

EER Cores (9595354202)

Part Number: 9595354202

95 EER CORE SET

EER cores, similar to ETD cores, have been designed to make optimum use of a given volume of ferrite material for maximum throughput power. The structure, which includes a round center post, approaches a nearly uniform cross-sectional area throughout the core and provides a winding area that minimizes winding losses.

EER cores can be supplied with the center post gapped to a mechanical dimension or an A₁ value.

Weight indicated is per pair or set.

Weight: 46 (g)

Dim	mm	mm tol	nominal inch	inch misc.
A	35	± 0.65	1.378	_
В	21	± 0.20	0.827	_
C	11.3	± 0.30	0.445	_
D	15	± 0.20	0.591	_
Е	25.3	min	0.996	min
F	11.3	± 0.30	0.445	_

Chart Legend

 $\Sigma I/A$: Core Constant, I_e : Effective Path Length, A_e : Effective Cross-Sectional Area, V_e :

Effective Core Volume
A_L: Inductance Factor

Explanation of Part Numbers: Digits 1 & 2 = product class and 3 & 4 = material grade.

Electrical Properties			
$A_L(nH)$	3200 ±25%		
Ae(cm ²)	1.11		
$\Sigma l/A(cm^{-1})$	8.2		
l _e (cm)	9.11		
$V_e(cm^3)$	10.14		
$A_{min}(cm^2)$	1		

 A_{r} value is measured at 1 kHz, B < 10 gauss.