


Fair-Rite Product's Catalog Part Data Sheet, 4052235211 Printed: 2013-07-03









Part Number: 4052235211

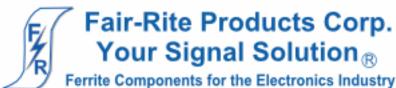
Frequency Range: Low Permeability, High Saturation 52 (ui=250) material

Description: 52 ROD

Application: Inductive Components

Where Used: Open Magnetic Circuit

Part Type: Rods


## **Mechanical Specifications**

Weight: 4.100 (g)

# Part Type Information

Pressed Fair-Rite rods are used extensively in high-energy storage designs. These rods can also be used for inductive components that require temperature stability or have to accommodate large dc bias requirements.

- -The 'A' dimension can be centerless ground to tighter tolerances.
- -Figure 2 rods have a 0.6 mm (.024") maximum chamfer on the end faces.
- -For frequency tuned rod designs see section Antenna/RFID Rods.
- -For any rod requirement not listed here, feel free to contact our customer service group for availability and pricing.



Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 4052235211 Printed: 2013-07-03









## **Mechanical Specifications**

| Dim | mm    | mm    | nominal | inch  |
|-----|-------|-------|---------|-------|
|     |       | tol   | inch    | misc. |
| Α   | 6.00  | ±0.25 | 0.236   | -     |
| В   | -     | -     | -       | -     |
| С   | 30.00 | ±0.75 | 1.181   | -     |
| D   | -     | -     | -       | -     |
| Е   | •     | 1     | -       | -     |
| F   | •     | 1     | -       | -     |
| G   | •     | 1     | -       | -     |
| Н   | -     |       | -       | -     |
| J   | -     |       | -       | -     |
| K   | -     | -     | -       | -     |

## **Electrical Specifications**

| Ziodiidai Opodiidaidiid        |  |  |  |
|--------------------------------|--|--|--|
| Typical Impedance ( $\Omega$ ) |  |  |  |
|                                |  |  |  |
| Electrical Properties          |  |  |  |
|                                |  |  |  |

### Land Patterns

| V | W<br>ref | Х | Υ | Z |
|---|----------|---|---|---|
| - | -        | - | - | - |
| - | -        | - | - | - |

## Winding Information

| Turns  | Wire | 1st Wire | 2nd Wire |
|--------|------|----------|----------|
| Tested | Size | Length   | Length   |
| -      | -    | -        | -        |

### **Reel Information**

| Tape Width | Pitch | Parts 7 " | Parts 13 " | Parts 14 " |
|------------|-------|-----------|------------|------------|
| mm         | mm    | Reel      | Reel       | Reel       |
| -          | -     | -         | -          | -          |

## Package Size

| Pkg Size |
|----------|
| -        |
| (-)      |

### Connector Plate

| # Holes | # Rows |
|---------|--------|
| -       | -      |

### Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A ½ turn is defined as a single pass through a hole.

∠I/A - Core Constant

A<sub>e</sub>: Effective Cross-Sectional Area

 $A_{l}$  - Inductance Factor  $\left(\frac{L}{N^{2}}\right)$ 

I e: Effective Path Length

Ve: Effective Core Volume

NI - Value of dc Ampere-turns

N/AWG - Number of Turns/Wire Size for Test Coil



Fair-Rite Product's Catalog Part Data Sheet, 4052235211 Printed: 2013-07-03







# **Ferrite Material Constants**

Coefficient of Linear Expansion ...... 8 - 10x10<sup>-6</sup>/°C

Tensile Strength ...... 4.9 kgf/mm<sup>2</sup>

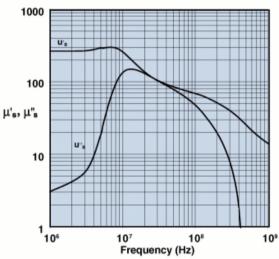
Compressive Strength ...... 42 kgf/mm<sup>2</sup>

Young's Modulus ...... 15x10<sup>3</sup> kgf/mm<sup>2</sup>

Specific Gravity ......  $\approx 4.7 \text{ g/cm}^3$ 

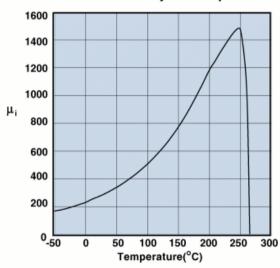
The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.

See next page for further material specifications.




Ferrite Components for the Electronics Industry Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

A new high frequency NiZn ferrite material, that combines a high saturation flux density and a high Curie temperature.


SM beads, PC beads and a range of rod cores are available in this material.

### Complex Permeability vs. Frequency



Measured on a 17/10/6mm toroid using the HP 4284A and the HP 4291A.

### Initial Permeability vs. Temperature

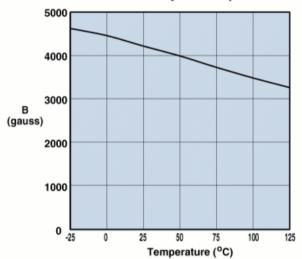


Measured on a 17/10/6mm toroid at 100kHz.

Fair-Rite Product's Catalog Part Data Sheet, 4052235211

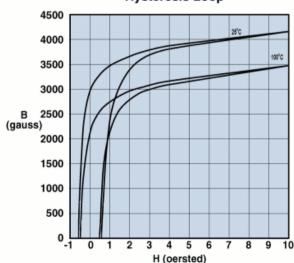
Printed: 2013-07-03








### 52 Material Specifications:


| Property                                                   | Unit    | Symbol         | Value             |
|------------------------------------------------------------|---------|----------------|-------------------|
| Initial Permeability  ® B < 10 gauss                       |         | $\mu_{i}$      | 250               |
| Flux Density                                               | gauss   | В              | 4200              |
| @ Field Strength                                           | oersted | н              | 10                |
| Residual Flux Density                                      | gauss   | B <sub>r</sub> | 2900              |
| Coercive Force                                             | oersted | н。             | 0.60              |
| Loss Factor                                                | 10-6    | tan δ/μ;       | 45                |
| @ Frequency                                                | MHz     |                | 1.0               |
| Temperature Coefficient of Initial Permeability (20 -70°C) | %/°C    |                | 1.0               |
| Curie Temperature                                          | °C      | Te             | >250              |
| Resistivity                                                | Ωcm     | ρ              | 1x10 <sup>9</sup> |

### Flux Density vs. Temperature



Measured on a 17/10/6mm toroid at 10kHz. and H=10 oersted.

#### **Hysteresis Loop**



Measured on a 17/10/6mm toroid at 10kHz.