

Series T Differential Pressure Transmitters

The Modus Series T family of differential pressure transmitters measure low pressures and feature low power consumption and a variety of analog signal outputs. A wide selection of standard pressure ranges and electrical ratings is available.

These transmitters feature: no moving parts to wear out, reliable long term stability, and are virtually position insensitive.

The Series T Transmitters are an excellent choice for many HVAC, process and automation monitoring requirements. These transmitters monitor: filter differential pressures, fan static pressures, clean room pressures, variable air volume systems and velocity pressures. They have been used for bubbler level systems, leak detection and in medical and analytical instruments.

The transmitters are housed in a flame retardant, glass-reinforced polyphenylene oxide (NORYL[™]) case. Electrical connections are made by means of a 3/8 in terminal strip with #6 screws.

The Series T includes three models: Model T10, Model T20, and Model T30. These three models incorporate a variety of power and signal options.

The span or zero adjustment is performed with a 20-turn potentiometer for fine resolution.

T10	Three-wire
	DC Voltage In
	DC Voltage Out
T20	Four-wire
	24, 120, or 240 VAC In
	DC Voltage Out
Т30	Two-wire
	DC Voltage In
	4 to 20 mA Out

The piezoresistive sensor is a solid state device designed in a Wheatstone bridge configuration. When pressure is applied to the device, the resistance of the bridge changes by a small amount. This resistance change is converted to a voltage and amplified.

Amphenol Advanced Sensors

Series T Specifications

General

- Measures differential, gage pressure, or vacuum
- Suitable for air or inert gases
- Maximum safe momentary overpressure: see reference table A

Performance

Accuracy ± 1% of span (including non-linearity and hysteresis)

Calibration (Traceable to NIST)

Environmental

Operating Temperature Range 32°F to 115°F (0°C to 45°C)

Storage Temperature

-20°F to 160°F (-30°C to 70°C)

Effect of Temperature

on zero: ±0.05%/°C

on span: ±0.02%/°C

Operating Humidity Range

10% to 90% RH non-condensing

Shock Resistance 10 G (11 ms)

Vibration Resistance 5 G to 50 Hz

Electrical Connections

Connections External 3/8 in terminal strip with #6 screws

Physical

Pressure Port Connections

3/16 in diameter suitable for:

- 1/8 in ID Tygon[™] or polyurethane tubing 0.11 in to 0.15 in (3 mm to 4 mm)
- 1/4 in OD polyethylene tubing (6 mm) Integral filters at both ports

Dimensions (W x L x H)

3.00 in x 5.15 in x 1.40 in (76 mm x 131 mm x 36 mm)

Material

Flame retardant, glass-reinforced polyphenylene oxide (NORYL) case

Weight

0.42 lbs (190 g) maximum

Model T10 Specifications

DC Power Input/Voltage Output

Diagram shows area of detail. Please see inset diagrams for wiring.

Electrical

Supply Voltage

11 to 32 VDC (14.5 to 32 VDC for 10 Volts output) Protected against reversal of polarity

Supply Current

10 mA

Output

- 0 to 5 Volts, linear
- 0 to 10 Volts, linear
- Sink or source 3.5 mA
- · Protected against short circuit

Ordering Information

Order Number

(See Table below and Reference Table A) T10 - PPP - V - O Example: T10 - 04E - 5 - A

PPP=Pressure Range	V=Voltage Output	O=Offset
		(See Note)
See Reference Table A	5=0 to 5 Volts	0=No offset
	X=0 to 10 Volts	A=1/4 offset
		B=1/2 offset

If the measured differential pressure is expected to go from positive to negative, a transmitter with offset (elevated zero) should be ordered.

Three options are available:

- "0" No offset. At zero differential pressure, the output signal is: 0 V (0 to 5 V range) 0 V (0 to 10 V range) Pressure excursion: 0% to 100% of Range, see Table A.
- "A" 1/4 span offset. At zero differential pressure, the output signal is: 1.25 V (0 to 5 V range) 2.5 V (0 to 10 V range) Pressure excursion: -33% to 100% of Range, see Table A.
- "B" 1/2 span offset. At zero differential pressure, the output signal is: 2.5 V (0 to 5 V range) 5 V (0 to 10 V range) Pressure excursion: -100% to 100% of Range, see Table A.

To order: Determine the positive pressure range; from Table A find the corresponding pressure code. Then add the required offset (none, A, or B).

For example, T30 05E A is a transmitter with a maximum range of 1 in (25.40 mm) of H₂O at 20 mA and a minimum range of -0.33 in of H₂O at 4 mA.

Model T20 Specifications

AC Power Input/Voltage Output

Electrical

Transformer isolation between power supply and output is 2500 Vrms

Output Voltage

- 0 to 5 Volts
- 0 to 10 Volts
- Sink or source 3.5 mA
- Protected against short circuit

Ordering Information

Order Number

(See Table below and Reference Table A) **T20** - PPP - S - V - O Example: T20 - 07P - C - X - B

PPP=Pressure Range	S=Supply Voltage	ut O=Offset	
			(See Note)
See Table Reference A	C=24 VAC	5=0 to 5 Volts	0=No offset
	D=120 VAC	X=0 to 10 Volt	A=1/4 offset
	E=40 VAC		B=1/2 offset

If the measured differential pressure is expected to go from positive to negative, a transmitter with offset (elevated zero) should be ordered.

Three options are available:

- "0" No offset. At zero differential pressure, the output signal is:
 0 V (0 to 5 V range)
 0 V (0 to 10 V range)
 Pressure excursion: 0% to 100% of Range, see Table A.
- "A" 1/4 span offset. At zero differential pressure the output signal is:
 1.25 V (0 to 5 V range)
 2.5 V (0 to 10 V range)
 Pressure excursion: -33% to 100% of Range, see Table A.
- *"B"* 1/2 span offset. At zero differential pressure, the output signal is:
 2.5 V (0 to 5 V range)
 5 V (0 to 10 V range)
 Pressure excursion: -100% to 100% of Range see Table A.

To order: Determine the positive pressure range; from Table A, find the corresponding pressure code. Then add the required offset (none, A, or B).

For example, T30 05E A is a transmitter with a maximum range of 1 in (25.40 mm) of H_2O at 20 mA and a minimum range of -0.33 in of H_2O at 4 mA.

Model T30 Specifications

Two Wire / 4 to 20 mA Output

Electrical

- Supply Voltage: 11 to 32 VDC (See diagram right for maximum loop resistance)
- Protected against reversal of polarity
- Output limited to approx. 3.85 mA at low end of span and approx. 25 mA at upper end of span

Ordering Information

Order Number (See Table below and Reference Table A)

T30 - PPP - O Example: T30 - 06E - B

PPP= ressure Range	
See Reference Table A	(

O=Offset (See Note) 0=No offset A=1/4 offset B=1/2 offset

If the measured differential pressure is expected to go from positive to negative, a transmitter with offset (elevated zero) should be ordered.

Three options are available:

- "0" No offset. At zero differential pressure, the output signal is:
 4 mA (4 to 20 mA range)
 Pressure excursion: 0% to 100% of Range, see Table A.
- "A" 1/4 span offset. At zero differential pressure, the output signal is:
 8 mA (4 to 20 mA range)
 Pressure excursion: -33% to 100% of Range, see Table A.
- "B" 1/2 span offset. At zero differential pressure, the output signal is:
 12 mA (4 to 20 mA range) Pressure excursion: -100% to 100% of Range see Table A.

To order: Determine the positive pressure range; from Table A, find the corresponding pressure code. Then add the required offset (none, A, or B).

For example, T30 05E A is a transmitter with a maximum range of 1 in (25.40 mm) of H_2O at 20 mA and a minimum range of -0.33 in of H_2O at 4 mA.

Table A - Standard Pressure Ranges

English		Metric Units						
Pressure Code	Pressure Range English	Maximum Safe Momentary Overpressure	Pressure Code	Pressure Range Pascals	Maximum Safe Momentary Overpressure	Pressure Range Code	Pressure Safe Momentary Pascals	Maximum Overpressure
03E*	0 to 0.300 in H ₂ 0		03P	0 to 75.0 Pa		03M	0 to 7.50 mm H_20	
04E	0 to 0.500 in $\rm H_{2}0$		04P	0 to 100.0 Pa		04M	0 to 10.00 mm H_20	
05E	0 to 1.00 in H_2 0		05P	0 to 250 Pa		05M	0 to 25.0 mm $H_2^{}0$	
06E	0 to 2.00 in H_2 0	20 in H ₂ 0	06P	0 to 500 Pa	5 kPa	06M	0 to 50.0 mm H ₂ 0	500 mm
07E	0 to 3.00 in H_2 0		07P	0 to 750 Pa		07M	0 to 75.0 mm H_2 0	
08E	0 to 5.00 in H ₂ 0		08P	0 to 1.00 kPa		08M	0 to 100 mm H ₂ 0	
09E	0 to 10.0 in H ₂ 0	5 psid	09P	0 to 2.50 kPa	35 kPa	09M	0 to 250 mm H ₂ 0	3.5 m

*T30 Only

www.amphenol-sensors.com

© 2018 Amphenol Corporation. All Rights Reserved. Specifications are subject to change without notice. Other company names and product names used in this document are the registered trademarks or trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Amphenol: <u>T10-06E-5-0</u>