TEST REPORT OF THE Inventek Systems 2.4 GHz e-BT SIP Module Models: ISM4343-X IN CONFORMANCE WITH ETSI EN 300 328 V2.1.1 (2016-11) Harmonized EN covering essential requirements under article 3.2 of the Radio Equipment Directive (RED) 2014/53/EU			
Remarks:Equipment complied with the specificationEquipment did not comply with the specificationResults were within measurement uncertainties			
This report is issued Under the Authority of: Alan Ghasiani Signature: Man Man			
Tested By: Signature Afzal Fazal Ubyul Fazal			
Issue Date:	Test Dates:		
December 18, 2018	November 2, 2018 to December 6, 2018		

TESTING NVLAP LAB CODE 200162-0

This report shall not be reproduced except in full. This report may be copied in part only with the prior written approval of US Tech. The results contained in this report are subject to the adequacy and representative character of the sample provided. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the Federal Government.

> 3505 Francis Circle Alpharetta, MA 30004 PH: 770-740-0717 Fax: 770-740-1508 www.US Tech-lab.com

> > Page 1 of 70

Table of Contents

Clause <u>Title</u>

Page

1	P	urpose of the Test Report	5
2	ld	entification and Characteristics of Equipment Under Test	5
3	St	andard Specific Transmitter Requirements	7
4	Τe	echnical Summary	18
5	Μ	easurements, Examinations and Derived Results	20
	5.1	Tests Required	20
	5.2	General Comments	21
	5.3	Test Results	23
	5.4	RF Exposure	59
6	Τe	est Instruments	60
7	Pl	notographs	61

List of Figures

Number <u>Title</u>

<u>Page</u>

Figure 1. Hopping Frequency Separation2	25
Figure 2. 2402 MHz Low Channel Occupied Bandwidth2	27
Figure 3. 2440 MHz Mid Channel Occupied Bandwidth2	28
Figure 4. 2480 MHz High Channel Occupied Bandwidth	<u>29</u>
Figure 5. Transmitter Unwanted Emissions in the Out-of-Band Domain Limits3	30
Figure 6. 2402 MHz, Low Channel TX OOB (2BW-BW)	31
Figure 7. 2402 MHz, Low Channel TX OOB (BW-BE)	32
Figure 8. 2480 MHz, High Channel TX OOB (BE+BW)	33
Figure 9. 2480 MHz, High Channel TX OOB (BW+2BW)	34
Figure 10. Conducted Spurious Emissions 2402 MHz Low Channel	38
Figure 11. Conducted Spurious Emissions 2402 MHz Low Channel	39
Figure 12. Conducted Spurious Emissions 2402 MHz Low Channel	10
Figure 13. Conducted Spurious Emissions 2402 MHz High Channel	11
Figure 14. Conducted Spurious Emissions 2402 MHz High Channel	12
Figure 15. Conducted Spurious Emissions 2402 MHz High Channel	13
Figure 16. Conducted Spurious Emissions 2480 MHz Low Channel4	14
Figure 17. Conducted Spurious Emissions 2480 MHz Low Channel	15
Figure 18. Conducted Spurious Emissions 2480 MHz Low Channel	16
Figure 19. Conducted Spurious Emissions 2480 MHz High Channel	17
Figure 20. Conducted Spurious Emissions 2480 MHz High Channel	18
Figure 21. Conducted Spurious Emissions 2480 MHz High Channel	19
Figure 22. Receiver Conducted Spurious Emissions 30 MHz to 200 MHz5	51
Figure 23. Receiver Conducted Spurious Emissions 200 MHz to 400 MHz5	52
Figure 24. Receiver Conducted Spurious Emissions 400 MHz to 1000 MHz5	53
Figure 25. Receiver Conducted Spurious Emissions 1 GHz to 3 GHz	54
Figure 26. Receiver Conducted Spurious Emissions 3 GHz to 6 GHz	55
Figure 27. Receiver Conducted Spurious Emissions 6 GHz to 12.75 GHz	56
Figure 28. EUT (circled) on Evaluation Board	31
Figure 29. Radiated Spurious Emissions Below 200 MHz	32
Figure 30. Radiated Spurious Emissions Below 1000 MHz	33
Figure 31. Radiated Spurious Emissions Above 1000 MHz	34
-igure 32. 30-200 MHz Substitution Test Setup	35
-igure 33. 200-1000 MHz Substitution Testing	36
-igure 34. Above 1 GHz Substitution Testing	57
-igure 35. Extreme Temperature Test Setup	58
-igure 36. Adaptivity Lest Setup	59 70
-igure 37. Receiver Blocking Test Setup7	(0

List of Tables

Number Title

Table 1. Transmitter Test Suites and Overview of Results20Table 2. Receiver Test Suites and Overview Results20Table 3. Measurement Uncertainty21Table 4. RF Output Power Measurement23Table 5. Transmitter Unwanted Emission Limits35Table 6. Transmitter Spurious Emissions External Trace Antenna (u.fl)36Table 7. Transmitter Spurious Emissions Onboard Chip Antenna37Table 8. Spurious Emissions Limits for Receivers50Table 9. Receiver/Idle mode Spurious Emissions50Table 10. Receiver Blocking Parameters for Receiver Category 1 Equipment57Table 11. Blocking Signal Test Results58Table 12. Test Equipment60

Page

US Tech Report:	ETSI EN 300 328 V2.1.1 (2016-11)
Description of EUT:	2.4GHz eS-WiFi Module
Test Report Number:	18-0329
Issue Date:	December 18, 2018
Customer:	Inventek Systems
Model:	ISM4343-X

1 Purpose of the Test Report

This test report is being generated to show that the Inventek 2.4 GHz e-BT SIP Module Model: ISM4343-X complies with the requirements of ETSI EN 300 328 V2.1.1 (2016-11). The module is designed to transmit from either an etched integrated antenna or through the u.fl port. For u.fl transmission the module is being evaluated with two options of antennas, with the following gain: +3.2 dBi. Additional details on the module and antenna is presented in the test report.

2 Identification and Characteristics of Equipment Under Test

This section contains the unmodified Application Form submitted by the Manufacturer. The Application Form contains 13 pages, which are included in the total number of pages of this report.

The Equipment Under Test (EUT) is the Inventek 2.4 GHz e-BT SIP Module Model: ISM4343-X. The EUT is an embedded wireless Bluetooth (BT) connectivity device, based on the Renesas ISM4343-WBM-L54 microcomputer incorporating the WBM-L54 CPU core and low power consumption RF transceiver supporting the Bluetooth ver.4.1 (Low Energy Single mode) specifications. The Inventek ISM4343 WBM-L54 CPU core is a 3-stage pipeline CISC architecture with an integrated BLE Radio, on-board chip antenna, and 256 KB ROM. The module provides a number of features and standard peripheral interfaces, enabling connection to an embedded design. The low cost, small foot print, 11mm x 13mm 31-Pin LGA package and ease of design-in make it ideal for a range of embedded applications. The module provides UART, I2C.

Radio: Bluetooth 2 Range: 2400-2483.5 MHz ISM Band Modulation: GFSK, QPSK RF Output Power (EIRP): +8 dBm Data Rate: Mbps (Max): 3 Mbps Channels: 79 For marketing purposes, the Module will bear the following Model Numbers:

ISM43364-W-L151 ISM43364-W-L54C ISM43364-W-L54U ISM43364-WM411-L151 ISM43364-WM411-L54C ISM43364-WM411-L54U ISM43364-WM-L151 ISM43364-WM-L54C ISM43364-WM-L54U ISM4343-WB-L151 ISM4343-WB-L54C ISM4343-WB-L54U ISM4343-WBM411-L151 ISM4343-WBM411-L54C ISM4343-WBM411-L54U ISM4343-WBM-L151 ISM4343-WBM-L54C ISM4343-WBM-L54U

3 Standard Specific Transmitter Requirements

E.1 Information as required by EN 300 328 V2.1.1, clause 5.4.1

In accordance with EN 300 328, clause 5.4.1, the following information is provided by the manufacturer.

a) The type of modulation used by the equipment:

- FHSS
- other forms of modulation

b) In case of FHSS modulation:

• In case of non-Adaptive Frequency Hopping equipment:

The number of Hopping Frequencies: N/A

• In case of Adaptive Frequency Hopping Equipment:

The maximum number of Hopping Frequencies: 79

The minimum number of Hopping Frequencies: 79

- The Dwell Time: 2.80 msec
- The Minimum Channel Occupation Time: N/A msec

c) Adaptive / non-adaptive equipment:

- non-adaptive Equipment
- adaptive Equipment without the possibility to switch to a non-adaptive mode
- adaptive Equipment which can also operate in a non-adaptive mode
- Not Assessed. EIRP ≤ 10 dBm

d) In case of adaptive equipment:

The Channel Occupancy Time implemented by the equipment: N/A

- The equipment has implemented an LBT based DAA mechanism
 - In case of equipment using modulation different from FHSS:
 - The equipment is Frame Based equipment
 - The equipment is Load Based equipment
- The equipment can switch dynamically between Frame Based and Load Based equipment

The CCA time implemented by the equipment: us

The value q as referred to in clause

- The equipment has implemented a non-LBT based mechanism
- The equipment can operate in more than one adaptive mode
- Not Assessed. EIRP ≤ 10 dBm

e) In case of non-adaptive Equipment:

The maximum RF Output Power (e.i.r.p.): <u>N/A</u> dBm (as measured) The maximum (corresponding) Duty Cycle: <u>N/A</u>% (as measured) Equipment with dynamic behavior, that behavior is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared): <u>N/A</u>

f) The worst case operational mode for each of the following tests:

RF Output Power

<u>8.39 dBm</u>

Power Spectral Density N/A

Duty cycle, Tx-Sequence, Tx-gap <u>N/A</u>

Dwell time, Minimum Frequency Occupation & Hopping Sequence (only for FHSS equipment)

33.6 msec, N/A msec, 79 channel sequence

Hopping Frequency Separation (only for FHSS equipment)

<u>997.5 kHz</u>

Medium Utilization

N/A

Adaptivity & Receiver Blocking

See Section 4.3.7

Occupied Channel Bandwidth

<u>901.2 kHz</u>

Transmitter unwanted emissions in the OOB domain

See Section 5.3.8

Transmitter unwanted emissions in the spurious domain

See Section 5.3.9

Receiver spurious emissions

See Section 5.3.10

g) The different transmit operating modes (tick all that apply):

Operating mode 1: Single Antenna Equipment

Equipment with only 1 antenna

Equipment with 2 diversity antennas but only 1 antenna active at

any moment in time

Smart Antenna Systems with 2 or more antennas, but operating in

a (legacy) mode where only 1 antenna is used. (e.g. IEEE 802.11™

[i.3] legacy mode in smart antenna systems)

Operating mode **2**: Smart Antenna Systems - Multiple Antennas without beam forming

Single spatial stream / Standard throughput / (e.g. IEEE

802.11™ [i.3] legacy mode)

High Throughput (> 1 spatial stream) using Occupied Channel
 Bandwidth 1

☐ High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2

NOTE: Add more lines if more channel bandwidths are supported.

Operating mode 3: Smart Antenna Systems - Multiple Antennas with

beam forming

Single spatial stream / Standard throughput (e.g. IEEE 802.11™

[i.3] legacy mode)

High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1

High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2

NOTE: Add more lines if more channel bandwidths are supported.

h) In case of Smart Antenna Systems:

- The number of Receive chain: <u>N/A</u>
- The number of Transmit chains: <u>N/A</u>
 - symmetrical power distribution
 - asymmetrical power distribution

In case of beam forming, the maximum beam forming gain:

NOTE: Beam forming gain does not include the basic gain of a single antenna.

i) Operating Frequency Range(s) of the equipment:

- Operating Frequency Range 1: <u>2402</u> MHz to <u>2480</u> MHz
- Operating Frequency Range 2: MHz to _ MHz

NOTE: Add more lines if more Frequency Ranges are supported.

j) Occupied Channel Bandwidth(s):

- Occupied Channel Bandwidth 1: <u>901.2</u> kHz
- Occupied Channel Bandwidth 2: <u>N/A</u> kHz
- Occupied Channel Bandwidth 3: <u>N/A</u> kHz

NOTE: Add more lines if more channel bandwidths are supported.

k) Type of Equipment (stand-alone, combined, plug-in radio device, etc.):

- Stand-alone
- Combined Equipment (Equipment where the radio part is fully

integrated within another type of equipment)

 \boxtimes Plug-in radio device (Equipment intended for a variety of host systems)

Other:

I) The extreme operating conditions that apply to the equipment:

Operating temperature range: -40 ° C to 85 ° C

Operating voltage range: 3.3 V to 3.3 V AC

Details provided are for the:

- stand-alone equipment
- \boxtimes combined (or host) equipment
- 🗌 test jig

US Tech Report: Description of EUT: Test Report Number: Issue Date: Customer: <u>Model:</u> m) The intended combination(s) of the radio e	ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0329 December 18, 2018 Inventek Systems ISM4343-X equipment power settings and		
one or more antenna assemblies and their co	prresponding e.i.r.p levels:		
• Antenna Type:			
🖂 Integral Antenna			
Antenna Gain: <u>1.4</u> dBi (Chip) <u>3.2</u> dBi (U.F	FL)		
If applicable, additional beamforming gain (excluding basic antenna gai			
<u>N/A</u> dB			
Temporary RF connector provided			
No temporary RF connector provide	ed		
Dedicated Antennas (equipment with ante	enna connector)		
Single power level with correspond	ing antenna(s)		

Multiple power settings and corresponding antenna(s)

Number of different Power Levels:

Power Level 1: _dBm

Power Level 2: _dBm

Power Level 3: dBm

NOTE 1: Add more lines in case the equipment has more power levels.

NOTE 2: These power levels are conducted power levels (at antenna connector).

For each of the Power Levels, provide the intended antenna assemblies, their

corresponding gains (G) and the resulting e.i.r.p. levels also taking into account the beam-forming gain (Y) if applicable

Power Level 1: 5.19 dBm + 3.2 dBi = 8.39 dBm (E.I.R.P.) Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1	1.4		W24-SC (Chip antenna)
2	3.2		W24P-U (external trace antenna)
3	N/A	N/A	N/A
4	N/A	N/A	N/A

NOTE: Add more rows in case more antenna assemblies are supported for this power level.

Power Level 2: <u>N/A</u>dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A

NOTE: Add more rows in case more antenna assemblies are supported for this power level.

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A

NOTE: Add more rows in case more antenna assemblies are supported for this power level.

n) The nominal voltages of the stand-alone radio equipment or the nominal

voltages of the combined (host) equipment or test jig in case of plug-in

devices:

Details provided are for the:

- 🗌 s
 - stand-alone equipment
 - combined (or host) equipment
- 🛛 test jig

Supply Voltage

- AC mains State AC voltage: V
- \square DC State DC voltage: 3.0 5.0 V

In case of DC, indicate the type of power source

- Internal Power Supply
- External Power Supply or AC/DC adapter
- Battery
- Other: <u>powered via laptop USB port</u>

o) Describe the test modes available which can facilitate testing:

State 1: The EUT was able to continuously transmit on one of the individual channels.

State 2: The EUT was able to continuously hop on one of the individual channels. State 3: The EUT was able to continuously hop on all of the channels. State 4: The EUT was able to receive on a channel.

p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], proprietary, etc.):

Bluetooth technology

q) If applicable, the statistical analysis referred to in clause 5.4.1 q)

(to be provided as separate attachment)

r) If applicable, the statistical analysis referred to in clause 5.4.1 r)

(to be provided as separate attachment)

s) Geo-Location capability supported by the equipment:

	Yes
--	-----

The geographical location determined by the equipment as

defined in clause 4.3.1.13.2 or clause 4.3.2.12.2 is not accessible to the user

🛛 No

f) Describe the minimum performance criteria that apply to the equipment (see clause 4.3.1.12.3 or clause 4.3.2.11.3):

US Tech Report:	ETSI EN 300 328 V2.1.1 (2016-11)
Description of EUT:	2.4GHz eS-WiFi Module
Test Report Number:	18-0329
Issue Date:	December 18, 2018
Customer:	Inventek Systems
Model:	ISM4343-X

E.2 Combination for testing (see clause 5.3.2.3 of EN 300 328 V2.1.1)

From all combinations of conducted power settings and intended antenna assembly (ies) specified in clause 3.1 m), specify the combination resulting in the highest e.i.r.p. for the radio equipment.

Unless otherwise specified in EN 300 328, this power setting is to be used for testing against the requirements of EN 300 328. In case there is more than one such conducted power setting resulting in the same (highest) e.i.r.p. level, the highest power setting is to be used for testing. See also EN 300 328, clause 5.3.2.3.

This has been considered. The EUT is programmed to operate at it maximum output setting for this mode of operation.

E.3 Additional information provided by the applicant

E.3.1 Modulation

ITU Class(es) of emission:

Can the transmitter operate unmodulated?

Yes

🛛 No

E.3.2 Duty Cycle

The transmitter is intended for:

- Continuous duty
- Intermittent duty
- Continuous operation possible for testing purposes

E.3.3 About the UUT

- The equipment submitted is representative production models
- If not, the equipment submitted is pre-production models?
 - If pre-production equipment are submitted, the final production

equipment will be identical in all respects with the equipment tested

If not, supply full details

.....

.....

E.3.4 Additional items and/or supporting equipment provided

- Spare batteries (e.g. for portable equipment)
- Battery charging device
- External Power Supply or AC/DC adapter
- Test Jig or interface box
- RF test fixture (for equipment with integrated antennas)
- Host System
 - Manufacturer: Inventek Systems
 - Model #: ISM4343-X
 - Model name: 2.4 GHz eS-WiFi Module
- Combined equipment
 - Manufacturer:
 - Model #:
 - Model name:
- User Manual
- Technical documentation (Handbook and circuit diagrams)

4 Technical Summary

Applicant information

Applicant's representative	:	Martin Tierney
Company	:	Inventek
Address	:	2 Republic Road
City	:	Billerica
State	:	MA
Postal code	:	01862
Country	:	United States
Telephone number	:	+1 978-667-1962
Fax number	:	N/A

Description of test item

Test item	:	ISM4343X-WBM-L54
Manufacturer	:	Inventek Systems
Power Characteristics	:	8.0 dBm
Frequency Characteristics	:	2.402 – 2.480 GHz
Туре	:	Bluetooth 4.0
Modulation Type	:	FHSS
Temperature Range	:	-40°C to 85°C
Specification(s)	:	None
Model Name	:	2.4 GHz eS-WiFi Module
Model Number	:	ISM4343-X
Serial number	:	ENGINEERING SAMPLE
Revision	:	Rev. 0
Receipt number	:	18-0329
Receipt date	:	September 17, 2018

Test(s) performed

US Tech
November 2, 2018
December 6, 2018
Compliance with standard
ETSI EN 300 328 V2.1.1 (2016-11)
Afzal Fazal, Mark Afroozi, George Yang
George Yang
Afzal Fazal
Alan Ghasiani
December 18, 2018

5 Measurements, Examinations and Derived Results

5.1 Tests Required

The following Tests are required per EN 300 328 V2.1.1:

Essential Radio Test suite	Applicable	Reference Clause in Standard	Compliance Results
RF Output Power	Yes	4.3.2.2	Compliant
Power Spectral Density	No	4.3.2.3	N/A
Duty Cycle, TX-Sequence, TX-Gap	No	4.3.2.4	N/A
Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	No	4.3.1.4	N/A
Hopping Frequency Separation	Yes	4.3.1.5	Compliant
Medium Utilization	No	4.3.2.5	N/A
Occupied Channel Bandwidth	Yes	4.3.2.7	Compliant
Transmitter Unwanted Emissions in the OOB Domain	Yes	4.3.2.8	Compliant
Transmitter Unwanted Emissions in the Spurious Domain	Yes	4.3.2.9	Compliant

Table 1. Transmitter Test Suites and Overview of Results

Table 2. Receiver Test Suites and Overview Results

Essential Radio Test suite	Applicable	Reference clause in this report	Compliance Results
Adaptivity	N/A	4.3.2.6	N/A
Receiver Spurious Emissions	Yes	4.3.2.10	Compliant
Receiver Blocking	Yes	4.3.2.11	Compliant

5.2 General Comments

This section contains the test results and derived data. Details of the test methods used have been recorded and are kept on file by the laboratory. Wherever possible, the test methods described in ETSI document ETR 027 have been used.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

The testing preformed requires the uncertainty levels to be below the listed values in section 5.2 of ESTI 300 328 v2.1.1. The following table lists the limit of uncertainty per test and the current uncertainty of the testing done

Parameter	Uncertainty Requirement	Uncertainty of Testing
Occupied Channel Bandwidth	<u>+</u> 5.0%	Less Than <u>+</u> 0.1dB
RF Output power, Conducted	<u>+</u> 1.5dB	<u>+</u> 0.47dB
Power Spectral Density, Conducted	<u>+</u> 3.0dB	<u>+</u> 0.47dB
Unwanted Emissions, Conducted	<u>+</u> 3.0dB	<u>+</u> 2.80dB
All Emissions, Radiated	<u>+</u> 6.0dB	30MHz - 200MHz, <u>+</u> 5.39dB 200MHz - 1GHz, <u>+</u> 5.18dB 1GHz -18GHz, <u>+</u> 5.21dB
Temperature	<u>+</u> 1.0°C	<u>+</u> 0.55°C
Humidity	<u>+</u> 5.0%	<u>+</u> 5.00%
DC and Low Frequency Voltages	<u>+</u> 3.0%	<u>+</u> 0.05%
Time	<u>+</u> 5.0%	<u>+</u> 1.00%
Duty Cycle	<u>+</u> 5.0%	<u>+</u> 1.00%

Table 3. Measurement Uncertainty

The purpose of testing was to demonstrate compliance with the latest version of the test specification.

Date of receipt of test sample(s): September 15, 2018

Measurements were performed between the following dates(s):

Start Date: November 2, 2018

Completion Date: December 6, 2018

All of the measurements described in this report were performed at the premises of US Tech, 3505 Francis Circle, Alpharetta, GA 30004 USA.

5.3 Test Results

5.3.1 RF Output Power (Clause 4.3.2.2)

The RF Output Power was measured at the lowest, the middle, and the highest channel and at normal and extreme operating temperatures. The measurements were performed per the procedures of ETSI EN 300 328 section 5.4.2. The test equipment was set to a center frequency at which the EUT will transmit. The span was set to 10 MHz and the RBW and VBW were set to 1 MHz and 3 MHz, respectively.

In accordance with ETSI EN 300 328 section 4.3.2.2, for adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be 20 dBm. This limit shall apply for any combination of power level and intended antenna assembly.

Maximum Antenna Assembly Gain: +3.2 dBi Beam-forming Gain: 0 dBi Correction factor/cable loss: 12.2 dB

Frequency (MHz)	Measured Result (dBm) A	Combination of Power Level and Antenna Gain (dBm) A+G+Y	Limit (dBm)	Margin (dB)
	Ν	Aeasured at -40°C		
2402	-3.81	8.39	20.0	11.6
2440	-4.10	8.10	20.0	11.9
2480	-4.30	7.90	20.0	12.1
Measured at 25°C				
2402	-4.60	7.60	20.0	12.4
2440	-4.81	7.39	20.0	12.6
2480	-5.30	6.90	20.0	13.1
Measured at 85°C				
2402	-5.13	7.07	20.0	12.9
2440	-5.22	6.98	20.0	13.0
2480	-5.58	6.62	20.0	13.4

Table 4. RF Output Power Measurement

Test Date: November 8, 2018

Signature: Abul Fazal

Tested By: Afzal Fazal

5.3.2 Duty Cycle, TX-Sequence, TX-Gap (Clause 4.3.2.4)

These requirements do not apply for equipment with a maximum declared RF Output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF Output power is less than 10 dBm EIRP. In this case the EUT is declared to operate at less than 10 dBm. Therefore this test was not performed.

5.3.3 Power Spectral Density (Clause 4.3.2.3)

The EUT employs frequency hopping therefore the Power Spectral Density measurement is not applicable.

5.3.4 Accumulated Transmit Time, Minimum Frequency Occupation and Hopping Sequence (Clause 4.3.1.4)

These requirements do not apply for equipment with a maximum declared RF Output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF Output power is less than 10 dBm EIRP. In this case the EUT is declared to operate at less than 10 dBm. Therefore this test was not performed.

5.3.5 Hopping Frequency Separation (Clause 4.3.1.5)

The EUT employs frequency hopping; therefore the Hopping Frequency Separation was measured per the procedures of ETSI EN 300 328 section 4.3.1.5. The analyser was centred in two adjacent hopping frequencies, and the span was set wide enough to captures the power envelope of those two hopping channels. The RBW was ~ 1% of the Span and the VBW was 3*RBW. The trace was set to max hold with the sweep time on Auto.

The Hopping Frequency Separation is the separation of two adjacent hopping frequencies. The minimum Separation is required to be equal to the Occupied Channel Bandwidth of a single hop, with a minimum of 100 kHz. A marker-delta measurement was taken, see figure below. Environmental Conditions: Ambient Temperature: 20 °C Relative Humidity: 40 %

Figure 1. Hopping Frequency Separation

Frequency separation	997.50	kHz
Limit	100.00	<u>kHz</u>
Margin	887.50	kHz

5.3.6 Adaptivity (Clause 4.3.2.6)

These requirements do not apply for equipment with a maximum declared RF Output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF Output power is less than 10 dBm EIRP. In this case the EUT is declared to operate at less than 10 dBm. Therefore this test was not performed.

5.3.7 Occupied Channel Bandwidth (Clause 4.3.2.7)

The Occupied Channel Bandwidth is the bandwidth that contains 99% of the signal. In accordance with ETSI EN 300 328 section 4.3.2.7, the Occupied Bandwidth for each hopping frequency shall fall completely within the given frequency band.

The Occupied Channel Bandwidth was measured per the procedures of ETSI EN 300 328 section 5.3.8. The center frequency was set to either the highest or lowest frequency within the allowed frequency band under test and the span was 2x the Occupied Channel bandwidth. The RBW was ~ 1 % of the span and VBW was 3x VBW. The RMS detector mode was used and the trace was set to Max Hold to allow the trace to complete. The 99 % bandwidth function of the spectrum analyser was used to measure the occupied bandwidth.

Environmental Conditions: Ambient Temperature: 25 °C Relative Humidity: 55 %

Test Date: November 8, 2018

Signature: Abyl Fazal

Tested By: <u>Afzal Fazal</u>

₩ Agilent 11:23:50 Nov 8, 2018 L	Peak Search
Ch Freq 2.402 GHz Trig Free Occupied Bandwidth	Meas Tools∙
Marker 2.402100000 GHz Mkr1 2.402100 GHz Ref & dBm #0+ten 5 dB Evt PG = 8 dB =5.81 dBm	Next Peak
$\begin{array}{c c} \text{Here} & \text{Here}$	Next Pk Right
	Next Pk Left
Center 2.402 GHz Span 2 MHz #Res BW 30 kHz VBW 100 kHz #Sweep 1 s (401 pts)	Min Search
Occupied Bandwidth Осс ВМ % Рыг 99.00 % 901.2416 kHz × dB -20.00 dB	Pk-Pk Search
Transmit Freq Error 6.043 kHz x dB Bandwidth 947.331 kHz*	More 1 of 2

Figure 2. 2402 MHz Low Channel Occupied Bandwidth

Occupied BW=	0.9012	MHz
Center		
frequency	2402	MHz
Low Band-edge	2401.549	MHz

Low band-edge contained within 2400 MHz.

US Tech Report: ETSI EN 30 Description of EUT: Test Report Number: Issue Date: Customer: Model:	00 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0329 December 18, 2018 Inventek Systems ISM4343-X
★ Agilent 11:25:45 Nov 8, 2018	Peak Search
Ch Freq 2.44 GHz Trig Fr Occupied Bandwidth	Meas Tools
Мкr1 2.440180 Роf 8 dBm #Atton 5 dB Ext PG _8 dB224	GHz Next Peak
#Avg	Next Pk Right
dB/	Next Pk Left
Center 2.44 GHz Span 2 #Res BW 30 kHz VBW 100 kHz #Sweep 1 s (401 p	MHz hts)
Occupied Bandwidth Осс ВМ % Рыг 99.00 893.2272 kHz × dB -20.00	Pk-Pk Search
Transmit Freq Error 12.004 kHz × dB Bandwidth 985.078 kHz*	More 1 of 2

Figure 3. 2440 MHz Mid Channel Occupied Bandwidth

Occupied BW=	0.8932	MHz
frequency	2440	MHz
High Band-edge	2439.107	MHz

Mid band-edge contained between 2400 and 2483.5 MHz.

Figure 4. 2480 MHz High Channel Occupied Bandwidth

Occupied BW=	0.8962	MHz
frequency	2480	MHz
High Band-edge	24789.104	MHz

High band-edge contained within 2483.5 MHz.

US Tech Report:	ETSI EN 300 328 V2.1.1 (2016-11)
Description of EUT:	2.4GHz eS-WiFi Module
Test Report Number:	18-0329
Issue Date:	December 18, 2018
Customer:	Inventek Systems
Model:	ISM4343-X

5.3.8 Transmitter Unwanted Emissions in the Out-Of-Band Domain (Clause 4.3.2.8)

The transmitter unwanted emissions in the out-of-band domain are emissions when the equipment is in Transmit mode, on frequencies immediately outside the necessary bandwidth which results from the modulation process, but excluding spurious emissions. In accordance with ETSI EN 300 328 section 4.3.2.8.3, the transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in the figure below. Within the band specified, the Out-of-band emissions are fulfilled by compliance with the Occupied Channel Bandwidth requirement in clause 4.3.2.7.

Figure 5. Transmitter Unwanted Emissions in the Out-of-Band Domain Limits

The EUT was tested at normal and extreme temperatures. Only the lowest and highest channels were evaluated for each operational mode. The Occupied Bandwidth used was 20 MHz since this is the maximum allowed bandwidth for this type of transmitter. The RF port of the EUT was directly connected to the Spectrum Analyzer. The resolution bandwidth used was 1 MHz with a video bandwidth of 3 MHz. The Peak detector was used and only the worst case emission was recorded below.

Testing performed by: Test Date: November 8, 2018 Signature: <u>Appl Juppl</u>

Tested By: Afzal Fazal

🔆 Agil	lent 1	17:56:4	7 Nov	8,2018	3					L	Peak Search
Ref 13 #Avg	dBm		Atten	10 dB	Ext PG	6 – 8 dB	Mkı	r1 2.3:	989824 -45.1	19 GHz 6 dBm	Meas Tools•
Log 10 dB/											Next Peak
	Mark	er	/10	сu-							Next Pk Right
	2.39 -45.	6962 16 d	Bm								Next Pk Left
V1 S2 S3 FC AA									allere, on a state but	artreten (Min Search
											Pk-Pk Search
Start 2.398 GHz Stop 2.399 GHz #Res BW 1 MHz VBW 3 MHz #Sweep 163.8 ms (8192 pts)							More 1 of 2				

Figure 6. 2402 MHz, Low Channel TX OOB (2BW-BW)

RED= Limit at -20 dBm

Figure 7. 2402 MHz, Low Channel TX OOB (BW-BE)

RED= Limit at -10 dBm

Figure 8. 2480 MHz, High Channel TX OOB (BE+BW)

RED= Limit at -10 dBm

🔆 Agil	lent 1	L7:47:2	6 Nov	8,2018	3					L	Peak Search
					_		Mkı	r1 2.48	845835	06 GHz	
Ref 13	dBm		Atten	10 dB	Ext PG	-8 dB			-45.4	5 dBm	Meas Tools
Log											neus roois,
10											
dB/											Next Peak
											Nevt Pk Pight
	Mark	er									Next FK Right
	2.48	4583	506	GHz							
	-45.	45 d	Bm								Next Pk Left
		n din ta di di s		tus interninteri	1413164, 645						
V1 S2	իներիններ	(Unite) (united	ոիեններ	ومعالمه للمل	المراجع والمرو		State shines				Min Sooroh
											nin search
											Pk-Pk Search
											More
Start 2 #Res B	.485 G W 1 MH	HZ Z		U	вы з мі		ween '	کt ۱63.8 m	:op 2.4≀ s (819	2 nts)	1 of 2
-1103 D		-				"\	sucop .	100.0	15 (010	c pt3/	

Figure 9. 2480 MHz, High Channel TX OOB (BW+2BW)

RED= Limit at -20 dBm

US Tech Report:	ETSI EN 300 328 V2.1.1 (2016-11)
Description of EUT:	2.4GHz eS-WiFi Module
Test Report Number:	18-0329
Issue Date:	December 18, 2018
Customer:	Inventek Systems
Model:	ISM4343-X

5.3.9 Transmitter Unwanted Emissions in the Spurious Domain (Clause 4.3.2.9)

Transmitter unwanted emissions in the spurious domain are emissions outside the allocated band and the Out-Of-Band domain when the equipment is in transmit mode, in accordance ETSI EN 300 328 section 4.3.2.9, the spurious emissions cannot be greater than the limits in the Tables following.

Frequency Range	Maximum power, e.r.p. (≤ 1 GHz) e.i.r.p (> 1 GHz)	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87.5 MHz	-36 dBm	100 kHz
87.5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 862 MHz	-54 dBm	100 kHz
862 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12.75 GHz	-30 dBm	1 MHz

Table 5. Transmitter Unwanted Emission Limits

The transmitter unwanted emissions in the spurious domain were measured at normal test conditions and with the equipment operating at its worst case scenario with respect to spurious emissions. Measurements were performed at the lowest and highest channels the EUT can operate on.

A pre-scan was performed per ETSI EN 300 328 section 4.3.2. The individual unwanted emissions were then measured per ETSI EN 300 328 section 4.3.2.9 and compared to the spurious limits above. The results are presented below.

Environmental Conditions: Ambient Temperature: 20 °C Relative Humidity: 40 %

Freq. (MHz)	Maximum RX Reading (dBuV)	Recreated Reading (dBuV)	Difference Column A – B (dB)	TX Gain (dBi)	TX Gain Relative to Dipole (dB)	RF Power into TX Antenna	RF Power into Substitution TX Antenna Corrected By TX Gain Relative to Dipole and TX Cable (dBm)	Limit (dBm)	Margin (dB)	Antenna factor/ Cable loss
2402.000	63.24	62.35	0.89	8.8	6.7	-10.0	-4.32	20	24.32	-1.91
2440.000	74.17	73.86	0.31	8.8	6.7	0.0	5.02	20	14.98	-1.99
2480.000	75.11	73.96	1.15	8.8	6.7	0.0	5.86	20	14.14	-1.99
No other emissions seen 6 dB above the noise floor.										

Table 6. Transmitter Spurious Emissions External Trace Antenna (u.fl)

Note 1) RF Power (dBm) into substitution antenna from signal generator corrected with cable loss and other attenuators factors. Note 2) Radiated RF power (dBm) was calculated by summing the antenna factor/cable loss, Input RF Power, and the difference in column D.

Sample calculation for 2402.00 MHz:		
Maximum RX Reading (column 2)	63.24	(dBuV/m)
Less Recreated Reading (column 3)	62.35	(dBuV/m)
TX Gain Relative to Dipole (column 6)	6.7	(dB)
RF Power into TX Antenna (column 7)	-10.00	(dBm)
Antenna factor/Cable loss from spreadsheet factors	-1.91	(dBm)
Corrected RF Power (column 8)	-4.32	(dBm)

Testing performed by: Test Date: November 8, 2018 Signature: <u>Abul</u> Junal

Tested By: Afzal Fazal

Freq. (MHz)	Maximum RX Reading (dBuV)	Recreated Reading (dBuV)	Difference Column A – B (dB)	TX Gain (dBi)	TX Gain Relative to Dipole (dB)	RF Power into TX Antenna	RF Power into Substitution TX Antenna Corrected By TX Gain Relative to Dipole and TX Cable (dBm)	Limit (dBm)	Margin (dB)	Antenna factor/ Cable loss
2402.00	59.16	58.44	0.72	8.8	6.7	-17.0	-11.46	20	31.46	-1.88
2440.00	65.86	65.50	0.36	8.8	6.7	-10.0	-4.89	20	24.89	-1.95
2480.00	71.98	69.89	2.09	8.8	6.7	-3.0	3.84	20	16.16	-1.95
No other emissions seen 6 dB above the noise floor.										

Table 7. Transmitter Spurious Emissions Onboard Chip Antenna

Note 1) RF Power (dBm) into substitution antenna from signal generator corrected with cable loss and other attenuators factors. Note 2) Radiated RF power (dBm) was calculated by summing the antenna factor/cable loss, Input RF Power, and the difference in column D.

Sample calculation for 2402.00 MHz:		
Maximum RX Reading (column 2)	59.16	(dBuV/m)
Less Recreated Reading (column 3)	58.44	(dBuV/m)
TX Gain Relative to Dipole (column 6)	6.70	(dB)
RF Power into TX Antenna (column 7)	-17.00	(dBm)
Antenna factor/Cable loss from spreadsheet factors	-1.88	(dBm)
Corrected RF Power (column 8)	-11.46	(dBm)

Test Date: November 8, 2018

Testing performed by: Signature: <u>April Final</u>

Tested By: Afzal Fazal

Figure 10. Conducted Spurious Emissions 2402 MHz Low Channel 30 MHz to 200 MHz

Limit	-54.00 dBm
Measured Emissions (per Figure 19)	-64.40 dBm
Margin	10.40 dB

Figure 11. Conducted Spurious Emissions 2402 MHz Low Channel 200 MHz to 400 MHz

Limit	-54.00 dBm
Measured Emissions (per Figure 20)	-65.08 dBm
Margin	11.08 dB

Figure 12. Conducted Spurious Emissions 2402 MHz Low Channel 400 MHz to 1000 MHz

Limit	-54.00 dBm
Measured Emissions (per Figure 21)	-64.91 dBm
Margin	10.91 dB

Figure 13. Conducted Spurious Emissions 2402 MHz High Channel 1 GHz to 3 GHz

Limit	10.00 dBm
Measured Emissions (per Figure 22)	-4.12dBm
Margin	14.12 dB

*Note: All other emissions are below the 30 dBm limit as indicated by the plot above.

🔆 Agil	lent 1	L8:38:4	1 Nov	8,2018	3					L	Peak Search
Ref 19 #Peak Log	dBm		Atten	20 dB	Ext PG	-8 dB		Mkr1	. 3.17 -36.2	25 GHz 4 dBm	Meas Tools•
10 dB/											Next Peak
DI -30.0	Mark	er	100	сц <u>–</u>							Next Pk Right
dBm	-36.	2500 24 d	Bm		ahli Ilain dui e	en la el patritica e	un de bota	ور کور کور کور	des hadden ool ja		Next Pk Left
V1 S2 S3 FC AA											Min Search
											Pk-Pk Search
Start 3 #Res B	3 GHz W 1 MH	z		VI	BW 3 MI		Sweep 3	81.91 m	Stop s (819	6 GHz 2 pts)	More 1 of 2

Figure 14. Conducted Spurious Emissions 2402 MHz High Channel 3 GHz to 6 GHz

Limit	-30.00 dBm
Measured Emissions (per Figure 23)	-36.24 dBm
Margin	6.24 dB

🔆 Agil	lent 1	18:39:4	8 Nov	8,2018	}					L	Peak Search
Ref 19 #Peak	dBm		Atten	20 dB	Ext PG	6 – 8 dB		Mkr1	12.47 -37.9	72 GHz 3 dBm	Meas Tools•
10 dB/											Next Peak
DI -30.0	Mark	er	1107								Next Pk Right
dBm	-37.	93 d	Bm				ti nan-tatila		i fit a tablead a		Next Pk Left
V1 S2 S3 FC AA											Min Search
											Pk-Pk Search
Start 6 #Res B	GHz W 1 MH	z		VE	3W 3 MI	Hz #\$	Sweep 3	St 81.91 m	op 12. s (819	75 GHz 2 pts)	More 1 of 2

Figure 15. Conducted Spurious Emissions 2402 MHz High Channel 6 GHz to 12.75 GHz

Limit	-30.00 dBm
Measured Emissions (per Figure 24)	-37.93 dBm
Margin	7.93 dB

Figure 16. Conducted Spurious Emissions 2480 MHz Low Channel 30 MHz to 200 MHz

Limit	-54.00 dBm
Measured Emissions (per Figure 25)	-64.75 dBm
Margin	10.75 dB

🔆 Agil	lent 1	8:16:0	5 Nov	8,201	8					L	Peak Search
Ref 0 #Peak Log	dBm		Atte	n 5 dB	Ext PG	6 – 8 dB		Mkr1	394.7 -65.1	50 MHz 9 dBm	Meas Tools+
10 dB/											Next Peak
DI -54.0	Mark	er 7502		4⊔→							Next Pk Right
dBm	-65.	19 d	Bm								Next Pk Left
V1 S2 S3 FC AA	an an she kasa kasa Taga an an san san san sa	a pindia kant								<u>kult</u>	Min Search
											Pk-Pk Search
Start 2 #Res B	200 MH2 W 100	z kHz		VB	 W 300	kHz #:	Śweep	81.91 m	Stop 40 is (819)	00 MHz 2 pts)	More 1 of 2

Figure 17. Conducted Spurious Emissions 2480 MHz Low Channel 200 MHz to 400 MHz

Limit	-54.00 dBm
Measured Emissions (per Figure 26)	-65.19 dBm
Margin	11.19 dB

Figure 18. Conducted Spurious Emissions 2480 MHz Low Channel 400 MHz to 1000 MHz

Limit	-54.00 dBm
Measured Emissions (per Figure 27)	-65.10 dBm
Margin	11.10 dB

Figure 19. Conducted Spurious Emissions 2480 MHz High Channel 1 GHz to 3 GHz

Limit	10.00 dBm
Measured Emissions (per Figure 28)	-4.43 dBm
Margin	14.43 dB

*Note: All other emissions are below the 30 dBm limit as indicated by the plot above.

Figure 20. Conducted Spurious Emissions 2480 MHz High Channel 3 GHz to 6 GHz

Limit	-30.00 dBm
Measured Emissions (per Figure 29)	-36.73 dBm
Margin	6.73 dB

Figure 21. Conducted Spurious Emissions 2480 MHz High Channel 6 GHz to 12.75 GHz

Limit	-30.00 dBm
Measured Emissions (per Figure 30)	-38.54 dBm
Margin	8.54 dB

US Tech Report:	ETSI EN 300 328 V2.1.1 (2016-11)
Description of EUT:	2.4GHz eS-WiFi Module
Test Report Number:	18-0329
Issue Date:	December 18, 2018
Customer:	Inventek Systems
Model:	ISM4343-X

5.3.10 Receiver Unwanted Emissions in the Spurious (Clause 5.4.10)

Receiver spurious emissions are the emissions at any frequency when the equipment is in receive mode. In accordance ETSI EN 300 328 section 4.3.2.11, the spurious emissions cannot be greater than the limits in the Tables following

Table 8. Spurious Emissions Limits for Receivers										
Frequency Range	Maximum Power	Bandwidth								
30 MHz to 1 GHz	-57 dBm	100 kHz								
1 GHz to 12.75 GHz	-47 dBm	1 MHz								

Table 8. Spurious Emissions Limits for Receivers

The receiver unwanted emissions in the spurious domain were measured at normal test conditions and with the equipment operating at its worst case scenario with respect to spurious emissions.

Table 9. Receiver/Idle mode Spurious Emissions

Freq. (MHz)	Maximum RX Reading (dBuV)	Recreated Reading (dBuV)	Difference Column A – B (dB)	TX Gain (dBi)	TX Gain Relative to Dipole (dB)	RF Power into TX Antenna	RF Power into Substitution TX Antenna Corrected By TX Gain Relative to Dipole and TX Cable (dBm)	Limit (dBm)	Margin (dB)	Antenna factor/ Cable loss
No other emissions seen 6 dB above the noise floor.										

Note 1) RF Power (dBm) into substitution antenna from signal generator corrected with cable loss and other attenuators factors. Note 2) Radiated RF power (dBm) was calculated by summing the antenna factor/cable loss, Input RF Power, and the difference in column D.

Sample calculation: N/A

Date: November 9, 2018

Signature: Albyl Foral

By: Afzal Fazal

🔆 Agi	lent 1	16:52:0	2 Nov	9,2018	3					L	Peak Search
Ref Ø Peak	dBm		Atte	n 5 dB	Ext PG	6 – 8 dB		Mkr1	176.9 -65.3	21 MHz 3 dBm	Meas Tools•
10 dB/											Next Peak
DI -57.0	Mark	er	10.	411-							Next Pk Right
dBm	-65.	33 d	Bm	IHZ							Next Pk Left
V1 S2 S3 FC AA	u dite finitian.	ath lais bits,				di estitutu				u ti det u dati	Min Search
											Pk-Pk Search
Start 3 #Res B	30 MHz W 100	kHz		VB	W 300 I	<hz #:<="" td=""><td>Sweep 8</td><td>: 81.91 m</td><td>Stop 20 is (819)</td><td>0 MHz 2 pts)</td><td>More 1 of 2</td></hz>	Sweep 8	: 81.91 m	Stop 20 is (819)	0 MHz 2 pts)	More 1 of 2

Figure 22. Receiver Conducted Spurious Emissions 30 MHz to 200 MHz

Limit	-57.00 dBm
Measured Emissions (Figure 41)	-65.33 dBm
Margin	8.33 dB

🔆 Agil	lent 1	L6:54:3	6 Nov	9,201	8					L	Peak Search
Ref Ø (Pook	dBm		Atte	n 5 dB	Ext PG	6 – 8 dB		Mkr1	362.2 -65.2	02 MHz 2 dBm	Meas Tools
геак Log 10											
đ₿∕											Next Peak
DI	M										Next Pk Right
–57.0 dBm	пагк 362.	er 2024	17	1 Hz							
	-65.	22 d	Bm						4		Next Pk Left
V1 S2 S3 FC		eutuitis est di		k alatikadak		h-e-there ga	te destad		¢	h de dest dans	Min Search
AA											
											Pk-Pk Search
Start 2 #Res B	200 MH: W 100	z kHz		VB	W 300 I	kHz #	Sweep 8	81.91 m	Stop 4 is (819	00 MHz 2 pts)	More 1 of 2

Figure 23. Receiver Conducted Spurious Emissions 200 MHz to 400 MHz

Limit	-57.00 dBm
Measured Emissions (Figure 41)	-65.22 dBm
Margin	8.22 dB

🔆 Agi	lent 1	16:55:2	9 Nov	9,2018	3					L	Peak Search
Ref0 Peak Log	dBm		Atte	n 5 dB	Ext PG	-8 dB		Mkri	l 571. -64.9	99 MHz 1 dBm	Meas Tools•
10 dB/											Next Peak
DI -57.0	Mark	er	⊏1 k								Next Pk Right
dBm	-64.	91 d	Bm	ΠΖ							Next Pk Left
V1 S2 S3 FC AA					nati jatin jing da	le den di	upelli,litet			nde in Sign	Min Search
											Pk-Pk Search
Start 4 #Res B	100 MH: W 100	z kHz		VB	W 300 I	<hz #:<="" td=""><td>Sweep 8</td><td>81.91 m</td><td>Stop is (819</td><td>1 GHz 2 pts)</td><td>More 1 of 2</td></hz>	Sweep 8	81.91 m	Stop is (819	1 GHz 2 pts)	More 1 of 2

Figure 24. Receiver Conducted Spurious Emissions 400 MHz to 1000 MHz

Limit	-57.00 dBm
Measured Emissions (Figure 41)	-64.91 dBm
Margin	7.91 dB

🔆 Agil	lent 1	L6:58:4:	1 Nov	9,2018	3					L	Peak Search
					_			Mkr1	2.994	38 GHz	
Ref Ø (Peak	dBm		Atter	15 dB	Ext PG	-8 dB			-52.0	3 dBm	Meas Tools
Log											
10											
dB/											Next Peak
ы	ы і										Next Pk Right
-47.0	Mark	er	000	<u></u>							
dBm	2.99	4384	080	ьнz							
	-52.	03 d	Bm	and a burger	والارداد ورواده		a ta a su a su a su de la da su	ويتلك وحمار			Next PK Left
V1 S2						1.1	• • • • • • • • • • • • • • • • • • •	r den la constant de la constant	and a second second		
\$3 FC											Min Search
AA											
											Rk-Rk Soorah
											PK-PK Search
Start 1	. GHz								Stop	3 GHz	nore 1 of 2
#Res B	W 1 MH	Z		VI	3W 3 MF	lz #:	Sweep :	81.91 m	is (819	2 pts)	

Figure 25. Receiver Conducted Spurious Emissions 1 GHz to 3 GHz

Limit	-47.00 dBm
Measured Emissions (Figure 41)	-52.03 dBm
Margin	5.03 dB

🔆 Agi	lent 1	16:59:5:	1 Nov	9,2018	3					L	Peak Search
Ref Ø Peak	dBm		Atter	5 dB	Ext PG	6 – 8 dB		Mkri	L 3.30 -54.5	44 GHz 1 dBm	Meas Tools•
Log 10 dB/											Next Peak
DI -47.0	Mark	er 1250	112	сu-							Next Pk Right
dBm	-54	4350 51 d	442 Bm		litelan di Mara	uls as the off	و بادوم ال	ر رول ال الم	ki fa alla ana ku a	والمحاول والمراجع	Next Pk Left
V1 S2 S3 FC AA											Min Search
											Pk-Pk Search
Start 3 #Res B	3 GHz W 1 MH	z		VI	3W 3 MI	-lz #:	Sweep (81.91 m	Stop Is (819	6 GHz 2 pts)	More 1 of 2

Figure 26. Receiver Conducted Spurious Emissions 3 GHz to 6 GHz

Limit	-47.00 dBm
Measured Emissions (Figure 41)	-54.51 dBm
Margin	7.52 dB

🔆 Agil	lent 1	L7:01:0	2 Nov 3	9,2018	3					L	Peak Search
								Mkr1	11.11	01 GHz	
Ret Ø Peak Log	dBm		Htten	5 dB	Ext PG	5 – 8 dB			-56.	4 dBm	Meas Tools⊦
10 dB/											Next Peak
DI -47.0	Mark	er	0242								Next Pk Right
dBm	-56	1009 5.4 dl	10343 Bm	-GHZ		e dinsk k fra hefe	en letrale		le a ^{ll} iss i se a se l		Next Pk Left
V1 S2 S3 FC AA											Min Search
											Pk-Pk Search
Start 6 #Res B	GHz W 1 MH	z		VE	3W 3 MI	Hz #\$	Sweep (St 81.91 m	op 12.7 s (819	75 GHz 2 pts)	More 1 of 2

Figure 27. Receiver Conducted Spurious Emissions 6 GHz to 12.75 GHz

Limit	-47.00 dBm
Measured Emissions (Figure 41)	-56.40 dBm
Margin	9.40 dB

5.3.11 Receiver Blocking (Clause 5.4.11)

Receiver blocking is a measure of the ability of the equipment to receive a wanted signal on its operating channel without exceeding a given degradation in the presence of an unwanted signal (blocking signal) at frequencies other than those of the operating band. In accordance with ETSI EN 300 328 section 4.3.2.11.

The EUT is categorized as Receiver Category 1 equipment.

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal		
P _{min} + 6 dB	2 380 2 503,5	-53	CW		
P _{min} + 6 dB	2 300 2 330 2 360	-47	CW		
P _{min} + 6 dB	2 523,5 2 553,5 2 583,5 2 613,5 2 643,5 2 673,5	-47	CW		
NOTE 1: P _{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.2.11.3 in the absence of any blocking signal					
NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual					

Table 10. Receiver Blocking Parameters for Receiver Category 1 Equipment

Test Date: December 3 & 6, 2018

antenna assembly gain.

Signature:_____

Tested By: Mark Afroozi

US Tech Report:	ETSI EN 300 328 V2.1.1 (2016-11)
Description of EUT:	2.4GHz eS-WiFi Module
Test Report Number:	18-0329
Issue Date:	December 18, 2018
Customer:	Inventek Systems
Model:	ISM4343-X

The measurements were performed at normal test conditions. The EUT uses wide band modulation other than frequency hopping Spread Spectrum (FHSS) modulation. The EUT was tested first while receiving on the lowest channel and then again while receiving on the highest channel. The system has only one receiver chain. The procedures in clause 5.4.11.2.1 were followed for this test. The test results are provided below.

Antenna Gain: +3.2 dBi

 P_{min} = Threshold level of RX and TX communication link. FHSS: YES, the EUT was programmed to receive first on the lowest channel then on the highest channel.

Wanted Signal Mean Power	Blocking Signal Frequency	Blocking Signal Power Limit (dBm)	Actual Blocking Signal Power (dBm)
	(MHZ)		
Pmin + 6 dBm (-15.55 + 6 dBm)	2380	-53 + max antenna gain	> -30 dBm
Pmin + 6 dBm	2503.5		> -30 dBm
Pmin + 6 dBm	2300	-47 + max antenna gain	> -30 dB
Pmin + 6 dBm	2330		> -30 dBm
Pmin + 6 dBm	2360		> -30 dBm
Pmin + 6 dBm	2523.5	-47 + max antenna gain	> -30 dBm
Pmin + 6 dBm	2553.5		> -30 dBm
Pmin + 6 dBm (-16.49 + 6 dBm)	2583.5		> -30 dBm
Pmin + 6 dBm	2613.5		> -30 dBm
Pmin + 6 dBm	2643.5		> -30 dBm
Pmin + 6 dBm	2673.5		> -30 dBm

Table 11.	Blocking	Signal	Test	Results
-----------	----------	--------	------	---------

Test Results: The actual blocking signal power is greater than the required minimum level per the standard. The EUT meets these requirements.

5.4 RF Exposure

EN 50385:2002 MPE Compliance:

The maximum exposure level to the public from the RF power of the EUT shall not exceed a power density, S, of 1 mW/cm² at a distance, d, of 20 cm from the EUT.

Therefore for:

Measured maximum output power: 8.0 dBm (EIRP) Highest Gain Antenna (Type of Antenna): 3.2 dBm

> Peak Power (Watts) = 0.006 (max output power) Gain of Transmit Antenna = 3.2 dBi = 2.09 numeric D = distance = 2 cm = 0.2 m

> > $$\begin{split} & \mathsf{S} = (\mathsf{PG}/4\pi\mathsf{d}^2) = \mathsf{EIRP}/4\mathsf{A} = (0.006^*2.09)/4\pi^*0.2^*0.2 \\ & = .01254/.5027 = 0.0249 \; \mathsf{W/m}^2 \\ & = (\mathsf{W/m}^2)\;(1\;\mathsf{m}^2/\mathsf{W})(0.1\mathsf{m}\mathsf{W/cm}^2) \\ & = 0.00249 \end{split}$$

Which is << less than 1.0 mW/cm²

The radio meets the requirements.

Test Date: December 19, 2018

Signature:

Tested By: George Yang

6 Test Instruments

Table 12. Test Equipment

INSTRUMENT	MODEL NUMBER	MANUFACTURER	SERIAL NUMBER	CALIBRATION DUE DATE
SPECTRUM ANALYZER	E4407B	AGILENT	US41442935	8/17/2020 2 yr.
SPECTRUM ANALYZER	N9342CN	AGILENT	SG05310114	7/21/2019 2 yr.
SIGNAL GENERATOR	70004A	HEWLETT PACKARD	70340A	Verified before use
SIGNAL GENERATOR	8648B	HEWLETT PACKARD	3642U01679	Verified before use
SIGNAL GENERATOR	MG3671B	ANRITSU	M520731M5357 3/M17473	Verified before use
BICONICAL ANTENNA	3110B	EMCO	9307-1431	10/23/2019 2 yr.
BICONICAL ANTENNA	3110B	EMCO	9306-1708	5/02/2019 2 yr.
LOG PERIODIC ANTENNA	3146	EMCO	9110-3236	5/01/2019 2 yr.
LOG PERIODIC ANTENNA	3146	EMCO	9305-3600	12/21/2018 Extended
HORN ANTENNA	SAS-571	A.H. Systems	605	10/18/2019 2 yr.
HORN ANTENNA	3115	EMCO	9107-3723	12/22/2018 Extended
PRE-AMPLIFIER	8449B	HEWLETT PACKARD	3008A00480	6/04/2019
PRE-AMPLIFIER	8447D	HEWLETT PACKARD	1937A02980	3/07/2019
RF SPLITTER/COMBINER	ZAPD-21	MINI-CIRCUITS	N/A	Verified Before Use
RF SPLITTER/COMBINER	ZFRSC-42	MINI-CIRCUITS	N/A	Verified Before Use
HIGH PASS FILTER	VHP-16	MINI-CIRCUITS	N/A	3/7/2019
COPPER SHIELD BOX	N/A	US TECH	N/A	Not Required

Note: The calibration interval of the above test instruments are 12 months unless stated otherwise and all calibrations are traceable to NIST/USA.

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0329 December 18, 2018 Inventek Systems ISM4343-X

7 Photographs

Figure 28. EUT (circled) on Evaluation Board

Figure 29. Radiated Spurious Emissions Below 200 MHz

Figure 30. Radiated Spurious Emissions Below 1000 MHz

Figure 31. Radiated Spurious Emissions Above 1000 MHz

Figure 32. 30-200 MHz Substitution Test Setup

Figure 33. 200-1000 MHz Substitution Testing

Figure 34. Above 1 GHz Substitution Testing

Figure 35. Extreme Temperature Test Setup

Figure 36. Adaptivity Test Setup

ETSI EN 300 328 V2.1.1 (2016-11) 2.4GHz eS-WiFi Module 18-0329 December 18, 2018 Inventek Systems ISM4343-X

Figure 37. Receiver Blocking Test Setup

Note: EUT in receive mode placed inside the Copper Shielded box during testing.