Small Signal MOSFET

20 V, 220 mA, Dual N-Channel, 1.0 mm x 1.0 mm SOT-963 Package

Features

- Dual N-Channel MOSFET
- Offers a Low R_{DS(ON)} Solution in the Ultra Small 1.0 x 1.0 mm Package
- 1.5 V Gate Voltage Rating
- Ultra Thin Profile (< 0.5 mm) Allows It to Fit Easily into Extremely Thin Environments such as Portable Electronics
- This is a Pb-Free Device

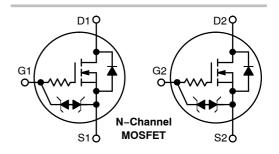
Applications

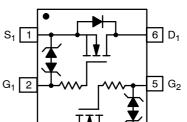
- General Purpose Interfacing Switch
- Optimized for Power Management in Ultra Portable Equipment
- Analog Switch

MAXIMUM RATINGS (T_J = 25°C unless otherwise specified)

Parameter			Symbol	Value	Unit	
Drain-to-Source Voltage			V_{DSS}	20	V	
Gate-to-Source Voltage			V _{GS}	±8	V	
Continuous Drain	Steady	$T_A = 25^{\circ}C$		220	mA	
Current (Note 1)	State	$T_A = 85^{\circ}C$	I_{D}	160		
	t ≤ 5 s	$T_A = 25^{\circ}C$		280		
Power Dissipation	Steady State	T _A = 25°C	P _D	125		
(Note 1)					mW	
	t ≤ 5 s			200		
Pulsed Drain Current $t_p = 10 \mu s$			I _{DM}	800	mA	
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C	
Source Current (Body Diode) (Note 2)			Is	200	mA	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T_L	260	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


- Surface-mounted on FR4 board using the minimum recommended pad size,
 oz Cu.
- 2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D Max
20 V	1.5 Ω @ 4.5 V	
	2.0 Ω @ 2.5 V	0.22 A
	3.0 Ω @ 1.8 V	0.22 A
	4.5 Ω @ 1.5 V	

PINOUT: SOT-963

Top View

 D_2 3

SOT-963 CASE 527AD

MARKING

4 S₂

6 = Specific Device Code

M = Date Code

= Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	D	1000	°C/W
Junction-to-Ambient - t = 5 s (Note 3)	$R_{ hetaJA}$	600	0/ • •

^{3.} Surface-mounted on FR4 board using the minimum recommended pad size, 1 oz Cu.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS				•	•	•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		20			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 5 V	T _J = 25°C			50	nA
			T _J = 85°C			200	
		V _{GS} = 0 V, V _{DS} = 16 V	T _J = 25°C			100	nA
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} =	±5.0 V			±100	nA
ON CHARACTERISTICS (Note 4)					-		
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 1$	00 μΑ	0.52		1.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J					2.0	mV/°C
Drain-to-Source On Resistance	R _{DS(ON)}	V _{GS} = 4.5 V, I _D = 100 mA			0.75	1.5	
		V _{GS} = 2.5 V, I _D = 50 mA			1.0	2.0	Ω
		V _{GS} = 1.8 V, I _D = 20 mA			1.4	3.0	
		V _{GS} = 1.5 V, I _D = 10 mA			1.8	4.5	
		V _{GS} = 1.2 V, I _D = 1.0 mA			2.8		
Forward Transconductance	9FS	V _{DS} = 5.0 V, I _D = 125 mA			0.48		S
Source-Drain Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = 10 mA			0.6	1.0	V
CAPACITANCES					-		
Input Capacitance	C _{ISS}				12.5		
Output Capacitance	C _{OSS}	f = 1.0 MHz, V _{GS} = 0 V V _{DS} = 15 V			3.6		pF
Reverse Transfer Capacitance	C _{RSS}				2.6		
SWITCHING CHARACTERISTICS, V _{GS} = 4.5	V (Note 4)	•		-	-	•	
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 4.5 V, V_{DD} = 10 V, I_{D} = 200 mA, R_{G} = 2.0 Ω			16.5		- ns
Rise Time	t _r				25.5		
Turn-Off Delay Time	t _{d(OFF)}				142		
Fall Time	t _f				80		

 $^{{\}bf 4.} \ \ {\bf Switching\ characteristics\ are\ independent\ of\ operating\ junction\ temperatures.}$

ORDERING INFORMATION

Device	Package	Shipping [†]
NTUD3174NZT5G	SOT-963 (Pb-Free)	8000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

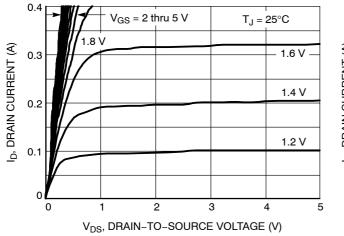


Figure 1. On-Region Characteristics

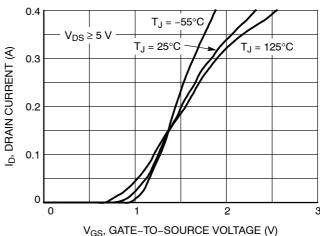


Figure 2. Transfer Characteristics

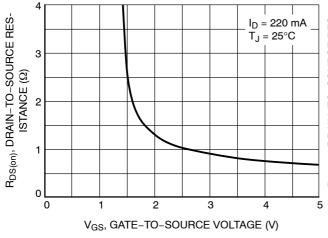


Figure 3. On-Resistance vs. Gate Voltage

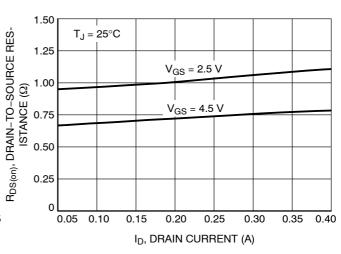


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

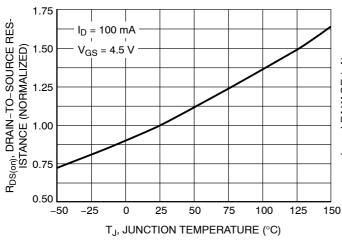


Figure 5. On–Resistance Variation with Temperature

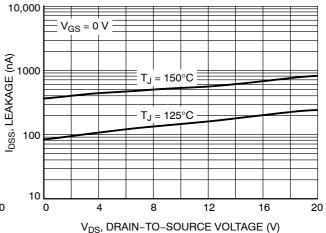
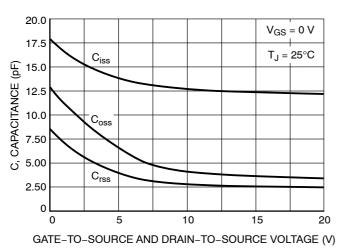



Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

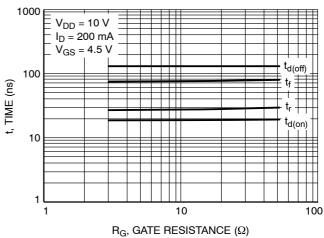


Figure 7. Capacitance Variation

Figure 8. Resistive Switching Time Variation vs. Gate Resistance

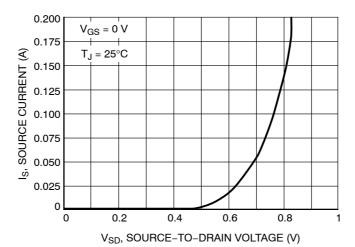
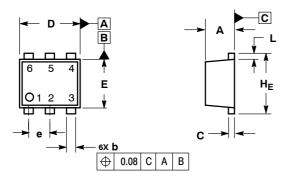
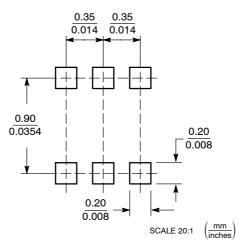



Figure 9. Diode Forward Voltage vs. Current

PACKAGE DIMENSIONS

SOT-963 CASE 527AD ISSUE D



NOTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETERS
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	MON	MAX
Α	0.34	0.37	0.40			
b	0.10	0.15	0.20	0.004	0.006	0.008
С	0.07	0.12	0.17	0.003	0.005	0.007
D	0.95	1.00	1.05	0.037	0.039	0.041
E	0.75	0.80	0.85	0.03	0.032	0.034
е	0.35 BSC		(0.014 BS	C	
L	0.05	0.10	0.15	0.002	0.004	0.006
HE	0.95	1.00	1.05	0.037	0.039	0.041

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking, ited. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative