primary to 5 V Aux or 3.3 V Aux; or vice versa)

System Examples (continued)

A. $\quad \mathrm{C}_{\mathbb{N}}$: Optional and only for noise suppression.
B. Master controls the slave using priority signal for switch over to Auxiliary power.

Figure 79. Priority Power Multiplexing Implementation
Figure 80 and Figure 81 show typical switch-over waveforms of Priority Muxing implementation using TPS25942 or TPS25944 for 11.5 V Primary and 14.5 V Auxiliary Bus.
Figure 82 and Figure 83 show typical switch-over waveforms of Priority Muxing implementation using TPS25942 or TPS25944 for 12 V Primary and 3.3V Auxiliary Bus.

System Examples (continued)

Figure 80. IN1 Power Recovery: Change over from Auxiliary IN2 to Primary Power IN1

Figure 82. IN1 Power Recovery: Change over from Auxiliary IN2 to Main Power IN1

Figure 81. IN1 Brownout Condition: Change over from Main IN1 to Auxiliary Power IN2

Figure 83. IN1 Brownout Condition: Change over from Main IN1 to Auxiliary Power IN2

11.3.1.3 Priority MUXing with Almost Equal Rails ($V_{I N 1} \sim V_{I N 2}$)

Most of the redundant power supply systems used in servers, storage and telecom, multiplex tightly regulated power rails to provide uninterrupted power to the load. In these systems, the primary and auxiliary rails are close to each other, typically within one diode drop when both rails are active.

For priority multiplexing in these systems, the TPS25942 or TPS25944 device in auxiliary rail path can be operated in Diode Mode for a fast switch-over (1us typical). The fast switch-over reduces the required hold-up capacitor on the output rail for a given droop specification.
The circuit implementation of this configuration is shown in Figure 84. During power-fail (brown-out) conditions of primary rail IN1, it changes IN2 from 'Diode-Mode' to normal operation using PGOOD. Similarly during power recovery of primary rail IN1, the auxiliary rail IN2 is driven into 'Diode-Mode'.

System Examples (continued)

Figure 84. Priority Power Multiplexing Configuration for Almost Equal Rails
The fast switch-over performance is shown in Figure 85.

Figure 85. Brownout Condition: Diode Mode for Multiplexing

System Examples (continued)

11.3.1.4 Reverse Polarity Protection

In applications demanding reverse polarity or reverse battery protection, TPS25942 and TPS25944 can be used as an eFuse or ideal diode. A typical reverse polarity protection circuitry is shown in Figure 86. The signal diode in the GND terminal path ensures that device is not functional during reverse polarity conditions and internal FET blocks the reverse path.

Figure 86. Reverse Polarity Protection Implementation

12 Power Supply Recommendations

The devices are designed for supply voltage range of $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq 18 \mathrm{~V}$. If the input supply is located more than a few inches from the device an input ceramic bypass capacitor higher than $0.1 \mu \mathrm{~F}$ is recommended. Power supply should be rated higher than the current limit set to avoid voltage droops during over current and shortcircuit conditions.

12.1 Transient Protection

In case of short circuit and over load current limit, when the device interrupts current flow, input inductance generates a positive voltage spike on the input and output inductance generates a negative voltage spike on the output. The peak amplitude of voltage spikes (transients) is dependent on value of inductance in series to the input or output of the device. Such transients can exceed the Absolute Maximum Ratings of the device if steps are not taken to address the issue.
Typical methods for addressing transients include

- Minimizing lead length and inductance into and out of the device
- Using large PCB GND plane
- Schottky diode across the output to absorb negative spikes
- A low value ceramic capacitor $\left(\mathrm{C}_{(\mathbb{N})}=0.001 \mu \mathrm{~F}\right.$ to $\left.0.1 \mu \mathrm{~F}\right)$ to absorb the energy and dampen the transients. The approximate value of input capacitance can be estimated with Equation 36 .

$$
\begin{equation*}
V_{\text {SPIKE(Absolute })}=V_{(I N)}+I_{(\text {LOAD })} \times \sqrt{\frac{L_{(\mathbb{I})}}{C_{(I N)}}} \tag{36}
\end{equation*}
$$

Where:

- $\mathrm{V}_{(\mathrm{IN})}$ is the nominal supply voltage
- $I_{\text {(LOAD) }}$ is the load current,
- $\mathrm{L}_{(\mathbb{N})}$ equals the effective inductance seen looking into the source
- $\mathrm{C}_{(\mathbb{N})}$ is the capacitance present at the input

Transient Protection (continued)

Some applications may require the addition of a Transient Voltage Suppressor (TVS) to prevent transients from exceeding the Absolute Maximum Ratings of the device.
The circuit implementation with optional protection components (a ceramic capacitor, TVS and schottky diode) is shown in Figure 87.

A. Optional components needed for suppression of transients

Figure 87. Circuit Implementation With Optional Protection Components

12.2 Output Short-Circuit Measurements

It is difficult to obtain repeatable and similar short-circuit testing results. Source bypassing, input leads, circuit layout and component selection, output shorting method, relative location of the short, and instrumentation all contribute to variation in results. The actual short itself exhibits a certain degree of randomness as it microscopically bounces and arcs. Care in configuration and methods must be used to obtain realistic results. Do not expect to see waveforms exactly like those in the data sheet; every setup differs.

13 Layout

13.1 Layout Guidelines

- For all applications, a $0.1-\mathrm{uF}$ or greater ceramic decoupling capacitor is recommended between IN terminal and GND. For hot-plug applications, where input power path inductance is negligible, this capacitor can be eliminated/minimized.
- The optimum placement of decoupling capacitor is closest to the IN and GND terminals of the device. Care must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN terminal, and the GND terminal of the IC. See Figure 88 for a PCB layout example.
- High current carrying power path connections should be as short as possible and should be sized to carry at least twice the full-load current.
- Low current signal ground (SGND), which is the reference ground for the device should be a copper plane or island.
- Locate all TPS25942, TPS25944 support components: $\mathrm{R}_{(I L I M)}, \mathrm{C}_{\mathrm{dVat}}, \mathrm{R}_{(I M O N)}$, and resistors for UVLO and OVP, close to their connection pin. Connect the other end of the component to the SGND with shortest trace length.
- The trace routing for the $\mathrm{R}_{\mathrm{ILIM}}$ and $\mathrm{R}_{(I M O N)}$ components to the device should be as short as possible to reduce parasitic effects on the current limit and current monitoring accuracy. These traces should not have any coupling to switching signals on the board.
- The SGND plane must be connected to high current ground (main power ground) at a single point, that is at the negative terminal of input capacitor
- Protection devices such as TVS, snubbers, capacitors, or diodes should be placed physically close to the device they are intended to protect, and routed with short traces to reduce inductance. For example, a protection Schottky diode is recommended to address negative transients due to switching of inductive loads, and it should be physically close to the OUT pins.
- Thermal Considerations: When properly mounted the PowerPADTM package provides significantly greater cooling ability than an ordinary package. To operate at rated power, the PowerPAD must be soldered directly to the board GND plane directly under the device. The PowerPAD is at GND potential and can be connected using multiple vias to inner layer GND. Other planes, such as the bottom side of the circuit board can be used to increase heat sinking in higher current applications. Refer to Technical Briefs: PowerPad ${ }^{\text {TM }}$ Thermally Enhanced Package (TI literature Number SLMA002) and PowerPADTM Made Easy (TI Literature Number SLMA004) or more information on using this PowerPAD ${ }^{\text {TM }}$ package
- The thermal via land pattern specific to TPS25942, TPS25944 can be downloaded from device webpage
- Obtaining acceptable performance with alternate layout schemes is possible; however this layout has been shown to produce good results and is intended as a guideline.

13.2 Layout Example

	Top layer
Top layer signal ground plane	

A. Optional: Needed only to suppress the transients caused by inductive load switching.

Figure 88. Board Layout

14 Device and Documentation Support

14.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 3. Related Links

PARTS	PRODUCT FOLDER	SAMPLE \& BUY	TECHNICAL DOCUMENTS	 SOFTWARE	 COMMUNITY
TPS25942A	Click here				
TPS25942L	Click here				
TPS25944A	Click here				
TPS25944L	Click here				

14.2 Trademarks

All trademarks are the property of their respective owners.

14.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

14.4 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

15 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

NON SOLDER MASK
DEFINED
(PREFERRED)

SOLDER MASK
DEFINED

SOLDER MASK DETAILS

NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note in literature No. SLUA271 (www.ti.com/lit/slua271) .

SOLDER PASTE EXAMPLE
BASED ON 0.1 mm THICK STENCIL

EXPOSED PAD
81% PRINTED SOLDER COVERAGE BY AREA
SCALE : 20X

NOTES: (continued)
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TPS25942ARVCR	ACTIVE	WQFN	RVC	20	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	25942A	Samples
TPS25942ARVCT	ACTIVE	WQFN	RVC	20	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	25942A	Samples
TPS25942LRVCR	ACTIVE	WQFN	RVC	20	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	25942L	Samples
TPS25942LRVCT	ACTIVE	WQFN	RVC	20	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	25942L	Samples
TPS25944ARVCR	ACtive	WQFN	RVC	20	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	25944A	Samples
TPS25944ARVCT	ACtive	WQFN	RVC	20	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	25944A	Samples
TPS25944LRVCR	ACtive	WQFN	RVC	20	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	25944L	Samples
TPS25944LRVCT	ACtive	WQFN	RVC	20	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	25944L	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): Tl defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

[^0]In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	$\begin{array}{\|c\|} \hline \text { Reel } \\ \text { Diameter } \\ (\mathrm{mm}) \end{array}$	$\begin{array}{\|c\|} \hline \text { Reel } \\ \text { Width } \\ \text { W1 }(\mathrm{mm}) \end{array}$	$\begin{gathered} \mathrm{AO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{K} 0 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{P} 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
TPS25942ARVCR	WQFN	RVC	20	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q1
TPS25942ARVCT	WQFN	RVC	20	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q1
TPS25942LRVCR	WQFN	RVC	20	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q1
TPS25942LRVCT	WQFN	RVC	20	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q1
TPS25944ARVCR	WQFN	RVC	20	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q1
TPS25944ARVCT	WQFN	RVC	20	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q1
TPS25944LRVCR	WQFN	RVC	20	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q1
TPS25944LRVCT	WQFN	RVC	20	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS25942ARVCR	WQFN	RVC	20	3000	367.0	367.0	35.0
TPS25942ARVCT	WQFN	RVC	20	250	210.0	185.0	35.0
TPS25942LRVCR	WQFN	RVC	20	3000	367.0	367.0	35.0
TPS25942LRVCT	WQFN	RVC	20	250	210.0	185.0	35.0
TPS25944ARVCR	WQFN	RVC	20	3000	367.0	367.0	35.0
TPS25944ARVCT	WQFN	RVC	20	250	210.0	185.0	35.0
TPS25944LRVCR	WQFN	RVC	20	3000	367.0	367.0	35.0
TPS25944LRVCT	WQFN	RVC	20	250	210.0	185.0	35.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
OMAP Applications Processors
Wireless Connectivity

Applications

Automotive and Transportation
Communications and Telecom
Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial
Medical
Security
Space, Avionics and Defense
Video and Imaging

TI E2E Community
www.ti.com/automotive
www.ti.com/communications
www.ti.com/computers
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
www.ti.com/space-avionics-defense
www.ti.com/video
e2e.ti.com
www.ti.com/wirelessconnectivity

[^0]: ${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
 ${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
 ${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width

 Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

