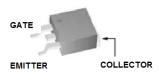


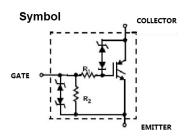
ON Semiconductor®

FGD2736G3-F085

EcoSPARKTM 3 270mJ, 360V, N-Channel Ignition IGBT

Features


- SCISEnergy = 270mJatT_{.1}=25°C
- SCIS Energy = 170mJ at T_J = 150°C
- Logic Level Gate Drive
- RoHS Compliant


Applications

- Automotive Ignition Coil Driver Circuits
- Coil On Plug Applications

Package

JEDEC TO-252 D-Pak

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units	
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1mA)	360	V	
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition ($I_C = 10r$	28	V	
E _{SCIS25}	I_{SCIS} = 13.4A, L = 3.0mHy, R_{GE} = 1K Ω	270	mJ	
E _{SCIS150}	I_{SCIS} = 10.8A, L = 3.0mHy, R_{GE} = 1K Ω	T _C = 150°C	170	mJ
I _{C25}	Collector Current Continuous, at T _C = 25°C, V _{GE} = 5.0V	21	Α	
I _{C110}	Collector Current Continuous, at T _C = 110°C, V _{GE} = 5.0V	18	Α	
V_{GEM}	Gate to Emitter Voltage Continuous	±10	V	
D.	Power Dissipation Total	T _C = 25°C	150	W
P_{D}	Power Dissipation Derating	T _C > 25°C	1	W/oC
T_J	Operating Junction Temperature Range		-40 to +175	°C
T _{STG}	Storage Junction Temperature Range	-40 to +175	°C	
T _L	Max. Lead Temp. for Soldering (Leads at 1.6mm from case for 10	300	°C	
T _{PKG}	Max Lead Temp for soldering (Package Body for 10s)	260	°C	
ESD	Electrostatic Discharge Voltage at 100 pF, 1500 Ω		4	kV

Thermal Characteristics

$ R_{\theta JC} $ Thermal Resistance Junction to Case 1 $ ^{\circ}C/W $

Electrical Characteristics of the IGBT $\rm T_A$ = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
--------	-----------	-----------------	-----	-----	-----	-------

Off Characteristics

BV _{CER}	Collector to Emitter Breakdown Voltage	$V_{GE} = 0V, I_{CE} = 2mA,$ $R_{GE} = 1K\Omega,$ $T_{J} = -40 \text{ to } 150^{\circ}\text{C}$		330	1	390	V
BV _{CES}	Collector to Emitter Breakdown Voltage	$V_{GE} = 0V, I_{CE} = 10mA,$ $R_{GE} = 0\Omega,$ $T_{J} = -40 \text{ to } 150^{\circ}\text{C}$		350	-	410	٧
BV _{ECS}	Emitter to Collector Breakdown Voltage	$V_{GE} = 0V, I_{CE} = -75mA,$ $T_{J} = 25^{\circ}C$		28	-	-	٧
BV _{GES}	Gate to Emitter Breakdown Voltage	I _{GES} = ±5mA		±11	±14	-	V
1	Collector to Emitter Leakage Current	V_{CE} = 250V, R_{GE} = 1K Ω	$T_{\rm J} = 25^{\rm o}{\rm C}$	-	-	25	μΑ
ICER	Collector to Emitter Leakage Current		$T_{\rm J} = 150^{\rm o}{\rm C}$	-	-	1	mA
I _{ECS}	Emitter to Collector Leakage Current	11/-0=241/	$T_J = 25^{\circ}C$	-	-	1	mA
			$T_{\rm J} = 150^{\rm o}{\rm C}$	-	-	40	IIIA
R ₁	Series Gate Resistance			-	110	-	Ω
R ₂	Gate to Emitter Resistance			10K	-	30K	Ω

On Characteristics

V _{CE(SAT)}	Collector to Emitter Saturation Voltage	V _{GE} = 4V, I _{CE} = 6A	$T_{J} = 25^{\circ}C$	-	1.25	1.35	V
$V_{CE(SAT)}$	Collector to Emitter Saturation Voltage	V _{GE} = 4.5V, I _{CE} = 10A	$T_J = 25^{\circ}C$	-	1.45	1.65	V
$V_{CE(SAT)}$	Collector to Emitter Saturation Voltage	V _{GE} = 4.5V, I _{CE} = 1UA	$T_{\rm J} = 150^{\rm o}{\rm C}$		1.6	1.8	V

Dynamic Characteristics

Q _{G(ON)}	Gate Charge	V _{GE} = 5V, V _{CE} = 12V, I _{CE} = 10A		-	18	-	nC
V	Gate to Emitter Threshold Voltage	1m4 \/\/	$T_{J} = 25^{\circ}C$	1.3	1.6	2.2	V
V _{GE(TH)} Gate to Emitter Threshold	Gate to Emitter Threshold Voltage	ge $I_{CE} = 1 \text{mA}, V_{CE} = V_{GE}$	$T_{J} = 150^{\circ}C$	0.75	1.1	1.8	V
V_{GEP}	Gate to Emitter Plateau Voltage	V_{CE} = 12V, I_{CE} = 10A		-	3.0	-	٧

Switching Characteristics

$t_{d(ON)R}$	Current Turn-On Delay Time-Resistive	V_{CE} = 14V, R_L = 1 Ω	-	0.9	4	μS
t_{rR}	Current Rise Time-Resistive	$V_{GE} = 5V, R_G = 1K\Omega$	-	3	7	μS
t _{d(OFF)L}	Current Turn-Off Delay Time-Inductive	V _{CE} = 300V, L = 2mH,	-	4.4	15	μS
t_{fL}	Current Fall Time-Inductive	$V_{GE} = 5V, R_G = 1K\Omega$	-	1.9	15	μS

Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FGD2736G3	FGD2736G3-F085	TO-252AA	330mm	16mm	2500units

Typical Performance Curves

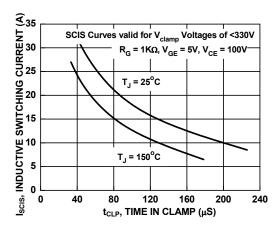


Figure 1. Self Clamped Inductive Switching Current vs. Time in Clamp

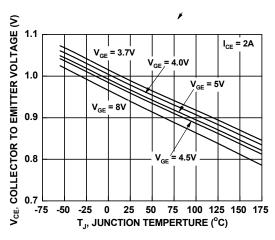


Figure 3. Collector to Emitter On-State Voltage vs. Junction Temperature

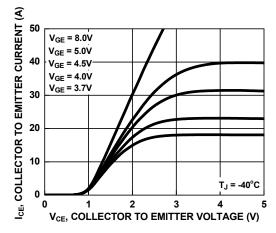


Figure 5. Collector to Emitter On-State Voltage vs. Collector Current

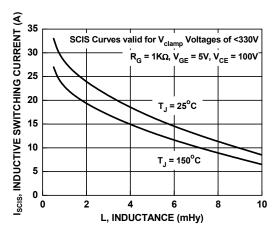


Figure 2. Self Clamped Inductive Switching Current vs. Inductance

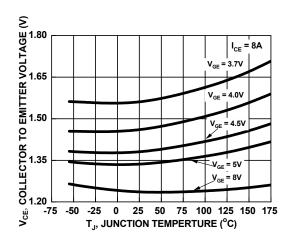


Figure 4. Collector to Emitter On-State Voltage vs. Junction Temperature

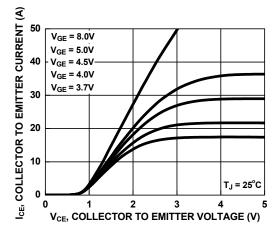


Figure 6. Collector to Emitter On-State Voltage vs. Collector Current

Typical Performance Curves (Continued)

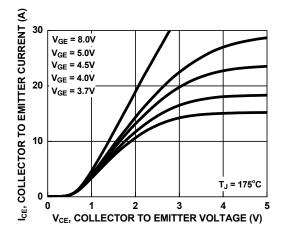
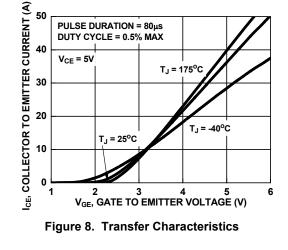



Figure 7. Collector to Emitter On-State Voltage vs. Collector Current

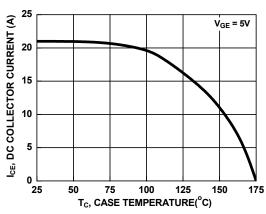


Figure 9. DC Collector Current vs. Case Temperature

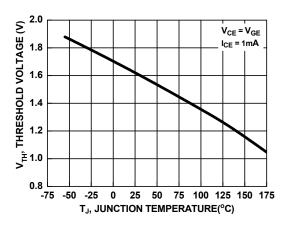


Figure 10. Threshold Voltage vs. Junction Temperature

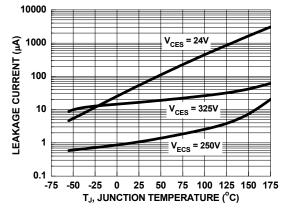


Figure 11. Leakage Current vs. Junction Temperature

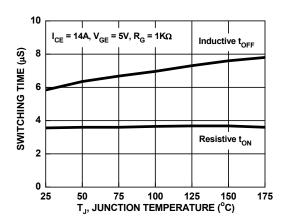


Figure 12. Switching Time vs. Junction Temperature

Typical Performance Curves (Continued)

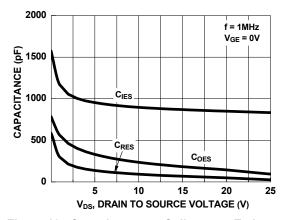


Figure 13. Capacitance vs. Collector to Emitter Voltage

Figure 14. Gate Charge

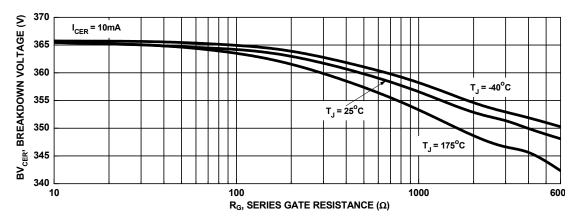


Figure 15. Break down Voltage vs. Series Gate Resistance

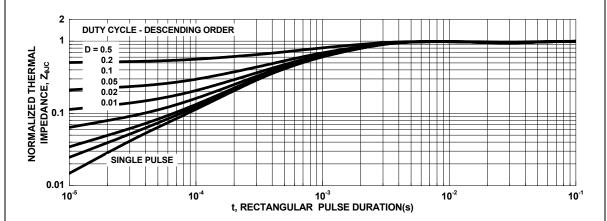


Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

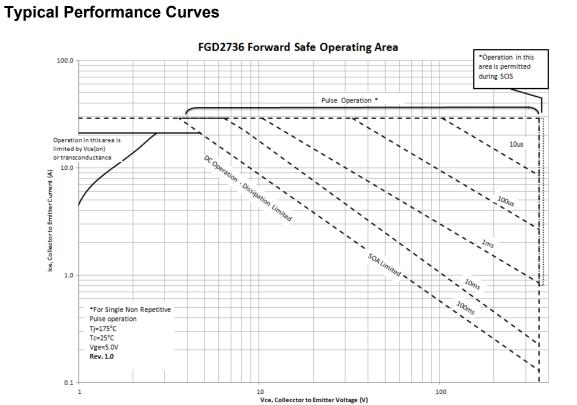
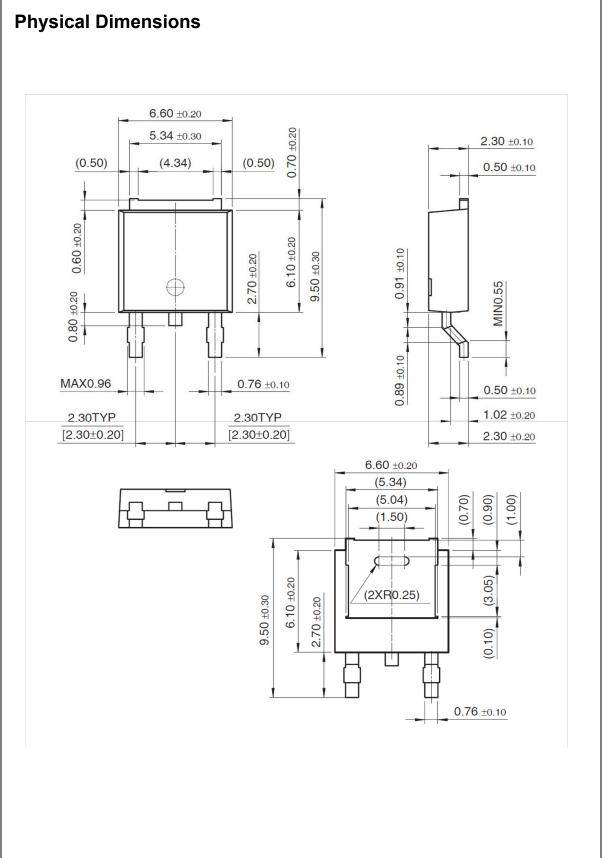



Figure 17. Forward Safe Operating Area

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative