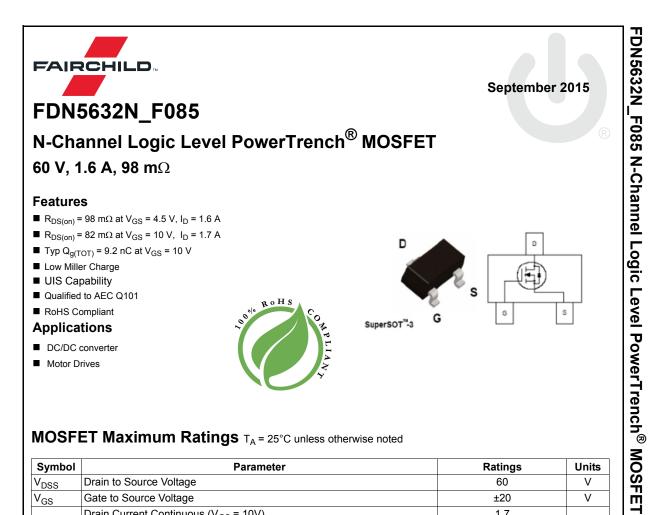


Is Now Part of



ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

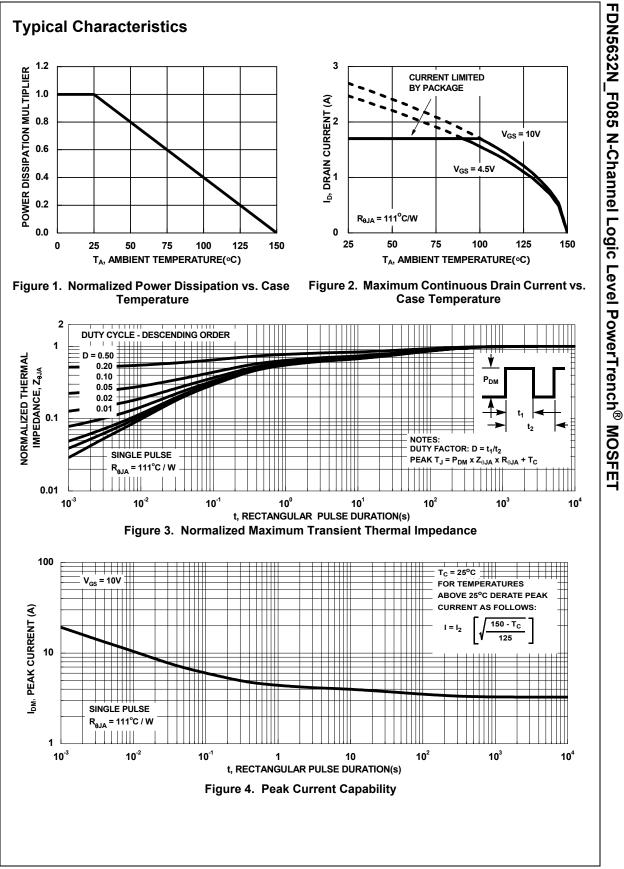
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

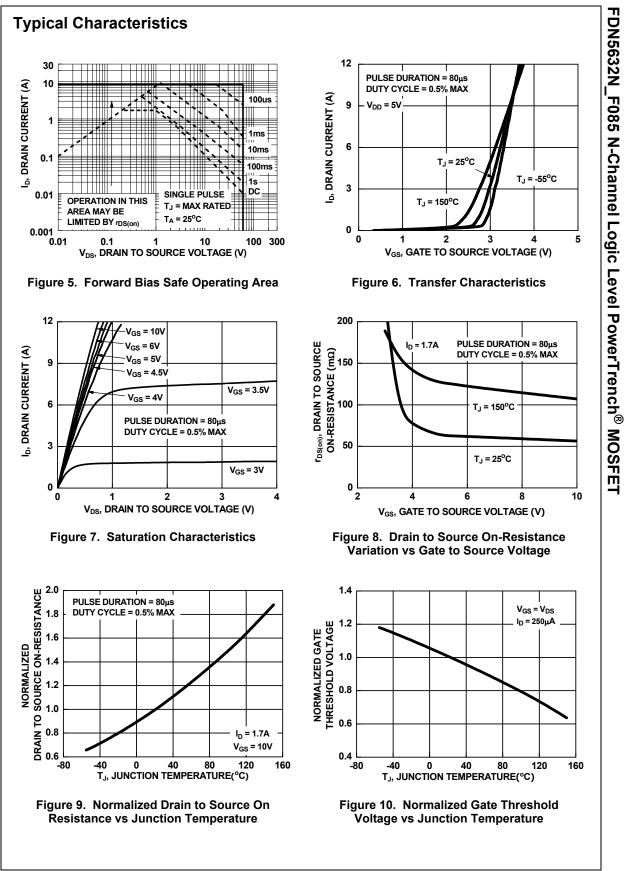
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units	
V _{DSS}	Drain to Source Voltage	60	V	
V _{GS}	Gate to Source Voltage	±20	V	
I _D	Drain Current Continuous (V _{GS} = 10V)	1.7	Α	
	Pulsed	10		
E _{AS}	Single Pulse Avalanche Energy (Note 1)	74	mJ	
P _D	Power Dissipation	1.1	W	
T _J , T _{STG}	Operating and Storage Temperature	-55 to +150	°C	
$R_{\theta JC}$	Thermal Resistance Junction to Case	75	°C/W	
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-252, 1in ² copper pad area	111	°C/W	

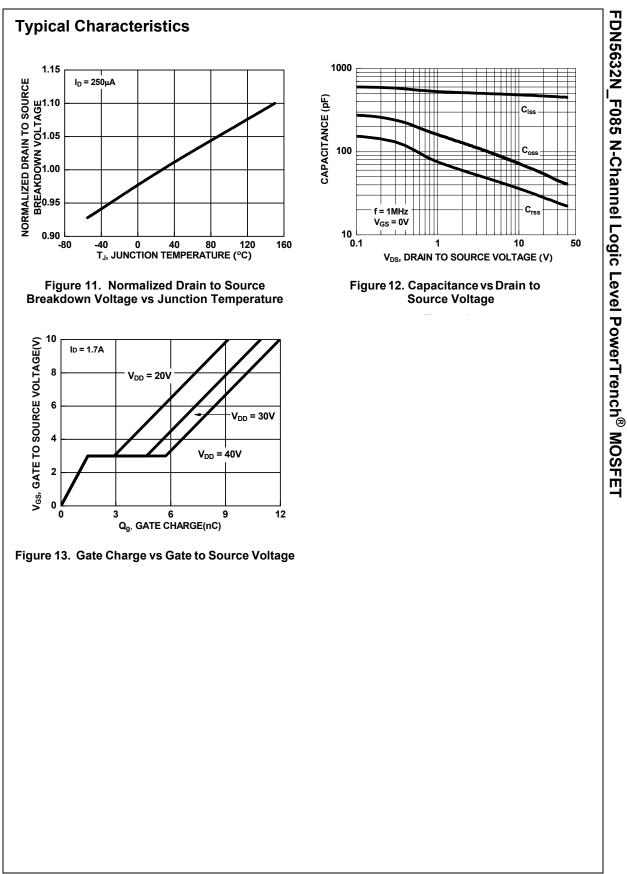
Note:

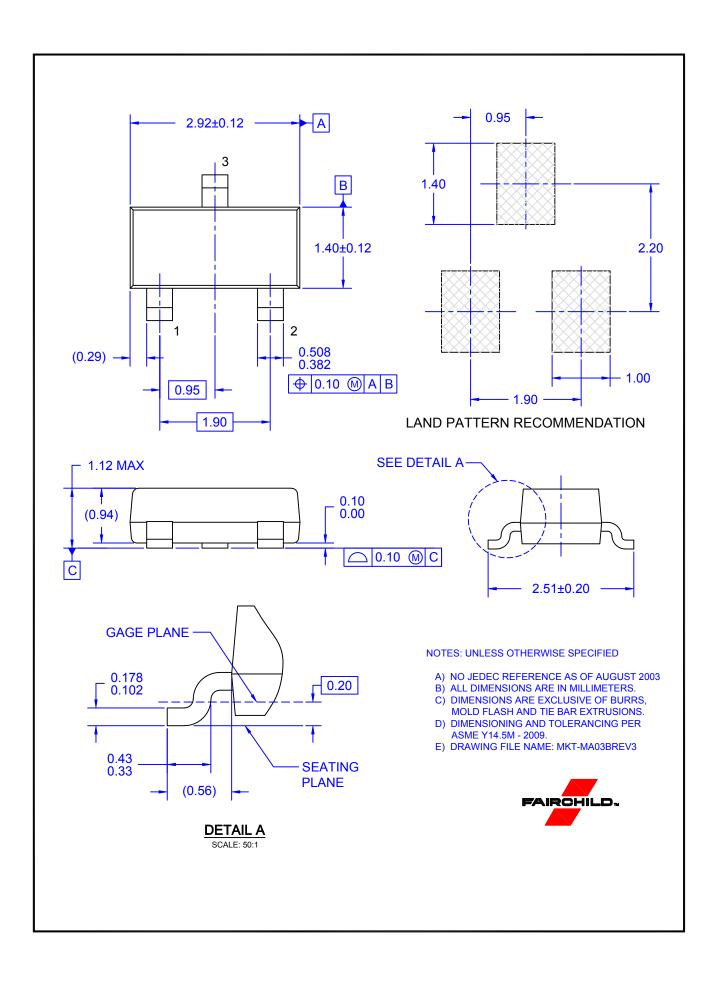

1: E_{AS} of 74mJ is 100% test at L=80mH, I_{AS} =1.4A, starting T_{J} = 25 $^{\circ}C$


Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
5632	FDN5632N_F085	SSOT3	7"	8mm	3000 units
			1		<u> </u>
15 Fairchild Semicon	ductor Corporation		1		www.fairchildsemi.c

	Parameter	Test Conditions	Min	Тур	Max	Units
off Cha	racteristics					
BVDSS	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	60	-	-	V
1033		$V_{\rm DS} = 48V,$	-	-	1	-
DSS	Zero Gate Voltage Drain Current	$V_{GS} = 0V \qquad T_A = 125^{\circ}C$	-	-	250	μA
GSS	Gate to Source Leakage Current	$V_{GS} = \pm 20V$	-	-	±100	nA
)n Cha	racteristics					
/ _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250μA	1	2.0	3	V
GS(th)		$I_{\rm D} = 1.7$ A, $V_{\rm GS} = 10$ V	-	57	82	
		$I_D = 1.6A, V_{GS} = 6V$	-	62	88	-
DS(on)	Drain to Source On Resistance	$I_D = 1.6A, V_{GS} = 4.5V$		70	98	mΩ
DS(on)		$I_{\rm D} = 1.7$ A, $V_{\rm GS} = 10$ V,		10	50	-
		$T_A = 150^{\circ}C$	-	107	135	
ynami	c Characteristics					
Siss	Input Capacitance		-	475	-	pF
2 _{0SS}	Output Capacitance	$V_{\rm DS}$ = 15V, $V_{\rm GS}$ = 0V,	-	60	-	pF
- Crss	Reverse Transfer Capacitance	f = 1MHz	-	30	_	pF
				1.4		Ω
	Gate Resistance	f = 1MHz				
₹ _G	Gate Resistance	f = 1MHz	-		- 12	
₹ _G ⊋ _{g(TOT)}	Total Gate Charge at 10V	$V_{GS} = 0$ to 10V $V_{DD} = 20V$	-	9.2	12	nC
G g(TOT) gs gd		$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$			- - -	
R _G A _{g(TOT)} A _{gs} A _{gd} E lectr i	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge cal Characteristics T _A = 2	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$	-	9.2 1.5	-	nC nC
R _G Δ _{g(TOT)} Δ _{gs} Δ _{gd} Electri Symbol	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge cal Characteristics T _A = 2	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted	-	9.2 1.5 1.4	-	nC nC nC
R _G 2 _{g(TOT)} 2 _{gs} 2 _{gd} Electri Symbol Switch	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics T _A = 2 Parameter	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted	-	9.2 1.5 1.4	-	nC nC nC
R _G Q _{g(TOT)} Q _{gs} Q _{ga} Electri Symbol Switch	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics T _A = 2 Parameter hing Characteristics	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test Conditions$	- - - Min	9.2 1.5 1.4 Typ	- - Max	nC nC nC
R _G Q _{g(TOT)} Q _{gs} Q _{gd} Electri Symbol Switch	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics TA = 2 Parameter hing Characteristics Turn-On Time	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test Conditions$ $V_{DD} = 30V, I_D = 1.0A$	- - - Min	9.2 1.5 1.4 Typ	- - Max	nC nC nC Unit:
R _G Q _{g(TOT)} Q _{gs} Q _{gd} Electri Symbol Switch on d(on) r	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics TA = 2 Parameter hing Characteristics Turn-On Time Turn-On Delay Time	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test Conditions$	- - - Min	9.2 1.5 1.4 Typ - 15 1.7	- - Max 30 -	nC nC nC Units
3 G 2g(TOT) 2 2gg 3 2gg 3 Symbol 3 Switch 3 on 4(on) r 4(off)	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics T _A = 2: Parameter ning Characteristics Turn-On Time Turn-On Delay Time Rise Time	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test Conditions$ $V_{DD} = 30V, I_D = 1.0A$	- - - - - - -	9.2 1.5 1.4 Typ	- - - - - - - -	nC nC nC Units
R_G $Q_{g(TOT)}$ Q_{gs} Q_{gd} Electri Symbol Switcl on d(on) r d(off) f	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics Tarameter ning Characteristics Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test Conditions$ $V_{DD} = 30V, I_D = 1.0A$	- - - - - - - - -	9.2 1.5 1.4 Typ - 15 1.7 5.2	- - Max 30 - - -	nC nC nC Units ns ns ns ns
R _G Q _{g(TOT)} Q _{gs} Q _{gd} Electri Symbol Switch on d(on) r d(off) f off	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics TA = 2: Parameter hing Characteristics Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test Conditions$ $V_{DD} = 30V, I_D = 1.0A$	- - - - - - - - -	9.2 1.5 1.4 Typ - 15 1.7 5.2	- - Max 30 - - - -	nC nC nC Units ns ns ns ns ns
R _G 2 _{g(TOT)} 2 _{gs} 2 _{gd} Electri Symbol Switch on d(on) r d(off) f off Drain-S	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics T _A = 2 Parameter ning Characteristics Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time ource Diode Characteristics	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted Test Conditions $V_{DD} = 30V, I_D = 1.0A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$	- - - - - - - - -	9.2 1.5 1.4 Typ - 15 1.7 5.2 1.3 -	- - Max 30 - - - - 12.9	nC nC nC Unit
R _G Q _{g(TOT)} Q _{gs} Q _{gd} Electri Symbol Switch on d(on) r d(off) f off	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics T _A = 2 Parameter ning Characteristics Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test Conditions$ $V_{DD} = 30V, I_D = 1.0A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$ $I_{SD} = 1.7A$	- - - - - - - - - - -	9.2 1.5 1.4 Typ - 15 1.7 5.2 1.3 - 0.8	- - - - - - - - - - - - - - - 12.9	nC nC nC Unit ns ns ns ns ns ns
R_G $Q_{g(TOT)}$ Q_{gs} Q_{gd} Electri Symbol Switch Switch on d(on) r d(off) f off Drain-S / _{SD}	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics T _A = 2 Parameter hing Characteristics Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Source Diode Characteristics	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test \text{ Conditions}$ $V_{DD} = 30V, I_D = 1.0A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$ $I_{SD} = 1.7A$ $I_{SD} = 0.85A$	- - - - - - - - - - - - - - - -	9.2 1.5 1.4 Typ - 15 1.7 5.2 1.3 - 0.8 0.8	- - - - - - - - - - - - - - - - - - -	nC nC nC Units ns ns ns ns ns v
R _G 2 _{g(TOT)} 2 _{gs} 2 _{gd} Electri Symbol Switch on d(on) r d(off) f off Drain-S	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics T _A = 2 Parameter ning Characteristics Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time ource Diode Characteristics	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test Conditions$ $V_{DD} = 30V, I_D = 1.0A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$ $I_{SD} = 1.7A$	- - - - - - - - - - -	9.2 1.5 1.4 Typ - 15 1.7 5.2 1.3 - 0.8	- - - - - - - - - - - - - - - 12.9	nC nC nC Units ns ns ns ns ns


2



©2015 Fairchild Semiconductor Corporation FDN5632N_F085 Rev. 1.2

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FDN5632N_F085