

14.2-GBPS Dual Channel, Dual Mode Linear Equalizer

Check for Samples: SN65LVCP1412

FEATURES

- Dual Channel, Uni-Directional, Multi-Rate, Dual-Mode Linear Equalizer with Operation up to 14.2Gbps Serial Data Rate for Backplane and Cable Interconnects
- Linear Equalization Increases Link Margin for Systems Implementing Decision Feedback Equalizers (DFE)
- 18dB Analog Equalization at 7.1GHz with 1dB Step Control for Backplane Mode or Cable Mode
- Output Linear Dynamic Range: 1200mV
- Bandwidth: >20GHz Typical
- Better than 15dB Return Loss at 7.1GHz
- Supports Out-of-Band (OOB) Signaling
- Low Power: Typically 75mW per Channel at 2.5V VCC
- 24-Terminal QFN (Quad Flatpack, No-Lead) 4mm x 5mm x 0.75mm; 0.5mm Terminal Pitch

- Excellent Impedance Matching to 100Ω Differential PCB Transmission Lines
- GPIO or I²C Control
- 2.5V and 3.3V±5% Single Power Supply
- 2kV ESD (HBM)
- Flow-Through Pin-Out Provides Ease of Routing
- Small Package Size Saves Board Space

APPLICATIONS

- High Speed Links in Telecommunication and Data communication
- Backplane and Cable Interconnects for 10GbE, 16GFC,10G SONET, SAS, SATA, CPRI, OBSAI, Infiniband, 10GBase-KR, and XFI/SFI

DESCRIPTION

The SN65LVCP1412 is an asynchronous, protocol-agnostic, low latency, two-channel linear equalizer optimized for use up to 14.2Gbps and compensates for losses in backplane or active cable applications. The architecture of SN65LVCP1412 is designed to work with an ASIC or a FPGA with digital equalization employing Decision Feedback Equalizers (DFE). SN65LVCP1412 linear equalizer preserves the shape of the transmitted signal ensuring optimum DFE performance. SN65LVCP1412 provides a low power solution while at the same time extending the effectiveness of DFE.

SN65LVCP1412 is configurable via I²C or GPIO interface. Using the I²C interface of the SN65LVCP1412 enables the user to control independently the Equalization, Path Gain, and Output Dynamic Range for each individual channel. In GPIO mode, Equalization, Path Gain, and Output Dynamic Range can be set for all channels using the GPIO Input pins.

SN65LVCP1412 outputs can be disabled independently via I²C.

The SN65LVCP1412 operates from a single 2.5V or 3.3V power supply.

The package for the SN65LVCP1412 is a 24 pin 4mm x 5mm x 0.75mm QFN (Quad Flatpack, No-lead) lead-free package with 0.5mm pitch, and characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLLSED2 -SEPTEMBER 2012

TEXAS INSTRUMENTS

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

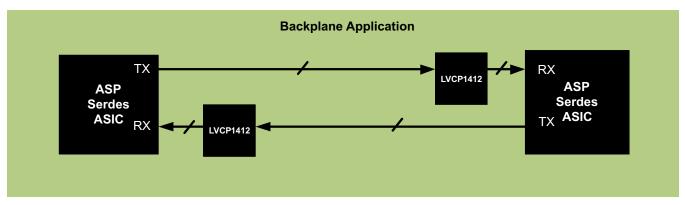


Figure 1. Typical Backplane Application – Trace Mode

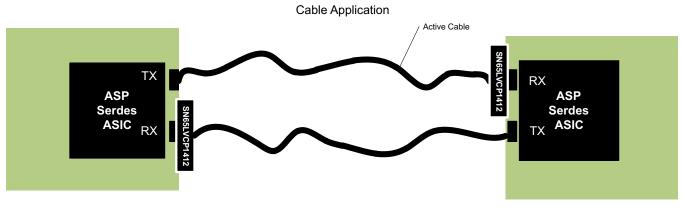


Figure 2. Typical Cable Application – Cable Mode

BLOCK DIAGRAM (GPIO or I²C Mode)

A simplified block diagram of the SN65LVCP1412 is shown in Figure 3 for GPIO or I²C input control mode. This compact, low power, 14.2Gbps daul-channel dual-mode linear analog equalizer consists of two high-speed data paths and an input GPIO pin logic-control block and a two-wire interface with a control-logic block.

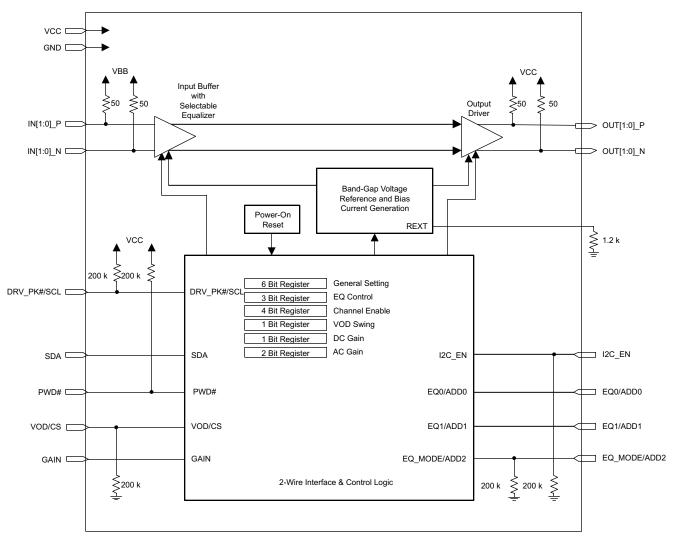


Figure 3. Simplified Block Diagram of the SN65LVCP1412

SLLSED2 -SEPTEMBER 2012

www.ti.com

PACKAGE

The package pin locations and assignments are shown in Figure 4. The SN65LVCP1412 is packaged in a 4mm x 5mm x 0.75mm, 24 pin, 0.5mm pitch lead-free QFN.

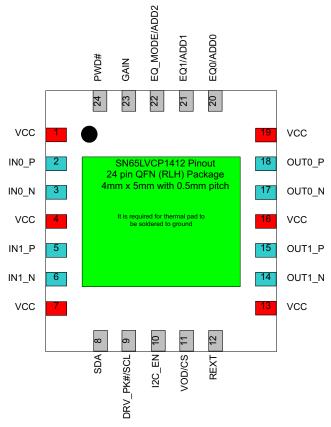


Figure 4. Package Drawing (Top View)

PIN DESCRIPTIONS

PINS NAME NO.		DIRECTION TYPE	DESCRIPTION			
		SUPPLY				
DIFFERENTIAL	HIGH-SPE	ED I/O				
IN0_P IN0_N	2 3	Input, (with 50 Ω termination to input common mode)	Differential input, lane 0			
IN1_P IN1_N	5 6	Input, (with 50 Ω termination to input common mode)	Differential input, lane 1	Differential input, lane 1		
OUT0_P OUT0_N	18 17	Output	Differential output, lane 0			
OUT1_P OUT1_N	15 14	Output	Differential output, lane 1			
CONTROL SIGN	ALS	-	•			
SDA	8	Input Output, Open drain	GPIO mode No action needed	I ² C mode I ² C data. Connect a 10kΩ pull-up resistor externally		
DRV_PK#/SCL	9	Input. (with 200kΩ pull-up)	GPIO mode HIGH: disable Driver peaking LOW: enables Driver 6dB AC peaking	I²C mode I ² C clock. Connect a 10kΩ pull-up resistor externally		
I2C_EN	10	Input, (wtih 200kΩ pull-down) 2.5V/3.3V CMOS	Configures the device operation for I ² C or GPIO mode: HIGH: enables I ² C mode LOW: enables GPIO mode			

SN65LVCP1412 SLLSED2 -SEPTEMBER 2012

PIN DESCRIPTIONS (continued)

PINS		DIRECTION TYPE	DESCRIPTION					
NAME	NO.	SUPPLY	DESCRIPTION					
VOD/CS	11	Input, (with 200kΩ pull-down) 2.5V/3.3V CMOS	GPIO mode HIGH: set high VOD range LOW: set low VOD range		I ² C mode HIGH: acts as Chip Select LOW: disables I ² C interface			
REXT	12	Input, Analog	External Bias F 1,200 Ω to GNI			•		
EQ0/ADD0	20	Input, 2.5V/3.3V CMOS - 3-state	GPIO mode Working with E EQ gain.	Q1 to dete	ermine input	I ² C slave a	ng with pins ADD1 and ADD2 comprise the three bits of address. D1:ADD0:XXX	
EQ1/ADD1	21	Input, 2.5V/3.3V CMOS - 3-state			20 to determine input f approximately 2dB I ² C mode ADD1 along with pins ADD0 and ADD2 compris			
			EQ1	EQ0	EQ GAIN	ADD2:ADI	D1:ADD0:XXX	
			GND	GND	000			
			GND	HiZ	000			
			GND	VCC	001			
			HiZ	GND	010			
			HiZ	HiZ	011			
			HiZ	VCC	100			
			VCC	GND	101			
			VCC	HiZ	110			
			VCC	VCC	111			
			EQ1 and EQ0	work with	AC_GAIN ar	nd DC_GAIN	I to determine final EQ gain as this:	
			EQ1/ EQ0	GAIN	DC GAIN (dB)	EQ GAIN (dB)		
			000 ~ 111	LOW	-6	1~9		
			000 ~ 111	HiZ	-6	7 ~ 17		
			000 ~ 111	HIGH	0	1 ~ 9		
EQ_MODE/ ADD2	22	Input, (with 200kΩ pull-down), 2.5V/3.3V CMOS	GPIO mode HIGH: Trace m LOW: Cable m			I ² C slave a	ng with pins ADD1 and ADD0 comprise the three bits of address. D1:ADD0:XXX	
GAIN	23	Input, 2.5V/3.3V CMOS - 3-state	GPIO mode Work with EQ1 Gain. See table		et total EQ	I ² C mode		
PWD#	24	Input, (with 200kΩ pull-up), 2.5V/3.3V CMOS	HIGH: Normal LOW: Powers of	•	device, input	s off and out	puts disabled, resets I ² C	
POWER SUPP	PLY							
VCC	1, 4, 7, 13, 16, 19	Power	Power supply 2	2.5V±5%, 3	3.3V±5%			
GND Center Pad		Ground	the GND plane	. At least 9	9 PCB vias a	re recomme	bottom of the package. This pad must be connected to inded to minimize inductance and provide a solid age) for the via placement.	

SLLSED2 -SEPTEMBER 2012

EXAS

www.ti.com

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		VALUES	UNIT
V _{CC}	Supply voltage range ⁽²⁾	-0.3 to 4	V
V _{IN,DIFF}	Differential Voltage between INx_P and INx_N	±2.5	V
V _{IN+, IN}	Voltage at Inx_P and fINx_N	-0.5 V to VCC+0.5	V
V _{IO}	Voltage on Control IO pins	-0.5 V to VCC+0.5	V
I _{IN+} I _{IN-}	Continuous Current at high speed differential data inputs (differential)	-25 to 25	mA
I _{OUT+} I _{OUT-}	Continuous Current at high speed differential data outputs	-25 to 25	mA
500	Human Body Model ⁽³⁾ (All Pins)	2.0	kV
ESD	Charged-Device Model ⁽⁴⁾ (All Pins)	500	V
Moisture Sen	sitivity level	2	
Shelf Life Conditions In Moisture Barrier Bag		24 Months at <40°C and <90% Humidity	
Reflow Temp	erature package soldering, 4 sec	260	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.

(4) Tested in accordance with JEDEC Standard 22, Test Method C101.

THERMAL INFORMATION

	THERMAL METRIC ⁽¹⁾	SN65LVCP1412	
		RLH (24 PINS)	UNITS
θ_{JA}	Junction-to-ambient thermal resistance ⁽²⁾	34.7	
θ _{JCtop}	Junction-to-case (top) thermal resistance ⁽³⁾	33.8	
θ_{JB}	Junction-to-board thermal resistance ⁽⁴⁾	12.5	0 0 A A A
Ψ_{JT}	Junction-to-top characterization parameter ⁽⁵⁾	0.50	°C/W
Ψ _{JB}	Junction-to-board characterization parameter ⁽⁶⁾	12.5	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance ⁽⁷⁾	2.00	

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953.

(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

(5) The junction-to-top characterization parameter, ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(6) The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

⁽²⁾ The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
dR	Operating Data Rate			14.2	Gbps
V _{CC}	Supply voltage	2.375	2.5	2.625	V
V _{CC}	Supply voltage	3.135	3.3	3.465	V
тс	Junction temperature	-10		125	°C
ТВ	Maximum board temperature			85	°C
CMOS DC	PECIFICATIONS				
VIH	High-level input voltage	0.8×V _{CC}			V
V _{MID}	Mid-level input voltage	V _{CC} ×0.4		V _{CC} ×0.6	V
V _{IL}	Low-level input voltage	-0.5		$0.2 \times V_{CC}$	V
PSNR BG	Bandgap Circuit PSNR	20			dB

ELECTRICAL CHARACTERISTICS (VCC 2.5V ±5%)

over operating free-air temperature range. All parameters are referenced to package pins. (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN TYP ⁽¹⁾	MAX	UNIT
POWER	CONSUMPTION			·	
PD_L	Device power dissipation	VOD = LOW at 2.5V VCC with all 4 channels active.	150	250	mW
PD_{H}	Device power dissipation	VOD = HIGH, at 2.5V VCC with all 4 channels active.	225	400	mW
PD _{OFF}	Device power with all 4 channels switched off	Refer to I ² C section for device configuration. 2.5V VCC	5		mW

(1) All typical values are at 25°C and with 2.5V supply unless otherwise noted.

ELECTRICAL CHARACTERISTICS (VCC 3.3V ±5%)

over operating free-air temperature range. All parameters are referenced to package pins. (unless otherwise noted)

PARAMETER		TEST CONDITIONS		TYP ⁽¹⁾	MAX	UNIT
POWER	CONSUMPTION					
PD_L	Device power dissipation	VOD = LOW at 3.3V VCC with all 4 channels active.		225	375	mW
PD_{H}	Device power dissipation	VOD = HIGH, at 3.3V VCC with all 4 channels active.		330	525	mW
PD _{OFF}	Device power with all 4 channels switched off	Refer to I^2C section for device configuration. 3.3V VCC		5		mW

(1) All typical values are at 25°C and with 2.5V supply unless otherwise noted.

ELECTRICAL CHARACTERISTICS (VCC 2.5V ±5%, 3.3V ±5%)

over operating free-air temperature range. All parameters are referenced to package pins. (unless otherwise noted)

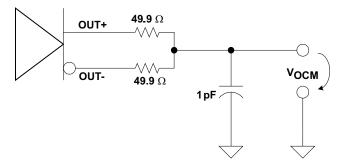
PARAMETER		TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT	
CMOS DC SPECIFICATIONS							
I _{IH}	High level input current	$VIN = 0.9 \times V_{CC}$	-40	17	40	μA	
IIL	Low level input current	$VIN = 0.1 \times V_{CC}$	-40	17	40	μA	
CML INP	CML INPUTS (IN[3:0]_P, IN[3:0]_N)						
r _{IN}	Differential input resistance	INx_P to INx_N		100		Ω	
V _{IN}	Input linear dynamic range	Gain = 0.5		1200		$\mathrm{mV}_{\mathrm{pp}}$	
VICM	Input common mode voltage	Internally biased		V _{CC} -0.8		V	
SCD11	Input differential to common mode conversion	100MHz to 7.1GHz		-20		dB	
SDD11	Differential input return loss	100MHz to 7.1GHz		-15		dB	

(1) All typical values are at 25°C and with 2.5V and 3.3V supply unless otherwise noted.

SLLSED2 -SEPTEMBER 2012

ELECTRICAL CHARACTERISTICS (VCC 2.5V ±5%, 3.3V ±5%) (continued)

over operating free-air temperature range. All parameters are referenced to package pins. (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN TYP	⁽¹⁾ MAX	UNIT
	PUTS (OUT[3:0]_P, OUT[3:0]_N)				
V	Output linear dynamia range	$R_L = 100 \Omega$, $V_{OD} = HIGH$	12	00	${\sf mV}_{\sf pp}$
V _{OD}	Output linear dynamic range	$R_L = 100 \ \Omega, \ V_{OD} = LOW$	6	00	$\mathrm{mV}_{\mathrm{pp}}$
V _{OS}	Output offset voltage	$R_L = 100 \Omega$, 0 V applied at inputs		10	mV _{pp}
V _{OCM}	Output common mode voltage	See Figure 5	V _{CC} -0).4	V
V _{CM,RIP}	Common mode output ripple	K28.5 pattern at 14.2Gbps on all 4 channels, no interconnect loss, VOD = HIGH		10 20	mV _{RMS}
V _{OD,RIP}	Differential path output ripple	K28.5 pattern at 14.2Gbps on all channels, no interconnect loss, VIN = 1200mVpp.		20	$\mathrm{mV}_{\mathrm{pp}}$
V _{OC(SS)}	Change in steady-state common- mode output voltage between logic states		±	10	mV
t _R	Rise time ⁽²⁾	Input signal with 30ps rise time. 20% to 80%. See Figure 7		31	ps
t _F	Fall time ⁽²⁾	Input signal with 30ps fall time. 20% to 80%. See Figure 7		32	ps
SDD22	Differential output return loss	100MHz to 7.1GHz	_	15	dB
SCC22	Common-mode output return loss	100MHz to 7.1GHz		-8	dB
t _{PLH}	Low-to-high propagation delay			65	ps
t _{PHL}	High-to-low propagation delay	See Figure 6		65	ps
t _{SK(O)}	Inter-Pair (lane to lane) output skew ⁽³⁾	All outputs terminated with 100 Ω , See Figure 8		3	ps
t _{SK(PP)}	Part-to-part skew ⁽⁴⁾	All outputs terminated with 100 Ω		50	ps
r _{OT}	Single ended output resistance	Single ended on-chip termination to VCC. Outputs will be AC coupled.		50	Ω
r _{OM}	Output termination mismatch at 1MHz	$\Delta rom = 2 \times \frac{rp - rn}{rp + rn} \times 100$		5	%
Ch _{iso}	Channel-to-channel isolation	Frequency at 7.1GHz	35	45	dB
	(F)	10MHz to 7.1GHz. No other noise source present. VOD = LOW	4	00	μVRMS
OUT _{NOISE}	Output referred noise ⁽⁵⁾	10MHz to 7.1GHz. No other noise source present. VOD = HIGH	5	00	µVRMS
EQUALIZA	TION				
EQ _{Gain}	At 7.1GHz input signal	Equalization Gain, EQ = MAX	15	18	dB
Vpre	Output pre-cursor pre-emphasis	Input signal with 3.75 pre-cursor and measure it on the output signal, Refer Figure 9. Vpre = 20log(V3/V2)	3.	75	dB
Vpst	Output post-cursor pre-emphasis	Input signal with 12dB post-cursor and measure it on the output signal, Refer Figure 9. Vpst = 20log(V1/V2)		12	dB
DJ1	Residual deterministic jitter at 10.3125 Gbps	Transmit Side application Tx launch Amplitude = 0.6Vpp, EQ=0, ACGain and DCgain = Low and VOD = High, Trace Mode Test Channel -> 0". See Figure 11	0.0	16	Ulp-p
DJ2	Residual deterministic jitter at 10.3125 Gbps	Receive Side Application Tx launch Amplitude = 0.6Vpp, EQ=7, ACGain and VOD = High and DCGain = High, Trace Mode Test Channel -> 12" (9dB loss at 5GHz) See Figure 10	0.	11	Ulp-p
DJ3	Residual Deterministic Jitter at 14.2 Gbps	Transmit Side Application Tx launch Amplitude = 0.6Vpp, EQ=0, ACGain and DCgain = Low and VOD = High, Trace Mode Test Channel -> 0". See Figure 11	0.0	41	Ulp-p
DJ4	Residual Deterministic Jitter at 14.2 Gbps	Receive Side Application Tx launch Amplitude = 0.6Vpp, EQ=7, ACGain and VOD = High and DCGain = High, Trace Mode Test Channel -> 8" (9dB loss at 7GHz) See Figure 10	0.	13	Ulp-p


(2) Rise and Fall measurements include board and channel effects of the test environment, refer to Figure 10 and Figure 11
(3) t_{SK(O)} is the magnitude of the time difference between the channels.
(4) t_{SK(PP)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

All noise sources added. (5)

PARAMETER MEASUREMENT INFORMATION

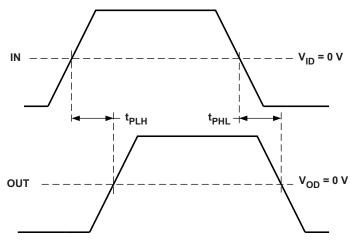


Figure 6. Propagation Delay Input to Output

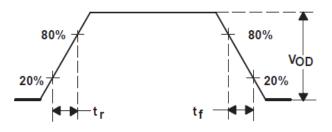
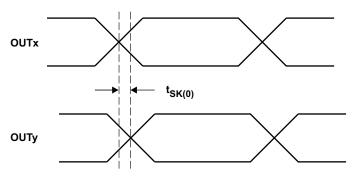
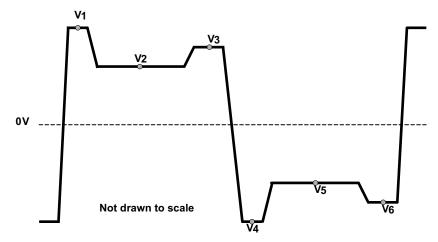




Figure 7. Output Rise and Fall Time

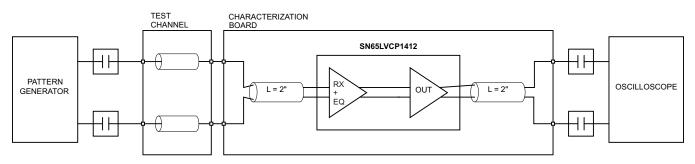


Figure 10. Receive Side Performance Test Circuit

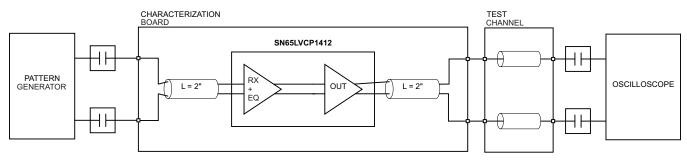


Figure 11. Transmit Side Performance Test Circuit

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

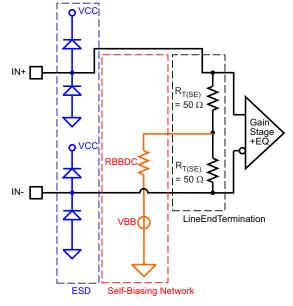


Figure 12. Equivalent Input Circuit Design

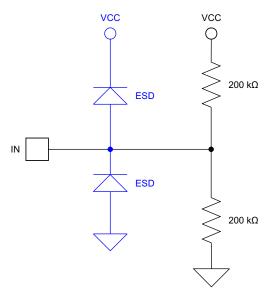
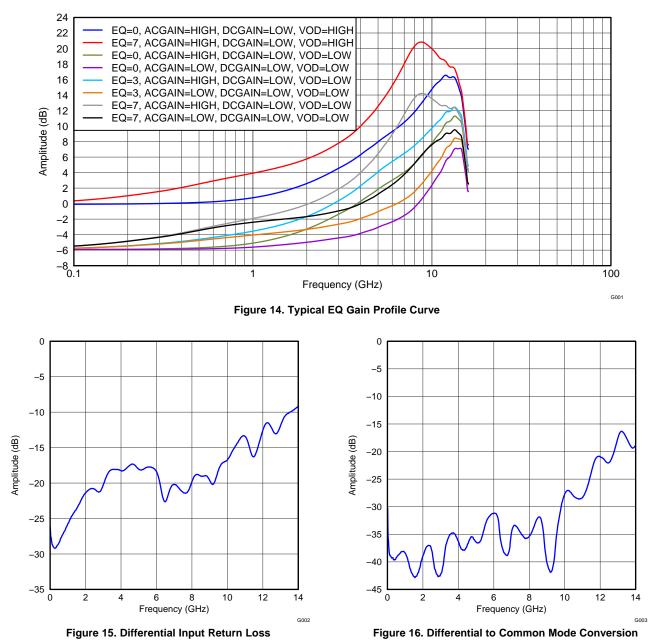


Figure 13. 3-Level Input Biasing Network

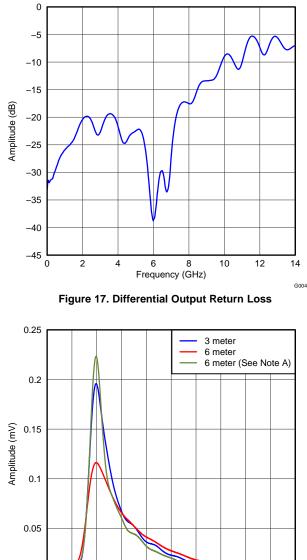

www.ti.com

ISTRUMENTS

EXAS

TYPICAL CHARACTERISTICS

Typical operating condition is at $V_{CC} = 2.5V$ and $T_A = 25^{\circ}C$, no interconnect line at the output, and with default device settings (unless otherwise noted).



SLLSED2 -SEPTEMBER 2012


TYPICAL CHARACTERISTICS (continued)

Typical operating condition is at $V_{CC} = 2.5V$ and $T_A = 25^{\circ}C$, no interconnect line at the output, and with default device settings (unless otherwise noted).

0 0 200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k 2k Time (ps) A. With SN65LVCP1412 -> EQ = 4, VOD = High, ACGain = HiZ,

DCGain = Low

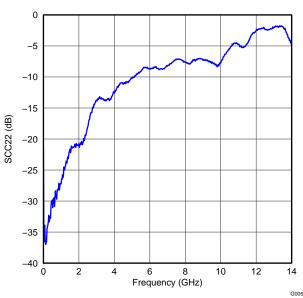
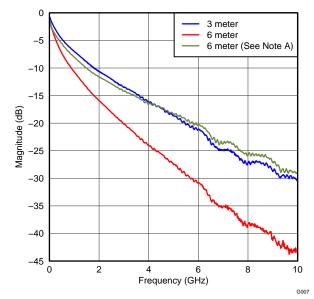
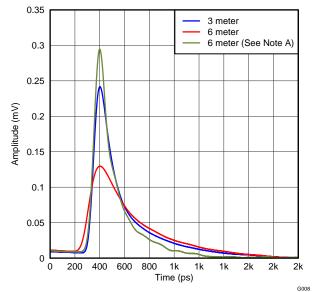



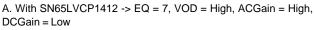
Figure 18. Common Mode Output Return Loss

A. With SN65LVCP1412 -> EQ = 4, VOD = High, ACGain = HiZ, DCGain = Low

Figure 20. Cable Mode – Frequency Domain

SLLSED2 -SEPTEMBER 2012


www.ti.com


STRUMENTS

XAS

TYPICAL CHARACTERISTICS (continued)

Typical operating condition is at V_{CC} = 2.5V and T_A = 25°C, no interconnect line at the output, and with default device settings (unless otherwise noted).

Figure 21. Trace Mode – Symbol Response

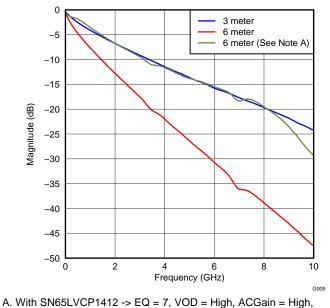


Figure 22. Trace Mode - Frequency Domain

Table 1. Control Settings Descriptions

DCGain = Low

MODE	DCGAIN	ACGAIN<1:0>	EQ<2:0>	DC GAIN (dB)	EQ GAIN (dB)	APPLICATION
0	0	00	000 to 111	-6	1 to 9	Short Input Trace; Large Input Swing
0	0	11	000 to 111	-6	7 to 17	Long Input Trace; Large Input Swing
0	1	01	000 to 111	0	1 to 9	Short Input Trace; Small Input Swing
0	1	11	000 to 111	0	2 to 10	Short Input Trace; Small Input Swing
1	0	00	000 to 111	-6	1 to 9	Short Input Cable; Large Input Swing
1	0	11	000 to 111	-6	7 to 17	Long Input Cable; Large Input Swing
1	1	01	000 to 111	0	1 to 9	Short Input Cable; Small Input Swing
1	1	11	000 to 111	0	2 to 10	Short Input Cable; Small Input Swing

Table 2. Control Settings Descriptions

GAIN	DC GAIN	ACGAIN<1:0>
Low	0	00
HighZ	0	11
High	1	01

TWO-WIRE SERIAL INTERFACE AND CONTROL LOGIC

The SN65LVCP1412 uses a 2-wire serial interface for digital control. The two circuit inputs, SDA and SCL, are driven, respectively, by the serial data and serial clock from a microcontroller, for example. The SDA and SCK pins require external $10k\Omega$ pull-ups to VCC.

The 2-wire interface allows write access to the internal memory map to modify control registers and read access to read out control and status signals. The SN65LVCP1412 is a slave device only which means that it cannot initiate a transmission itself; it always relies on the availability of the SCK signal for the duration of the transmission. The master device provides the clock signal as well as the START and STOP commands. The protocol for a data transmission is as follows:

- 1. START command
- 2. 7 bit slave address (0000ADD[2:0]) followed by an eighth bit which is the data direction bit (R/W). A zero indicates a WRITE and a 1 indicates a READ. The ADD[2:0] address bits change with the status of the ADD2, ADD1, and ADD0 device pins, respectively. If the pins are left floating or pulled down, the 7 bit slave address is 0000000.
- 3. 8 bit register address
- 4. 8 bit register data word
- 5. STOP command

Regarding timing, the SN65LVCP1412 is I²C compatible. The typical timing is shown in Figure 9 and a complete data transfer is shown in Figure 10. Parameters for Figure 9 are defined in Table 3.

Bus Idle: Both SDA and SCL lines remain HIGH

Start Data Transfer: A change in the state of the SDA line, from HIGH to LOW, while the SCL line is HIGH, defines a START condition (S). Each data transfer is initiated with a START condition.

Stop Data Transfer: A change in the state of the SDA line from LOW to HIGH while the SCL line is HIGH defines a STOP condition (P). Each data transfer is terminated with a STOP condition; however, if the master still wishes to communicate on the bus, it can generate a repeated START condition and address another slave without first generating a STOP condition.

Data Transfer: The number of data bytes transferred between a START and a STOP condition is not limited and is determined by the master device. The receiver acknowledges the transfer of data.

Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge bit. The transmitter releases the SDA line and a device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge the slave address, the data line must be taken into account. When a slave-receiver doesn't acknowledge the slave address, the data line must be left HIGH by the slave. The master can then generate a STOP condition to abort the transfer. If the slave-receiver does acknowledge the slave address but some time later in the transfer cannot receive any more data bytes, the master must abort the transfer. This is indicated by the slave generating the not acknowledge on the first byte to follow. The slave leaves the data line HIGH and the master generates the STOP condition.

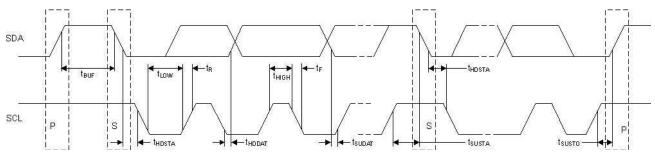


Figure 23. Two-wire Serial Interface Timing Diagram

SLLSED2 -SEPTEMBER 2012

www.ti.com

Texas Instruments

SYMBOL	PARAMETER	MIN	MAX	UNIT
f _{SCL}	SCL clock frequency		400	kHz
t _{BUF}	Bus free time between START and STOP conditions	1.3		μs
t _{HDSTA}	Hold time after repeated START condition. After this period, the first clock pulse is generated	0.6		μs
t _{LOW}	Low period of the SCL clock	1.3		μs
t _{HIGH}	High period of the SCL clock	0.6		μs
t _{SUSTA}	Setup time for a repeated START condition	0.6		μs
t _{HDDAT}	Data HOLD time	0		μs
t _{SUDAT}	Data setup time	100		ns
t _R	Rise time of both SDA and SCL signals		300	ns
t _F	Fall time of both SDA and SCL signals		300	ns
t _{SUSTO}	Setup time for STOP condition	0.6		μs

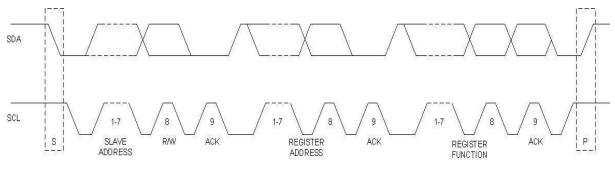


Figure 24. Two-wire Serial Interface Data Transfer

REGISTER MAPPING

The register mapping for read/write register addresses 0 (0x00) through 22 (0x18) are shown in Table 4. Table 5 describes the circuit functionality based on the register settings.

Table 4. SN65LVCP1412 Register Mapping Information

				• • • •	-		
Register 0x00	(General Device S	ettings) R/W					
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
RSVD	PWRDOWN	SYNC_01	RSVD	SYNC_ALL	EQ_MODE		RSVD
Register 0x01	(Channel Enable)	R/W					
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
					LN_EN_CH1	LN_EN_CH0	
Register 0x05	(Channel 0 Contro	ol Settings) R/W					
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
RSVD	EQ2	EQ1	EQ0	VOD_CTRL	DC_GAIN	AC_GAIN1	AC_GAIN0
Register 0x06	(Channel 0 Enable	e Settings) R/W					
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
					DRV_PEAK	EQ_EN	DRV_EN
Register 0x08	(Channel 1 Contro	ol Settings) R/W					
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
RSVD	EQ2	EQ1	EQ0	VOD_CTRL	DC_GAIN	AC_GAIN1	AC_GAIN0
Register 0x09	(Channel 1 Enable	e Settings) R/W					
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
					DRV_PEAK	EQ_EN	DRV_EN
Register 0x0F	Read Only						
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD
Register 0x11	R/W						
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
	RSVD						
Register 0x12	R/W						
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
RSVD							

Table 5. SN65LVCP1412 Register Description

REGISTER	BIT	SYMBOL	FUNCTION	DEFAULT
	7	RSVD	Fot TI use only	
	6	PWRDOWN	Power down the device: 0 = Normal operation 1 = Powerdown	
	5	SYNC_01	All settings from channel 1 will be used for channel 0 and 1: 0 = channel 0 tracking channel 1 settings 1 = no tracking tracking	_
	4	RSVD	For TI use only	
0x00	3	SYNC_ALL	All settings from channel 1 will be used on all channels: 0 = all channels tracking channel 1 1 = no channel tracking Overwrites SYNC_01	0000000
	2	EQ_MD	Set EQ Mode: 0 = Cable Mode 1 = Trace Mode	
	1			
	0	RSVD	For TI use only	

SLLSED2 -SEPTEMBER 2012

www.ti.com

NSTRUMENTS

FEXAS

REGISTER	BIT	SYMBOL	FUNCTION	DEFAULT
	7			
	6			
	5			
	4			
	3			
0x01	2	LN_EN_CH1	Channel 1 Enable: 0 = Enable 1 = Disable	0000000
	1	LN_EN_CH0	Channel 0 Enable: 0 = Enable 1 = Disable	
	0			
	7	RSVD		
	6	EQ2	Equalizer Adjustment Setting	
	5	EQ1	000 = Minimum equalization setting	
	4	EQ0	111 = Maximum equalization setting	
0x05	3	VOD_CTRL	Channel [x] VOD control: 0 = low VOD range 1 = high VOD range	0000000
0x08	2	DC_GAIN_CTRL	Channel [x] EQ DC Gain: 0 = set EQ DC Gain to 0.5x 1 = set EQ DC Gain to 1x	
	1	AC_GAIN_CTRL1	AC Gain Control:	
	0	AC_GAIN_CTRL0	00 = Low 01 = HiZ 11 = High	
	7			
	6			
	5			
	4			
	3			
0x06 0x09	2	DRV_PEAK	Channel [x] Driver Peaking: 0 = disables driver Peaking 1 = enables driver 6db AC Peaking	00000000
	1	EQ_EN	Channel [x] EQ stage enable: 0 = Enable 1 = Disable	
	0	DRV_EN	Channel [x] Driver stage enable: 0 = Enable 1 = Disable	
	7	RSVD	For TI use only	
	6	RSVD	For TI use only	
	5	RSVD	For TI use only	
	4	RSVD	For TI use only	
0x0F	3	RSVD	For TI use only	00110000
	2	RSVD	For TI use only	
	1	RSVD	For TI use only	
	0	RSVD	For TI use only	

Table 5. SN65LVCP1412 Register Description (continued)

SLLSED2 -SEPTEMBER 2012

www.ti.com

Table 5. SN65LVCP1412 Register Description (continued)

REGISTER	BIT	SYMBOL	FUNCTION	DEFAULT
	7			
	6	RSVD	For TI use only	
	5			
0x11	4			00000000
UXII	3			0000000
	2			
	1			
	0			
	7	RSVD	For TI use only	
	6			
	5			
0.42	4			00000000
0x12	3			0000000
	2			
	1			
	0			

24-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
SN65LVCP1412RLHR	ACTIVE	WQFN	RLH	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	LVCP 1412	Samples
SN65LVCP1412RLHT	ACTIVE	WQFN	RLH	24	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	LVCP 1412	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

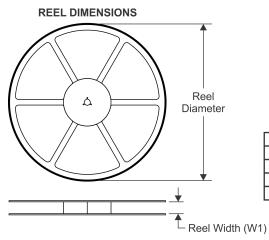
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

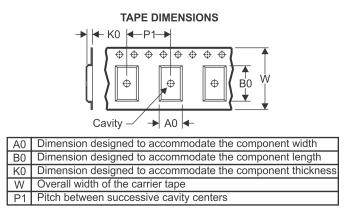
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

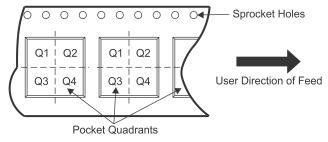
⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

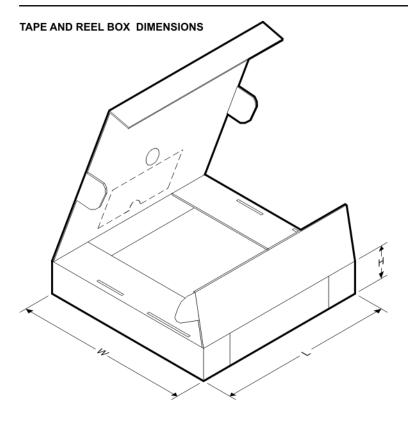

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

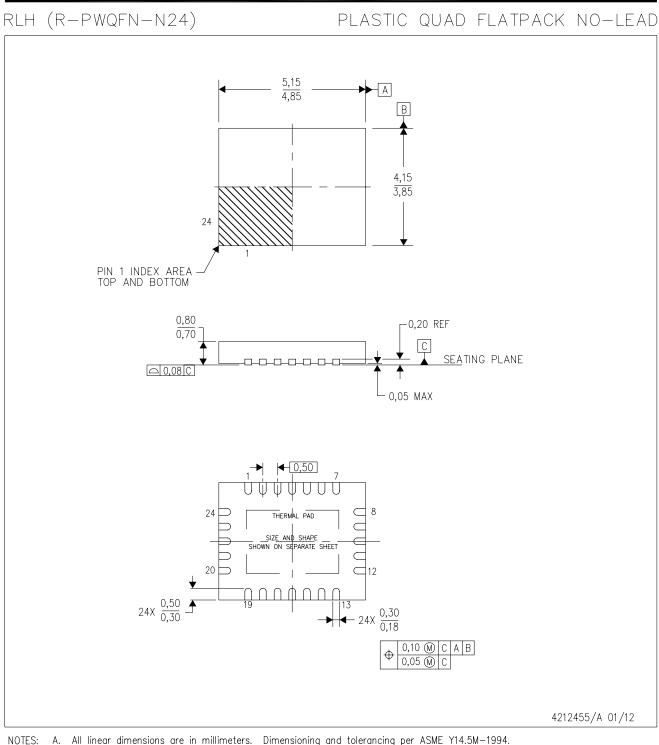
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	· · /	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LVCP1412RLHT	WQFN	RLH	24	250	330.0	12.4	4.3	5.3	1.3	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION


19-Feb-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LVCP1412RLHT	WQFN	RLH	24	250	338.1	338.1	20.6

MECHANICAL DATA

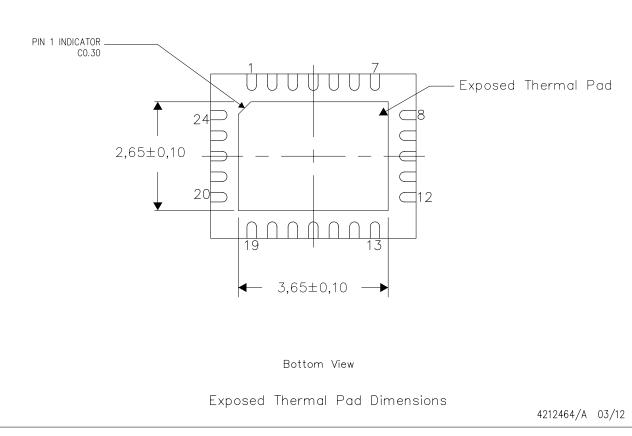
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) Package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.

E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

F. Falls within JEDEC MO-220.

RLH (R-PVQFN-N24)

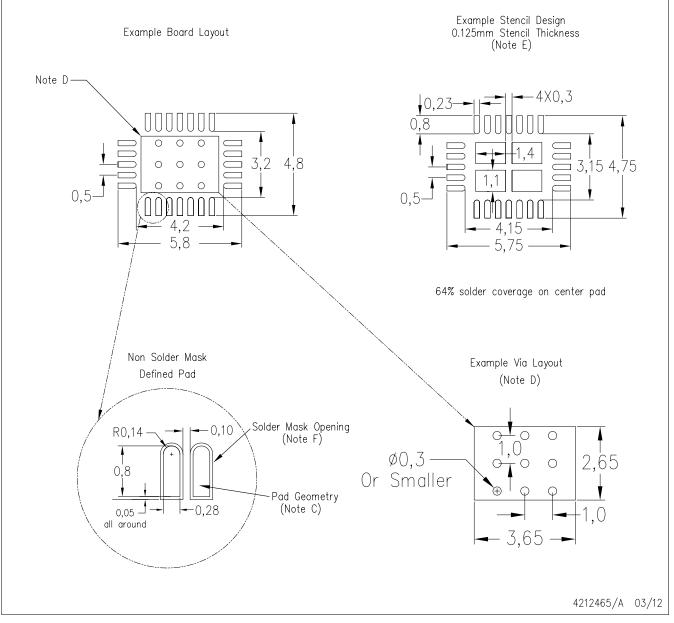

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



RLH (R-PVQFN-N24)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated