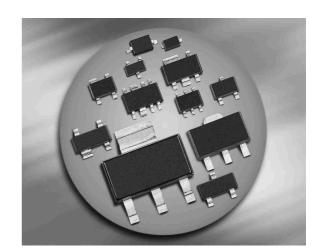


Silicon Variable Capacitance Diode

- For FM radio tuner with extended frequency band 77MHz to 108MHz
- Designed for application requiring back-to-back diode configuration for optimum signal distortion and detuning
- High tuning ratio at low supply voltage (car radio)
- Monolitic chip (common cathode) for perfect dual diode tracking
- Good C- V linearity
- High figure of merit
- Pb-free (RoHS compliant) package

BB844

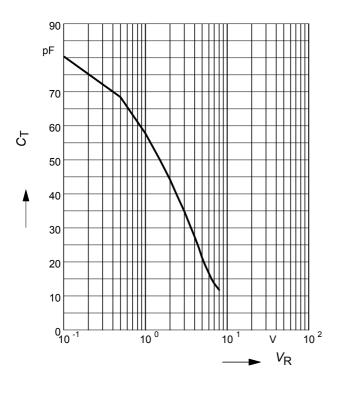


Туре	Package	Configuration	L _S (nH)	Marking
BB844	SOT23	common cathode	1.8	SNe

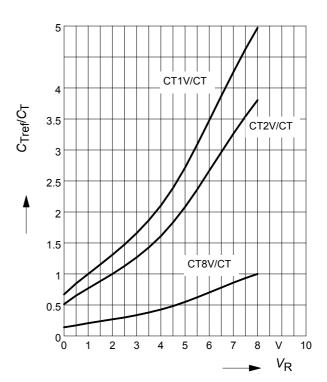
Maximum Ratings at $T_A = 25^{\circ}$ C, unless otherwise specified

Parameter	Symbol	Value	Unit
Diode reverse voltage	V_{R}	18	V
Peak reverse voltage	V_{RM}	20	
Forward current	I _F	50	mA
Operating temperature range	T_{op}	-55 150	°C
Storage temperature	$T_{ m stq}$	-55 150	

1

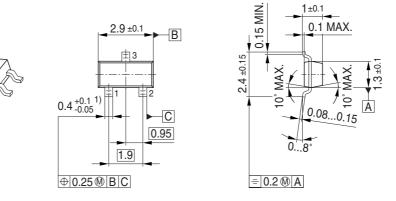

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics	·	•			
Reverse current	I_{R}				nA
V _R = 16 V		-	-	20	
V_{R} = 16 V, T_{A} = 85 °C		-	-	200	
AC Characteristics					
Diode capacitance	C _T				pF
$V_{R} = 2 \text{ V}, f = 1 \text{ MHz}$		42.5	43.75	45	
$V_{R} = 4 \text{ V}, f = 1 \text{ MHz}$		25	27	29	
$V_{R} = 8 \text{ V}, f = 1 \text{ MHz}$		10	11.5	13	
Capacitance ratio	C _{T2} /C _{T8}	3.2	3.8	-	
$V_{R} = 2 \text{ V}, V_{R} = 8 \text{ V}, f = 1 \text{ MHz}$					
Capacitance matching ¹⁾	$\Delta C_{T}/C_{T}$	-	-	1.5	%
V_{R} = 2V to 8V , f = 1 MHz					
Series resistance	$r_{\rm S}$	-	0.28	_	Ω
$V_{R} = 2 \text{ V}, f = 100 \text{ MHz}$					

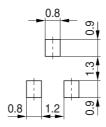

¹For details please refer to Application Note 047.

Diode capacitance $C_T = f(V_R)$ f = 1MHz

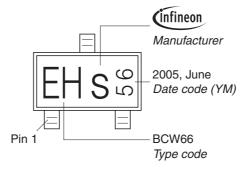
Capacitance ratio $C_{\text{Tref}}/C_{\text{T}} = f(V_{\text{R}})$ f = 1 MHz



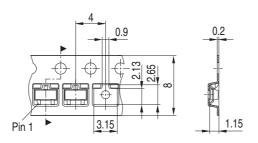
Temperature coefficient of the diode capacitance $T_{Cc} = f(V_R)$



Package Outline



Foot Print



Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

4

Edition 2009-11-16

Published by Infineon Technologies AG 81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

5