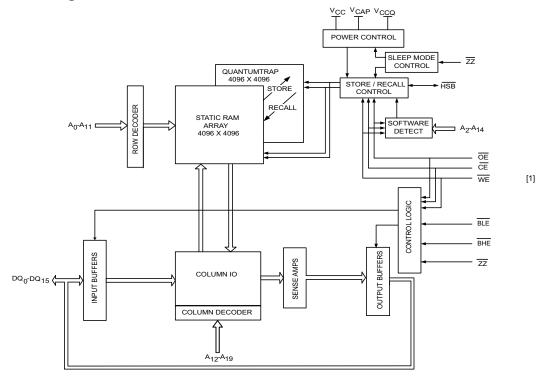


16-Mbit (1024 K × 16) nvSRAM

Features

- 16-Mbit nonvolatile static random access memory (nvSRAM)
 - □ 30-ns and 45-ns access times
 - □ Logically organized as 1024 K × 16
 - Hands-off automatic STORE on power-down with only a small capacitor
 - □ STORE to QuantumTrap nonvolatile elements is initiated by software, device pin, or AutoStore on power-down
 - □ RECALL to SRAM initiated by software or power-up
- High reliability
 - □ Infinite read, write, and RECALL cycles
 - ☐ 1 million STORE cycles to QuantumTrap
 - □ Data retention: 20 years
- Sleep mode operation
- Low power consumption
 - ☐ Active current of 75 mA at 45 ns
 - Standby mode current of 650 μA
 - Sleep mode current of 10 μA
- Operating voltage
 - \square Core V_{CC} = 2.7 V to 3.6 V; I/O V_{CCQ} = 1.65 V to 1.95 V


- Industrial temperature: -40 °C to +85 °C
- 165-ball fine-pitch ball grid array (FBGA) package
- Restriction of hazardous substances (RoHS) compliant

Functional Description

The Cypress CY14V116N is a fast SRAM, with a nonvolatile element in each memory cell. The memory is organized as 1024 K words of 16 bits each. The embedded nonvolatile elements incorporate QuantumTrap technology, producing the world's most reliable nonvolatile memory. The SRAM can be read and written an infinite number of times. The nonvolatile data residing in the nonvolatile elements do not change when data is written to the SRAM. Data transfers from the SRAM to the nonvolatile elements (the STORE operation) takes place automatically at power-down. On power-up, data is restored to the SRAM (the RECALL operation) from the nonvolatile memory. Both the STORE and RECALL operations are also available under software control.

For a complete list of related documentation, click here.

Logic Block Diagram

Note

1. In this datasheet, \overline{CE} refers to the internal logical combination of \overline{CE}_1 and CE_2 , such that when \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW. For all other cases \overline{CE} is HIGH.

Contents

Pinout	3
Device Operation	5
SRAM Read	5
SRAM Write	5
AutoStore Operation (Power-Down)	5
Hardware STORE (HSB) Operation	
Hardware RECALL (Power-Up)	6
Software STORE	6
Software RECALL	6
Sleep Mode	7
Preventing AutoStore	9
Data Protection	
Maximum Ratings	10
Operating Range	10
DC Electrical Characteristics	
Data Retention and Endurance	11
Capacitance	11
Thermal Resistance	
AC Test Conditions	12
AC Switching Characteristics	

AutoStore/Power-Up RECALL Characteristics	16
Sleep Mode Characteristics	17
Software Controlled STORE and RECALL	
Characteristics	18
Hardware STORE Characteristics	19
Truth Table For SRAM Operations	20
Ordering Information	21
Package Diagram	22
Acronyms	23
Document Conventions	23
Units of Measure	23
Document History Page	24
Sales, Solutions, and Legal Information	25
Worldwide Sales and Design Support	25
Products	25
PSoC® Solutions	25
Cypress Developer Community	25
Technical Support	25

Pinout

Figure 1. Pin Diagram: 165-Ball FBGA (×16)

	1	2	3	4	5	6	7	8	9	10	11
Α	NC	A_6	A ₈	WE	BLE	CE ₁	NC	ŌE	A_5	A_3	NC
В	NC	DQ_0	DQ ₁	A_4	BHE	CE ₂	NC	A ₂	NC	NC	NC
С	ZZ	NC	NC	V_{SS}	A ₀	A ₇	A ₁	V_{SS}	NC	DQ ₁₅	DQ ₁₄
D	NC	DQ_2	NC	V_{SS}	V_{SS}	V_{SS}	V_{SS}	V_{SS}	NC	NC	NC
E	NC	V_{CAP}	NC	V _{CCQ}	V_{SS}	V_{SS}	V_{SS}	V_{CCQ}	NC	DQ ₁₃	NC
F	NC	DQ_3	NC	V_{CCQ}	V_{CC}	V_{SS}	V_{CC}	V _{CCQ}	NC	NC	DQ ₁₂
G	HSB	NC	NC	V _{CCQ}	V _{CC}	V_{SS}	V _{CC}	V _{CCQ}	NC	NC	NC
Н	NC	NC	V_{CCQ}	V_{CCQ}	V_{CC}	V_{SS}	V_{CC}	V_{CCQ}	V_{CCQ}	NC	NC
J	NC	NC	NC	V_{CCQ}	V_{CC}	V_{SS}	V_{CC}	V_{CCQ}	NC	DQ ₈	NC
K	NC	NC	DQ_4	V _{CCQ}	V _{CC}	V_{SS}	V _{CC}	V _{CCQ}	NC	NC	NC
L	NC	DQ ₅	NC	V _{CCQ}	V_{SS}	V_{SS}	V_{SS}	V _{CCQ}	NC	NC	DQ_9
M	NC	NC	NC	V_{SS}	V_{SS}	V_{SS}	V_{SS}	V_{SS}	NC	DQ ₁₀	NC
N	NC	DQ ₆	DQ ₇	V_{SS}	A ₁₁	A ₁₀	A ₉	V_{SS}	NC	NC	NC
Р	NC	NC	NC	A ₁₃	A ₁₉	NC	A ₁₈	A ₁₂	NC	DQ ₁₁	NC
R	NC	NC	A ₁₅	NC	A ₁₇	NC	A ₁₆	NC ^[2]	A ₁₄	NC	NC

Note
2. Address expansion for 32-Mbit. NC pin not connected to die.

Table 1. Pin Definitions

Pin Name	I/O Type	Description
A ₀ – A ₁₉	Input	Address inputs. Used to select one of the 1,048,576 words of the nvSRAM.
$DQ_0 - DQ_{15}$	Input/Output	Bidirectional data I/O lines. Used as input or output lines depending on operation.
WE	Input	Write Enable input, Active LOW . When selected LOW, data on the I/O pins is written to the specific address location.
Œ _{1,} CE ₂	Input	Chip Enable input. The device is selected and a memory access begins on the falling edge of $\overline{\text{CE}}_1$ (while CE_2 is HIGH) or the rising edge of CE_2 (while $\overline{\text{CE}}_1$ is LOW).
ŌĒ	Input	Output Enable, Active LOW. The active LOW $\overline{\text{OE}}$ input enables the data output buffers during read cycles. Deasserting $\overline{\text{OE}}$ HIGH causes the I/O pins to tristate.
BLE	Input	Byte Enable, Active LOW. When selected LOW, enables DQ ₇ –DQ ₀ .
BHE	Input	Byte Enable, Active LOW. When selected LOW, enables DQ ₁₅ –DQ ₈ .
ZZ	Input	Sleep Mode Enable. When the \overline{ZZ} pin is pulled LOW, the device enters a low-power Sleep mode and consumes the lowest power. Because this input is logically AND'ed with \overline{CE} , \overline{ZZ} must be HIGH for normal operation.
V _{CC}	Power supply	Power. Power supply inputs to the core of the device.
V _{CCQ}	Power supply	I/O Power. Power supply inputs for the inputs and outputs of the device.
V_{SS}	Power Supply	Ground for the device. Must be connected to ground of the system.
HSB	Input/Output	Hardware STORE Busy (HSB) . When LOW, this output indicates that a Hardware STORE is in progress. When pulled LOW external to the <u>chip</u> , it initiates a nonvolatile STORE operation. After each Hardware and Software STORE operation, HSB is driven HIGH for a short time (t _{HHHD}) with standard output high current and then a weak internal pull-up resistor keeps this pin HIGH (external pull-up resistor connection optional).
V _{CAP}	Power Supply	AutoStore capacitor . Supplies power to the nvSRAM during power loss to store data from SRAM to nonvolatile elements.
NC	NC	No Connect. Die pads are not connected to the package pin.

Device Operation

The CY14V116N nvSRAM is made up of two functional components paired in the same physical cell. These are an SRAM memory cell and a nonvolatile QuantumTrap cell. The SRAM memory cell operates as a standard fast static RAM. Data in the SRAM is transferred to the nonvolatile cell (the STORE operation) automatically at power-down, or from the nonvolatile cell to the SRAM (the RECALL operation) on power-up. Both the STORE and RECALL operations are also available under software control. Using this unique architecture, all cells are stored and recalled in parallel. During the STORE and RECALL operations, SRAM read and write operations are inhibited. The CY14V116N supports infinite reads and writes to the SRAM. In addition, it provides infinite RECALL operations from the nonvolatile cells and up to 1 million STORE operations. See the Truth Table For SRAM Operations on page 20 for a complete description of read and write modes.

SRAM Read

The CY14V116N performs a read cycle whenever $\overline{\text{CE}}$ and $\overline{\text{OE}}$ are LOW, and $\overline{\text{WE}}$, $\overline{\text{ZZ}}$, and $\overline{\text{HSB}}$ are HIGH. The address specified on pins A_0 – A_{19} determines which of the 1,048,576 words of 16 bits each are accessed. Byte enables ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$) determine which bytes are enabled to the output. When the read is initiated by an address transition, the outputs are valid after a delay of t_{AA} (read cycle 1). If the read is initiated by $\overline{\text{CE}}$ or $\overline{\text{OE}}$, the outputs are valid at t_{ACE} or at t_{DOE} , whichever is later (read cycle 2). The data output repeatedly responds to address changes within the t_{AA} access time without the need for transitions on any control input pins. This remains valid until another address change or until $\overline{\text{CE}}$ or $\overline{\text{OE}}$ is brought HIGH, or $\overline{\text{WE}}$ or $\overline{\text{HSB}}$ is brought LOW.

SRAM Write

A write cycle is performed when $\overline{\text{CE}}$ and $\overline{\text{WE}}$ are LOW and $\overline{\text{HSB}}$ is HIGH. The address inputs must be stable before entering the write cycle and must remain stable until $\overline{\text{CE}}$ or $\overline{\text{WE}}$ goes HIGH at the end of the cycle. The data on the common I/O pins DQ_0-DQ_{15} is written into the memory if it is valid $t_{\overline{SD}}$ before the end of a $\overline{\text{WE}}$ -controlled write or before the end of a $\overline{\text{CE}}$ -controlled write. The Byte Enable inputs ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$) determine which bytes are written. Keep $\overline{\text{OE}}$ HIGH during the entire write cycle to avoid data bus contention on common I/O lines. If $\overline{\text{OE}}$ is left LOW, the internal circuitry turns off the output buffers t_{HZWE} after $\overline{\text{WE}}$ goes LOW.

AutoStore Operation (Power-Down)

The CY14V116N stores data to the nonvolatile QuantumTrap cells using one of the three storage operations. These three operations are: Hardware STORE, activated by the HSB; Software STORE, activated by an address sequence; AutoStore, on device power-down. The AutoStore operation is a unique feature of nvSRAM and is enabled by default on the CY14V116N device.

During normal operation, the device draws current from V_{CC} to charge a capacitor connected to the V_{CAP} pin. This stored charge is used by the chip to perform a STORE operation during power-down. If the voltage on the V_{CC} pin drops below V_{SWITCH} , the part automatically disconnects the V_{CAP} pin from V_{CC} and a STORE operation is initiated with power provided by the V_{CAP} capacitor.

Note If the capacitor is not connected to the V_{CAP} pin, AutoStore must be disabled using the soft sequence specified in the section Preventing AutoStore on page 9. If AutoStore is enabled without a capacitor on the V_{CAP} pin, the device attempts an AutoStore operation without sufficient charge to complete the STORE. This corrupts the data stored in the nvSRAM.

Figure 2. AutoStore Mode

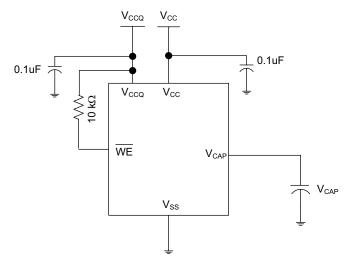


Figure 2 shows the proper connection of the storage capacitor (V_{CAP}) for automatic STORE operation. Refer to DC Electrical Characteristics on page 10 for the size of the V_{CAP} . The voltage on the V_{CAP} pin is driven to V_{VCAP} by a regulator on the chip. A pull-up resistor should be placed on \overline{WE} to hold it inactive during power-up. This pull-up resistor is only effective if the \overline{WE} signal is in tristate during power-up. When the nvSRAM comes out of power-up-RECALL, the host microcontroller must be active or the \overline{WE} held inactive until the host microcontroller comes out of reset.

To reduce unnecessary nonvolatile STOREs, AutoStore and Hardware STORE operations are ignored unless at least one write operation has taken place (which sets a write latch) since the most recent STORE or RECALL cycle. Software initiated STORE cycles are performed regardless of whether a write operation has taken place.

Hardware STORE (HSB) Operation

The CY14V116N provides the $\overline{\text{HSB}}$ pin to control and acknowledge the STORE operations. The $\overline{\text{HSB}}$ pin is used to request a Hardware STORE cycle. When the HSB pin is driven LOW, the device conditionally initiates a STORE operation after to the STORE cycle begins only if a write to the SRAM has taken place since the last STORE or RECALL cycle. The $\overline{\text{HSB}}$ pin also acts as an open drain driver (an internal 100-k Ω weak pull-up resistor) that is internally driven LOW to indicate a busy condition when the STORE (initiated by any means) is in progress.

Note After each Hardware and Software STORE operation, $\overline{\text{HSB}}$ is driven HIGH for a short time (t_{HHHD}) with standard output high current and then remains HIGH by an internal 100-k Ω pull-up resistor.

SRAM write operations that are in progress when $\overline{\text{HSB}}$ is driven LOW by any means are given time (t_{DELAY}) to complete before the STORE operation is initiated. However, any SRAM write cycles requested after $\overline{\text{HSB}}$ goes LOW are inhibited until $\overline{\text{HSB}}$ returns HIGH. If the write latch is not set, $\overline{\text{HSB}}$ is not driven LOW by the device. However, any of the SRAM read and write cycles are inhibited until $\overline{\text{HSB}}$ is returned HIGH by the host microcontroller or another external source.

During any STORE operation, regardless of how it is initiated, the device continues to drive the $\overline{\text{HSB}}$ pin LOW, releasing it only when the STORE is complete. Upon completion of the STORE operation, the nvSRAM memory access is inhibited for t_{LZHSB} time after the $\overline{\text{HSB}}$ pin returns HIGH. Leave the $\overline{\text{HSB}}$ unconnected if it is not used.

Hardware RECALL (Power-Up)

During power-up or after any low-power condition ($V_{CC} < V_{SWITCH}$), an internal RECALL request is latched. When V_{CC} again exceeds the V_{SWITCH} on power-up, a RECALL cycle is automatically initiated and takes $t_{HRECALL}$ to complete. During this time, the \overline{HSB} pin is driven LOW by the \overline{HSB} driver and all reads and writes to nvSRAM are inhibited.

Software STORE

Data is transferred from the SRAM to the nonvolatile memory by a software address sequence. A Software STORE cycle is initiated by executing sequential CE or OE controlled read cycles from six specific address locations in exact order. During the STORE cycle, the previous nonvolatile data is first erased, followed by a store into the nonvolatile elements. After a STORE cycle is initiated, further reads and writes are disabled until the cycle is completed.

Because a sequence of reads from specific addresses is used for STORE initiation, it is important that no other read or write accesses intervene in the sequence. Otherwise, the sequence is aborted and no STORE or RECALL takes place.

To initiate the Software STORE cycle, the following read sequence must be performed:

- 1. Read address 0x4E38 Valid Read
- 2. Read address 0xB1C7 Valid Read
- 3. Read address 0x83E0 Valid Read
- 4. Read address 0x7C1F Valid Read
- 5. Read address 0x703F Valid Read
- 6. Read address 0x8FC0 Initiate STORE cycle

The software sequence may be clocked with CE-controlled reads or $\overline{\text{OE}}$ -controlled reads, with $\overline{\text{WE}}$ kept HIGH for all the six read sequences. After the sixth address in the sequence is entered, the STORE cycle commences and the chip is disabled. HSB is driven LOW. After the t_{STORE} cycle time is fulfilled, the SRAM is activated again for the read and write operation.

Software RECALL

Data is transferred from the nonvolatile memory to the SRAM by a software address sequence. A software RECALL cycle is initiated with a sequence of read operations in a manner similar to the Software STORE initiation. To initiate the RECALL cycle, perform the following sequence of $\overline{\text{CE}}$ or $\overline{\text{OE}}$ controlled read operations:

- 1. Read address 0x4E38 Valid Read
- 2. Read address 0xB1C7 Valid Read
- 3. Read address 0x83E0 Valid Read
- 4. Read address 0x7C1F Valid Read
- 5. Read address 0x703F Valid Read
- 6. Read address 0x4C63 Initiate RECALL cycle

Internally, RECALL is a two-step procedure. First, the SRAM data is cleared; then, the nonvolatile information is transferred into the SRAM cells. After the t_{RECALL} cycle time, the SRAM is again ready for read and write operations. The RECALL operation does not alter the data in the nonvolatile elements.

Sleep Mode

In Sleep mode, the device consumes the lowest power supply current (I_{ZZ}). The device enters a low-power Sleep mode after asserting the \overline{ZZ} pin LOW. After the Sleep mode is registered, the nvSRAM does a STORE operation to secure the data to the nonvolatile memory and then enters the low-power mode. The device starts consuming I_{ZZ} current after t_{SLEEP} time from the instance when the Sleep mode is initiated. When the \overline{ZZ} pin is LOW, all input pins are ignored except the \overline{ZZ} pin. The nvSRAM is not accessible for normal operations while it is in Sleep mode.

When the \overline{ZZ} pin is de-asserted (HIGH), there is a delay t_{WAKE} before you can access the device. If Sleep mode is not used, the \overline{ZZ} pin should be tied to V_{CCO} .

Note When nvSRAM enters the Sleep mode, it initiates a nonvolatile STORE cycle, which results in losing one endurance cycle for every Sleep mode entry unless the data was not written to the nvSRAM since the last nonvolatile STORE/RECALL operation.

Figure 3. Sleep Mode (ZZ) Flow Diagram

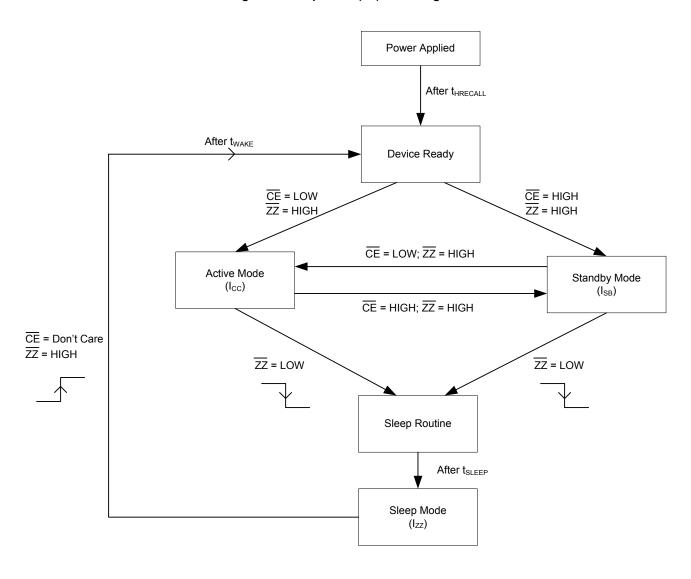


Table 2. Mode Selection

CE [3]	WE	OE	BHE, BLE	A ₁₅ - A ₀ ^[4]	Mode	I/O	Power
Н	Х	Х	Х	Х	Not selected	Output High Z	Standby
L	Н	L	L	Х	Read SRAM	Output Data	Active
L	L	Х	L	Х	Write SRAM	Input Data	Active
L	Н	L	X	0x4E38 0xB1C7 0x83E0 0x7C1F 0x703F 0x8B45	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM AutoStore Disable	Output Data	Active ^[5]
L	Н	L	X	0x4E38 0xB1C7 0x83E0 0x7C1F 0x703F 0x4B46	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM AutoStore Enable	Output Data	Active ^[5]
L	Н	L	X	0x4E38 0xB1C7 0x83E0 0x7C1F 0x703F 0x8FC0	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile STORE	Output Data Output Data Output Data Output Data Output Data Output Data Output High Z	Active I _{CC2} ^[5]
L	Н	L	X	0x4E38 0xB1C7 0x83E0 0x7C1F 0x703F 0x4C63	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile RECALL	Output Data Output Data Output Data Output Data Output Data Output Data Output High Z	Active ^[5]

^{3.} In this datasheet, $\overline{\text{CE}}$ refers to the internal logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ such that when $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW. Intermediate voltage levels are not permitted on any of the chip enable pins.

4. While there are 20 address lines on the CY14V116N, only 13 address lines (A₁₄–A₂) are used to control software modes. The remaining address lines are don't care.

^{5.} The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a nonvolatile operation.

Preventing AutoStore

The AutoStore function is disabled by initiating an AutoStore disable sequence. A sequence of read operations is performed in a manner similar to the Software STORE initiation. To initiate the AutoStore disable sequence, the following sequence of $\overline{\text{CE}}$ or $\overline{\text{OE}}$ controlled read operations must be performed:

- 1. Read address 0x4E38 Valid Read
- 2. Read address 0xB1C7 Valid Read
- 3. Read address 0x83E0 Valid Read
- 4. Read address 0x7C1F Valid Read
- 5. Read address 0x703F Valid Read
- 6. Read address 0x8B45 AutoStore Disable

AutoStore is re-enabled by initiating an AutoStore enable sequence. A sequence of read operations is performed in a manner similar to the software RECALL initiation. To initiate the AutoStore enable sequence, the following sequence of CE or OE controlled read operations must be performed:

- 1. Read address 0x4E38 Valid Read
- 2. Read address 0xB1C7 Valid Read
- 3. Read address 0x83E0 Valid Read
- 4. Read address 0x7C1F Valid Read
- 5. Read address 0x703F Valid Read
- 6. Read address 0x4B46 AutoStore Enable

If the AutoStore function is disabled or re-enabled, a manual software STORE operation must be performed to save the AutoStore state through subsequent power-down cycles. The part comes from the factory with AutoStore enabled and 0x00 written in all cells.

Data Protection

The CY14V116N protects data from corruption during low-voltage conditions by inhibiting all externally initiated STORE and write operations. The low-voltage condition is detected when V_{CC} is less than $V_{\underline{SWITCH}}$. If the CY14V116N is in a Write mode at power-up (both \overline{CE} and \overline{WE} are LOW), after a RECALL or STORE, the write is inhibited until the SRAM is enabled after t_{LZHSB} (HSB to output active). When $V_{CC} < V_{IODIS}$, I/Os are disabled (no STORE takes place). This protects against inadvertent writes during power-up or brown out conditions.

Maximum Ratings

Package power dissipation capability (T _A = 25 °C)1.0 W
Surface mount lead soldering temperature (3 Seconds)+260 °C
DC output current (1 output at a time, 1s duration)20 mA
Static discharge voltage > 2001 V (per MIL-STD-883, Method 3015)
Latch-up current > 140 mA

Operating Range

Range	Ambient Temperature (T _A)	V _{CC}	V _{CCQ}
Industrial	–40 °C to +85 °C	2.7 V to 3.6 V	1.65 V to 1.95 V

DC Electrical Characteristics

Over the Operating Range

Parameter	Description	Test Conditions		Min	Typ ^[6]	Max	Unit
V _{CC}	Core power supply			2.7	3.0	3.6	V
V _{CCQ}	I/O power supply]	-	1.65	1.80	1.95	V
I _{CC1}	Average V _{CC} current	Values obtained without output loads	t_{RC} = 30 ns	_	_	95	mA
		$(I_{OUT} = 0 \text{ mA})$	t _{RC} = 45 ns	-	_	75	mA
I _{CCQ1}	Average V _{CCQ} current	Values obtained without output loads	Values obtained without output loads $t_{RC} = 30 \text{ ns}$ $t_{RC} = 45 \text{ ns}$		_	30	mA
		(I _{OUT} = 0 mA)			-	25	mA
I _{CC2}	Average V _{CC} current during STORE	All inputs don't care, $V_{CC} = V_{CC}$ (max Average current for duration t_{STORE}	-	-	10	mA	
I _{CC3}	Average V_{CC} current at t_{RC} = 200 ns, V_{CC} (typ), 25 °C	All inputs cycling at CMOS levels. Values obtained without output loads mA).	(I _{OUT} = 0	-	50	_	mA
I _{CCQ3}	Average V_{CC} current at t_{RC} = 200 ns, V_{CCQ} (typ), 25 °C	All inputs cycling at CMOS levels. Values obtained without output loads mA).	(I _{OUT} = 0	_	15	_	mA
I _{CC4} ^[7]	Average V _{CAP} current during AutoStore cycle	All inputs don't care. Average current t _{STORE}	for duration	-	-	6	mA
I _{SB}	V _{CC} standby current	$\overline{CE} \ge (V_{CCQ} - 0.2 \text{ V}). V_{IN} \le 0.2 \text{ V or } \ge$	t _{RC} = 30 ns	_	_	650	μА
	(V _{CCQ} – 0.2 V). Standby current level after nonvolatile cycle is complete. Inputs are static. f = 0 MHz.		t _{RC} = 45 ns	_	-	500	μА
I _{ZZ}	Sleep mode current	All inputs are static at CMOS level		_	_	10	μА

^{6.} Typical values are at 25 °C, $V_{CC} = V_{CC}$ (typ) and $V_{CCQ} = V_{CCQ}$ (typ). Not 100% tested.

^{7.} This parameter is only guaranteed by design and is not tested.

DC Electrical Characteristics (continued)

Over the Operating Range

Parameter	Description	Test Conditions	Min	Typ ^[6]	Max	Unit
I _{IX} [8]	Input leakage current (except HSB)	$V_{CC} = V_{CC}$ (max), $V_{SS} \le V_{IN} \le V_{CC}$	– 1	_	+1	μА
	Input leakage current (for HSB)	$V_{CC} = V_{CC}$ (max), $V_{SS} \le V_{IN} \le V_{CC}$	-100	-	+1	μА
I _{OZ}	Off state output leakage current	$V_{CC} = V_{CC}$ (max), $V_{SS} \le V_{OUT} \le V_{CC}$, \overline{CE} or $\overline{OE} \ge V_{IH}$ or $\overline{BLE}/\overline{BHE} \ge V_{IH}$ or $\overline{WE} \le V_{IL}$	–1	-	+1	μА
V _{IH}	Input HIGH voltage		$0.7 \times V_{CCQ}$	-	V _{CCQ} + 0.3	V
V _{IL}	Input LOW voltage		$V_{ss} - 0.3$	_	$0.3 \times V_{CCQ}$	V
V _{OH}	Output HIGH voltage	I _{OUT} = –1 mA	V _{CCQ} - 0.45	-	-	V
V _{OL}	Output LOW voltage	I _{OUT} = 2 mA	-	-	0.45	V
V _{CAP} ^[9]	Storage capacitor	Between V _{CAP} pin and V _{SS}	19.8	22.0	82.0	μF
V _{VCAP} ^[10, 11]	Maximum voltage driven on V _{CAP} pin by the device	$V_{CC} = V_{CC} \text{ (max)}$	-	_	5.0	V

Data Retention and Endurance

Over the Operating Range

Parameter	Description	Min	Unit
DATA _R	Data retention	20	Years
NV _C	Nonvolatile STORE operations	1,000,000	Cycles

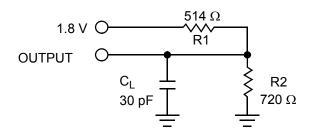
Capacitance

In the following table, the capacitance parameters are listed. [11]

Parameter	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	T _A = 25 °C, f = 1 MHz,	10	pF
C _{IO}	Input/Output capacitance	$V_{CC} = V_{CC}$ (typ), $V_{CCQ} = V_{CCQ}$ (typ)	10	pF
C _{OUT}	Output capacitance		10	pF

Thermal Resistance

In the following table, the thermal resistance parameters are listed. [11]


Parameter	Description	Test Conditions	165-FBGA	Unit
Θ_{JA}	Thermal resistance (Junction to ambient)	Test conditions follow standard test methods and procedures for	15.6	°C/W
Θ_{JC}	Thermal resistance (Junction to case)	measuring thermal impedance, in accordance with EIA/JESD51.	2.9	°C/W

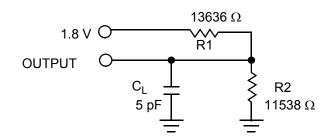
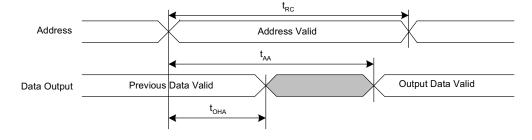

- 8. The HSB pin has I_{OUT} = -4 uA for V_{OH} of 1.07 V when both active HIGH and LOW drivers are disabled. When they are enabled standard V_{OH} and V_{OL} are valid. This parameter is characterized but not tested
- 9. Min V_{CAP} value guarantees that there is a sufficient charge available to complete a successful AutoStore operation. Max V_{CAP} value guarantees that the capacitor on V_{CAP} is charged to a minimum voltage during a Power-Up RECALL cycle so that an immediate power-down cycle can complete a successful AutoStore. Therefore, it is always recommended to use a capacitor within the specified min and max limits.
- 10. Maximum voltage on V_{CAP} pin (V_{VCAP}) is provided for guidance when choosing the V_{CAP} capacitor. The voltage rating of the V_{CAP} capacitor across the operating temperature range should be higher than the V_{VCAP} voltage
- 11. These parameters are only guaranteed by design and are not tested.

Figure 4. AC Test Loads and Waveforms

For Tristate specs

AC Test Conditions

Input pulse levels	0 V to 1.8 V
Input rise and fall times (10% - 90%)	<u>≤</u> 3 ns
Input and output timing reference levels	0.9 V



AC Switching Characteristics

Over the Operating Range^[12]

Parameters			30	ns	45 ns		
Cypress Parameter	Alt Parameter	Description	Min	Max	Min	Max	Unit
SRAM Read Cyc	le		•	•		•	•
t _{ACE}	t _{ACS}	Chip enable access time	_	30	_	45	ns
t _{RC} [14]	t _{RC}	Read cycle time	30	-	45	-	ns
t _{AA} ^[15]	t _{AA}	Address access time	_	30	_	45	ns
tooe	t _{OE}	Output enable to data valid	_	14	_	20	ns
t _{OHA} ^[15]	t _{OH}	Output hold after address change	3	-	3	-	ns
tizce [10]	t _{LZ}	Chip enable to output active	3	_	3	_	ns
t _{HZCE} [13, 16]	t _{HZ}	Chip disable to output inactive	_	12	_	15	ns
t _{IZOE} [10]	t _{OLZ}	Output enable to output active	0	_	0	_	ns
t _{HZOF} [13, 16]	t _{OHZ}	Output disable to output inactive	_	12	_	15	ns
t _{PU} [16]	t _{PA}	Chip enable to power active	0	_	0	_	ns
t _{PD} ^[16]	t _{PS}	Chip disable to power standby	_	30	_	45	ns
tore	-	Byte enable to data valid	_	14	_	20	ns
t _{LZBE} ^[16]	-	Byte enable to output active	0	_	0	_	ns
t _{HZBE} [13, 16]	-	Byte disable to output inactive	_	12	_	15	ns
SRAM Write Cyc	le		•				
t _{WC}	t _{WC}	Write cycle time	30	_	45	_	ns
t _{PWE}	t _{WP}	Write pulse width	24	_	30	_	ns
t _{SCE}	t _{CW}	Chip enable to end of write	24	_	30	_	ns
t _{SD}	t _{DW}	Data setup to end of write	14	_	15	_	ns
t _{HD}	t _{DH}	Data hold after end of write	0	_	0	_	ns
t _{AW}	t _{AW}	Address setup to end of write	24	_	30	_	ns
t _{SA}	t _{AS}	Address setup to start of write	0	_	0	_	ns
tua	t _{WR}	Address hold after end of write	0	_	0	_	ns
t _{HZWE} [13, 16, 17]	t _{WZ}	Write enable to output disable	_	12	_	15	ns
t _{LZWE} ^[16]	t _{OW}	Output active after end of write	3	_	3	_	ns
t _{BW}	-	Byte enable to end of write	24	_	30	_	ns

Figure 5. SRAM Read Cycle 1: Address Controlled^[14, 15, 18]

- 12. Test conditions assume a signal transition time of 3 ns or less, timing reference levels of V_{CCQ}/2, input pulse levels of 0 to V_{CCQ} (typ), and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance, as shown in Figure 4 on page 12.
- 13. t_{HZCE}, t_{HZOE}, t_{HZBE}, and t_{HZWE} are specified with a load capacitance of 5 pF. Transition is measured ±200 mV from the steady state output voltage.
- 14. WE must be HIGH during SRAM read cycles.
- 15. Device is continuously selected with $\overline{\text{CE}}$, $\overline{\text{OE}}$ and $\overline{\text{BLE}}$, $\overline{\text{BHE}}$ LOW.
- 16. These parameters are only guaranteed by design and are not tested.
- 17. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.
- 18. HSB must remain HIGH during Read and Write cycles.

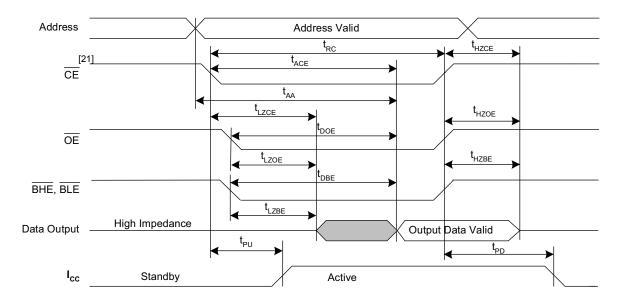
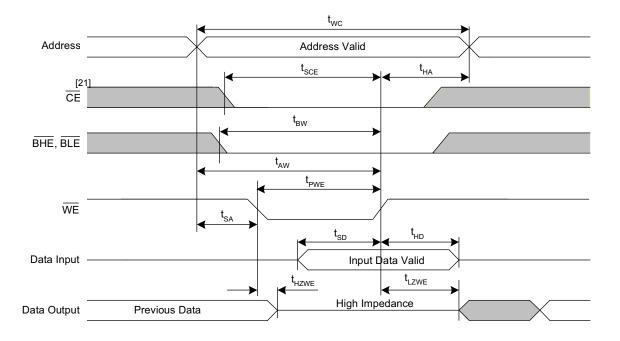



Figure 6. SRAM Read Cycle 2: $\overline{\text{CE}}$ and $\overline{\text{OE}}$ Controlled^[19, 20]

Figure 7. SRAM Write Cycle 1: WE Controlled^[22, 20, 23]

- 19. WE must be HIGH during SRAM read cycles.
- 20. HSB must remain HIGH during Read and Write cycles.
- 21. In this datasheet $\overline{\text{CE}}$ refers to the internal logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ such that when $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW. Intermediate voltage levels are not permitted on any of the chip enable pins.

 22. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.
- 23. CE or WE must be ≥V_{IH} during address transitions.

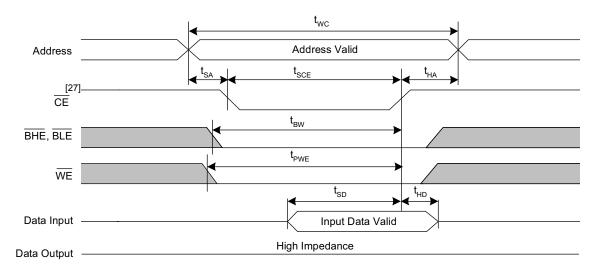
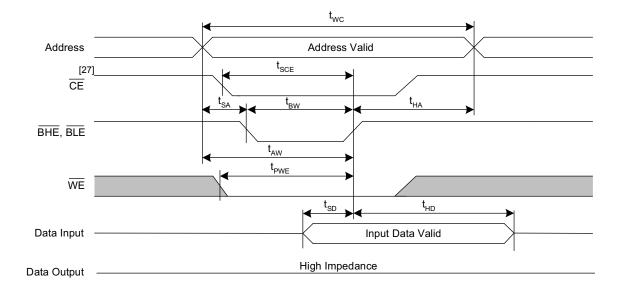
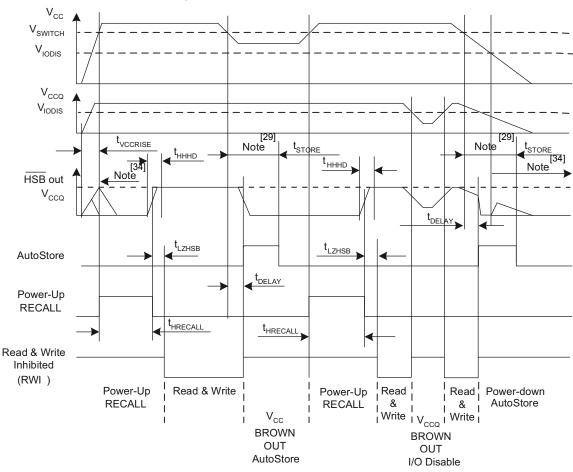



Figure 8. SRAM Write Cycle 2: $\overline{\text{CE}}$ Controlled^[24, 25, 26]

Figure 9. SRAM Write Cycle 3: BHE, BLE Controlled^[24, 25, 26]

^{24.} If WE is LOW when CE goes LOW, the outputs remain in the high-impedance state.
25. HSB must remain HIGH during Read and Write cycles.

^{26.} CE or WE must be ≥V_{IH} during address transitions.
27. In this datasheet, CE refers to the internal logical combination of CE₁ and CE₂ such that when CE₁ is LOW and CE₂ is HIGH, CE is LOW. Intermediate voltage levels are not permitted on any of the chip enable pins.



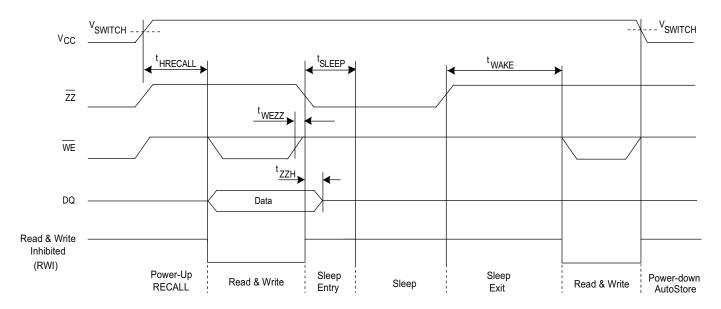
AutoStore/Power-Up RECALL Characteristics

Over the Operating Range

Parameter	Description	Min	Max	Unit
t _{HRECALL} [28]	Power-Up RECALL duration	_	30	ms
t _{STORE} [29]	STORE cycle duration	_	8	ms
t _{DELAY} [30, 31]	Time allowed to complete SRAM write cycle	_	25	ns
V _{SWITCH}	Low voltage trigger level	_	2.65	V
t _{VCCRISE} [31]	V _{CC} rise time	150	_	μS
V _{IODIS} ^[32]	I/O disable voltage on V _{CCQ}	_	1.5	V
V _{HDIS} ^[31]	HSB output disable voltage	_	1.9	V
t _{LZHSB} [31]	HSB to output active time	_	5	μS
t _{HHHD} [31]	HSB HIGH active time	_	500	ns

Figure 10. AutoStore or Power-Up RECALL^[33]

- 28. $t_{HRECALL}$ starts from the time V_{CC} rises above V_{SWITCH} .
- 29. If an SRAM write has not taken place since the last nonvolatile cycle, no AutoStore or Hardware STORE takes place.
- 30. On a Hardware STORE and AutoStore initiation, SRAM write operation continues to be enabled for time t_{DELAY}.
- 31. These parameters are only guaranteed by design and are not tested.
- 32. $\overline{\text{HSB}}$ is not defined below V_{IODIS} voltage.
- 33. Read and Write cycles are ignored during STORE, RECALL, and while V_{CC} is below V_{SWITCH}.
- 34. During power-up and power-down, HSB glitches when HSB pin is pulled up through an external resistor.



Sleep Mode Characteristics

Over the Operating Range

Parameter	Description	Min	Max	Unit
t _{WAKE}	Sleep mode exit time (ZZ HIGH to first access after wakeup)	_	30	ms
t _{SLEEP}	Sleep mode enter time (ZZ LOW to CE don't care)	_	8	ms
t _{ZZL}	ZZ active LOW time	50	_	ns
t _{WEZZ}	Last write to Sleep mode entry time	0	_	μS
t _{ZZH}	ZZ active to DQ Hi-Z time	_	70	ns

Figure 11. Sleep Mode^[35]

Note

^{35.} Device initiates sleep routine and enters into Sleep mode after $t_{\mbox{\scriptsize SLEEP}}$ duration.

Software Controlled STORE and RECALL Characteristics

Over the Operating Range^[36, 37]

Parameter	Description	Description 30 ns				Unit
raiailletei	Description	Min	Max	Min	Max	Oille
t _{RC}	STORE/RECALL initiation cycle time	30	_	45	-	ns
t _{SA}	Address setup time	0	_	0	_	ns
t _{CW}	Clock pulse width	24	_	30	-	ns
t _{HA}	Address hold time	0	_	0	-	ns
t _{RECALL}	RECALL duration	_	600	-	600	μS
t _{SS} [38, 39]	Soft sequence processing time	_	500	-	500	μS

Figure 12. CE and OE Controlled Software STORE and RECALL Cycle^[37]

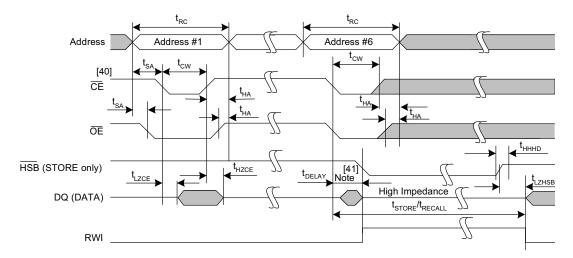
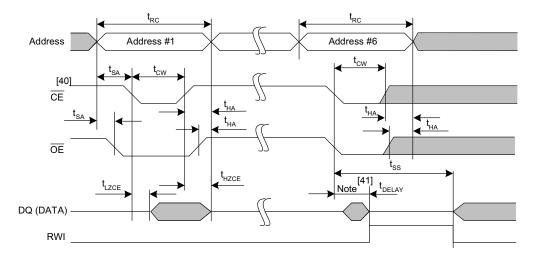
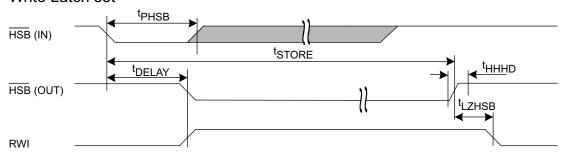



Figure 13. AutoStore Enable and Disable Cycle

- 36. The software sequence is clocked with \overline{CE} controlled or \overline{OE} controlled reads.
- 37. The six consecutive addresses must be read in the order listed in Table 2 on page 8. WE must be HIGH during all six consecutive cycles.
- 38. This is the amount of time it takes to take action on a soft sequence command. Vcc power must remain high to effectively register command.
- 39. Commands such as STORE and RECALL lock out I/O until the operation is complete which further increases this time. See the specific command.

 40. In this datasheet, $\overline{\text{CE}}$ refers to the internal logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ such that when $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW. Intermediate voltage levels are not permitted on any of the chip enable pins.
- 41. DQ output data at the sixth read may be invalid because the output is disabled at t_{DELAY} time.


Hardware STORE Characteristics

Over the Operating Range

Parameter	Description	Min	Max	Unit
t _{DHSB}	HSB to output active time when write latch not set	-	25	ns
t _{PHSB}	Hardware STORE pulse width	15	ı	ns

Figure 14. Hardware STORE Cycle^[42]

Write Latch set

Write Latch not set

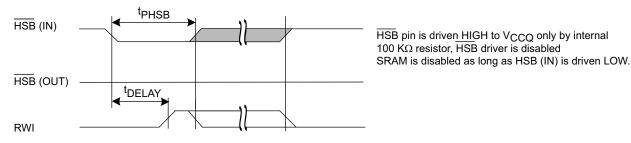
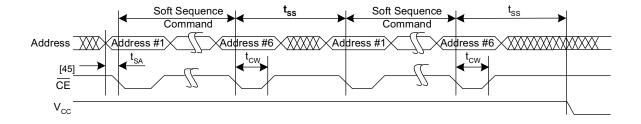



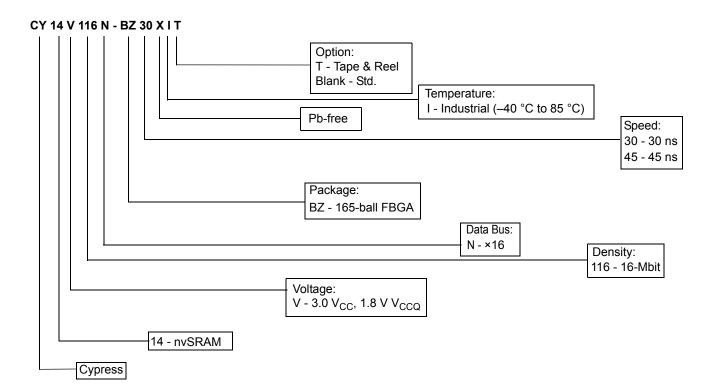
Figure 15. Soft Sequence Processing[100, 414]

- 42. If an SRAM write has not taken place since the last nonvolatile cycle, no AutoStore or Hardware STORE takes place.
- 43. This is the amount of time it takes to take action on a soft sequence command. Vcc power must remain high to effectively register command.
- 44. Commands, such as STORE and RECALL, lock out I/O until the operation is complete which further increases this time. See the specific command.
- 45. In this datasheet, $\overline{\text{CE}}$ refers to the internal logical combination of $\overline{\text{CE}}_1$ and CE_2 such that when $\overline{\text{CE}}_1$ is LOW and CE_2 is HIGH, $\overline{\text{CE}}$ is LOW. Intermediate voltage levels are not permitted on any of the chip enable pins.

Truth Table For SRAM Operations

 $\overline{\mbox{HSB}}$ should remain HIGH for SRAM Operations.

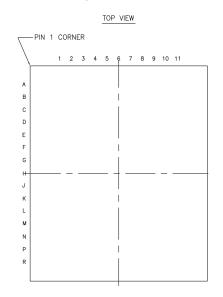
CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs and Outputs	Mode	Power
Н	X	X	Χ	X	Х	High-Z	Deselect/Power-down	Standby
Х	L	Х	Х	Х	Х	High-Z	Deselect/Power-down	Standby
L	Н	Х	Х	Н	Н	High-Z	Output disabled	Active
L	Н	Н	L	L	L	Data out (DQ ₀ –DQ ₁₅)	Read	Active
L	Н	Н	L	Н	L	Data out (DQ ₀ –DQ ₇); DQ ₈ –DQ ₁₅ in High-Z	Read	Active
L	Н	Н	L	L	Н	Data out (DQ ₈ –DQ ₁₅); DQ ₀ –DQ ₇ in High-Z	Read	Active
L	Н	Н	Н	Х	Х	High-Z	Output disabled	Active
L	Н	L	Х	L	L	Data in (DQ ₀ –DQ ₁₅)	Write	Active
L	Н	L	Х	Н	L	Data in (DQ ₀ –DQ ₇); DQ ₈ –DQ ₁₅ in High-Z	Write	Active
L	Н	L	Х	L	Н	Data in (DQ ₈ –DQ ₁₅); DQ ₀ –DQ ₇ in High-Z	Write	Active

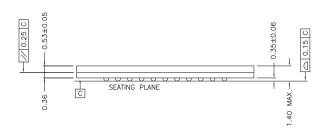


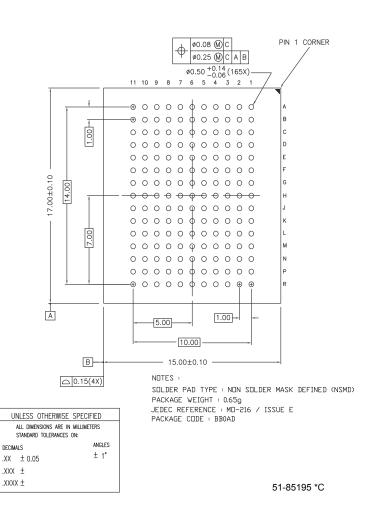
Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
30	CY14V116N-BZ30XI	51-85195	165-ball FBGA	Industrial
45	CY14V116N-BZ45XI			

All parts are Pb-free. Contact your local Cypress sales representative for availability of these parts.


Ordering Code Definition





Package Diagram

Figure 16. 165-ball FBGA (15 mm × 17 mm × 1.40 mm) Package Outline (51-85195)

Acronyms

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
EIA	Electronic Industries Alliance
FBGA	Fine-Pitch Ball Grid Array
I/O	Input/Output
JESD	JEDEC Standards
nvSRAM	nonvolatile Static Random Access Memory
RoHS	Restriction of Hazardous Substances
RWI	Read and Write Inhibited

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degrees celsius			
Hz	hertz			
Kbit	kilobit			
kHz	kilohertz			
kΩ	kiloohm			
μΑ	microampere			
mA	milliampere			
μF	microfarad			
Mbit	megabit			
MHz	megahertz			
μS	microsecond			
ms	millisecond			
ns	nanosecond			
pF	picofarad			
V	volt			
Ω	ohm			
W	watt			

Document History Page

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	3516347	GVCH	02/03/2011	New data sheet.
*A	3733467	GVCH	09/14/2012	Updated Device Operation (Added Figure 3 under Sleep Mode). Updated Maximum Ratings (Changed "Ambient temperature with power applied" to "Maximum junction temperature"). Updated DC Electrical Characteristics (Added V _{VCAP} parameter and its details, added footnote 9 and referred the same note in V _{VCAP} parameter). Updated Capacitance (Changed maximum value of C _{IN} and C _{OUT} parameters from 7 pF to 11.5 pF). Added Sleep Mode and Switching Waveforms (Corresponding to SLEEP Mode).
*B	3944873	GVCH	03/26/2013	Removed 2.5 V operating range voltage support Removed 25 ns access speed and added 30 ns access speed Changed V _{CCQ} max voltage value from V _{CC} to 1.95 V Removed ×32 configuration support Changed V _{IH} , V _{IL} , V _{OL} , V _{OH} spec values Updated Capacitance (Changed maximum value of C _{IN} and C _{OUT} parameters from 11.5 pF to 8 pF). Changed R1 value from13636 Ω to 514 Ω and R2 value from 11538 Ω to 720 Ω
*C	4260504	GVCH	01/24/2014	Modified Logic Block Diagram for more clarity. Updated AutoStore Operation (Power-Down): Removed sentence "The HSB signal is monitored by the system to detect if an AutoStore cycle is in progress." Modified Figure 3 for more clarity. Added I_{SB} max spec value for 45 ns access speed Added footnote 6 Changed V_{CAP} min value from 20 μF to 19.8 μF Added footnote 13 Updated Figure 10 and Figure 11 for more clarity Changed t_{ZZH} max value from 20 ns to 70 ns
*D	4417851	GVCH	06/24/2014	DC Electrical Characteristics: Added footnote 7 Updated maximum value of V _{VCAP} parameter from 4.5 V to 5.0 V Capacitance: Updated C _{IN} and C _{OUT} value from 8 pF to 10 pF Added C _{IO} parameter Updated Thermal Resistance values
*E	4432183	GVCH	07/07/2014	DC Electrical Characteristics: Updated maximum value of V_{CAP} parameter from 120.0 μF to 82.0 μF
*F	4456803	ZSK	07/31/2014	No content update.
*G	4571551	ZSK	11/17/2014	Added documentation related hyperlink in page 1.
*H	4616093	GVCH	01/07/2015	Changed datasheet status from Preliminary to Final.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive Clocks & Buffers Interface

Lighting & Power Control

Memory
PSoC
Touch Sensing
USB Controllers
Wireless/RF

cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2011-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.