

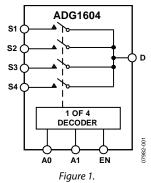
1 Ω Typical On Resistance, ±5 V, +12 V, +5 V, and +3.3 V, 4:1 Multiplexer

Data Sheet

FEATURES

1 Ω typical on resistance
0.2 Ω on resistance flatness
±3.3 V to ±8 V dual-supply operation
3.3 V to 16 V single-supply operation
No V_L supply required
3 V logic-compatible inputs
Rail-to-rail operation
Continuous current per channel
LFCSP: 504 mA
TSSOP: 315 mA
14-lead TSSOP and 16-lead, 4 mm × 4 mm LFCSP

APPLICATIONS


Communication systems Medical systems Audio signal routing Video signal routing Automatic test equipment Data acquisition systems Battery-powered systems Sample-and-hold systems Relay replacements

GENERAL DESCRIPTION

The ADG1604 is a complementary metal-oxide semiconductor (CMOS) analog multiplexer and switches one of four inputs to a common output, D, as determined by the 3-bit binary address lines, A0, A1, and EN. Logic 0 on the EN pin disables the device. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

The ultralow on resistance of these switches make them ideal solutions for data acquisition and gain switching applications where low on resistance and distortion is critical. The on resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals. ADG1604

FUNCTIONAL BLOCK DIAGRAM

The CMOS construction ensures ultralow power dissipation, making the devices ideally suited for portable and batterypowered instruments.

PRODUCT HIGHLIGHTS

- 1. 1.6 Ω maximum on resistance over temperature.
- 2. Minimum distortion: THD + N = 0.007%.
- 3. 3 V logic-compatible digital inputs: $V_{INH} = 2.0$ V, $V_{INL} = 0.8$ V.
- 4. No V_L logic power supply required.
- 5. Ultralow power dissipation: <16 nW.
- 6. 14-lead TSSOP and 16-lead, 4 mm × 4 mm LFCSP.

Rev. B

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

1
1
1
1
1
2
3
3
4
5
6

REVISION HISTORY

3/16—Rev. A to Rev. B

Changed CP-16-13 to CP-16-26	. Throughout
Changes to Figure 2, Figure 3, and Table 7	9
Updated Outline Dimensions	
Changes to Ordering Guide	

9/09—Rev. 0 to Rev. A

Changes to On Resistance (R _{ON}) Parameter, On Resistance
Match Between Channels (ΔR_{ON}) Parameter, and On Resistance
Flatness (R _{FLATON}) Parameter, Table 4

1/09—Revision 0: Initial Version

Continuous Current per Channel, S or D	7
Absolute Maximum Ratings	8
ESD Caution	8
Pin Configurations and Function Descriptions	9
Typical Performance Characteristics	10
Test Circuits	13
Terminology	16
Outline Dimensions	17
Ordering Guide	17

SPECIFICATIONS

±5 V DUAL SUPPLY

 V_{DD} = +5 V \pm 10%, V_{SS} = -5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V _{DD} to V _{SS}	V	
On Resistance (R _{ON})	1			Ωtyp	$V_{s} = \pm 4.5 V$, $I_{s} = -10 mA$; see Figure 22
	1.2	1.4	1.6	Ωmax	$V_{DD} = \pm 4.5 \text{ V}, V_{SS} = \pm 4.5 \text{ V}$
On Resistance Match Between Channels (ΔR_{ON})	0.04			Ωtyp	$V_s = \pm 4.5 V$, $I_s = -10 mA$
	0.08	0.09	0.1	Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	0.2			Ωtyp	$V_{s} = \pm 4.5 V$, $I_{s} = -10 mA$
	0.25	0.29	0.34	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = +5.5 V, V_{SS} = -5.5 V$
Source Off Leakage, Is (Off)	±0.1			nA typ	$V_{s} = \pm 4.5 V, V_{D} = \mp 4.5 V;$ see Figure 23
Source on Leakage, is (on)	±0.1	±1	±8	nA max	
Drain Off Leakage, I₀ (Off)	±0.1	<u>-</u> 1	±0	nA typ	$V_s = \pm 4.5V$, $V_D = \mp 4.5V$; see Figure 23
Drain on Leakage, 10 (On)	±0.1 ±0.2	±2	±16	nA max	$v_3 = \pm 4.5 v_7 v_0 = 14.5 v_7 sec right 25$
Channel On Leakage, I _D , I _s (On)	±0.2	±2	10	nA typ	$V_s = V_D = \pm 4.5 V$; see Figure 24
Charmer On Leakage, ib, is (Of)	±0.2 ±0.4	±2	±16	nA max	$v_s = v_D = \pm 4.5 v$, see Figure 24
DIGITAL INPUTS	10.4	± z	10	ПА Шах	
			2.0	V min	
Input High Voltage, V _{INH}					
Input Low Voltage, V _{INL}	0.005		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
Divite Harry Conservation on C	0		±0.1	μA max	
	8			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, transition	150			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	278	336	376	ns max	$V_s = 2.5 V$; see Figure 29
t _{on} (EN)	116			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	146	166	177	ns max	$V_s = 2.5 V$; see Figure 31
t _{off} (EN)	186			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	234	277	310	ns max	$V_s = 2.5 V$; see Figure 31
Break-Before-Make Time Delay, t _D	50			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
			28.5	ns min	$V_{s1} = V_{s2} = 2.5 V$; see Figure 30
Charge Injection	140			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 32
Off Isolation	70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 25
Channel-to-Channel Crosstalk	70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
Total Harmonic Distortion + Noise (THD + N)	0.007			% typ	R_L = 110 $\Omega,$ 5 V p-p, f = 20 Hz to 20 kHz; see Figure 28
–3 dB Bandwidth	15			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 26
C _s (Off)	63			pF typ	$V_{s} = 0 V, f = 1 MHz$
C _D (Off)	270			pF typ	$V_{s} = 0 V, f = 1 MHz$
$C_{\rm D}, C_{\rm S}$ (On)	360			pF typ	$V_{s} = 0 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = +5.5 V, V_{SS} = -5.5 V$
I _{DD}	0.001			μA typ	Digital inputs = $0 \text{ V or } V_{DD}$
			1.0	µA max	
			1.0	μΑπιάλ	

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance (R _{ON})	0.95			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$; see Figure 22
	1.1	1.25	1.45	Ωmax	$V_{DD} = 10.8 V, V_{SS} = 0 V$
On Resistance Match Between Channels (ΔR_{ON})	0.03			Ωtyp	$V_s = 10 V, I_s = -10 mA$
	0.06	0.07	0.08	Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	0.2			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$
	0.23	0.27	0.32	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = 13.2 V, V_{SS} = 0 V$
Source Off Leakage, Is (Off)	±0.1			nA typ	$V_{s} = 1 V/10 V$, $V_{D} = 10 V/1 V$; see Figure 23
	±0.2	±1	±8	nA max	
Drain Off Leakage, I _D (Off)	±0.1			nA typ	$V_{s} = 1 V/10 V$, $V_{D} = 10 V/1 V$; see Figure 23
	±0.2	±2	±16	nA max	······································
Channel On Leakage, I _D , Is (On)	±0.2			nA typ	$V_s = V_D = 1 V$ or 10 V; see Figure 24
	±0.4	±2	±16	nA max	······································
DIGITAL INPUTS			2.0		
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INE}			0.8	V max	
	0.001		0.0		$V_{\rm IN} = V_{\rm GND} \text{ or } V_{\rm DD}$
Input Current, Inl or Inh	0.001		10.1	μA typ	$\mathbf{v}_{\text{IN}} = \mathbf{v}_{\text{GND}} \mathbf{O} \mathbf{I} \mathbf{v}_{\text{DD}}$
Disital Insut Carecitor as			±0.1	µA max	
Digital Input Capacitance, C _{IN} DYNAMIC CHARACTERISTICS ¹	8			pF typ	
	100				
Transition Time, transition	100	102	220	ns typ	$R_{L} = 300 \Omega, C_{L} = 35 \text{ pF}$
	161	192	220	ns max	$V_{s} = 8 V$; see Figure 29
t _{on} (EN)	80			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
(95	104	111	ns max	$V_s = 8 V$; see Figure 31
t _{off} (EN)	144			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	173	205	234	ns max	$V_s = 8 V$; see Figure 31
Break-Before-Make Time Delay, t _D	25			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			18	ns min	$V_{S1} = V_{S2} = 8 V$; see Figure 30
Charge Injection	125			pC typ	$V_s = 6 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 32
Off Isolation	70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 25
Channel-to-Channel Crosstalk	70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
Total Harmonic Distortion + Noise	0.013			% typ	$R_L = 110 \Omega$, 5 V p-p, f = 20 Hz to 20 kHz; see Figure 28
–3 dB Bandwidth	19			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 26
C _s (Off)	60			pF typ	$V_{s} = 6 V, f = 1 MHz$
C _D (Off)	270			pF typ	$V_{s} = 6 V, f = 1 MHz$
C _D , C _S (On)	350			pF typ	$V_{s} = 6 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = 12 V$
ldd	0.001			μA typ	Digital inputs = 0 V or V_{DD}
			1	µA max	
lod	230			μA typ	Digital inputs = 5 V
-00			360	μA max	
V _{DD}			3.3/16	V min/max	
עט ע			5.5/10	v mm/max	

5 V SINGLE SUPPLY

 V_{DD} = 5 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

25%	-40°C to	-40°C to	llait	Test Conditions/Comments
25 C	+03 C	+125 C	Onit	Test Conditions/Comments
		0 V to Vaa	V	
17				$V_{s} = 0 V$ to 4.5 V, $I_{s} = -10 \text{ mA}$; see Figure 22
	24	27		$V_{DD} = 4.5 V, V_{SS} = 0 V$
	2.4	2.7		$V_{DD} = 4.3 \text{ V}, V_{SS} = 0 \text{ V}$ $V_{S} = 0 \text{ V}$ to 4.5 V, $I_{S} = -10 \text{ mA}$
	0.12	0.15		$v_{\rm S} = 0$ v to 4.5 v, $v_{\rm S} = -10$ mA
	0.12	0.15		$V_{s} = 0 V$ to 4.5 V, $I_{s} = -10 mA$
	0.55	0.6		$v_{s} = 0$ v to 4.5 v, $v_{s} = -10$ mA
0.55	0.55	0.0	32 max	$V_{DD} = 5.5 V, V_{SS} = 0 V$
+0.05			n A turn	$V_{DD} = 3.3 \text{ V}, V_{SS} = 0 \text{ V}$ $V_{S} = 1 \text{ V}/4.5 \text{ V}, V_{D} = 4.5 \text{ V}/1 \text{ V}; \text{ see Figure 23}$
	. 1	1.0		$v_{S} = 1 v/4.5 v, v_{D} = 4.5 v/1 v; see Figure 25$
	ΞI	ΞO		$V_{1} = 1 V/4 E V/V_{2} = 4 E V/1 V_{2} con Eigure 22$
	12	110		$V_{\rm S} = 1 V/4.5 V$, $V_{\rm D} = 4.5 V/1 V$; see Figure 23
	±Ζ	±16		
	. 2			$V_s = V_D = 1 V \text{ or } 4.5 V$; see Figure 24
±0.4	±2	±16	nA max	
		0.8	-	
0.001				$V_{IN} = V_{GND} \text{ or } V_{DD}$
		±0.1		
8			pF typ	
			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
283	337	380	ns max	$V_s = 2.5 V$; see Figure 29
135			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
174	194	212	ns max	V _s = 2.5 V; see Figure 31
228			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
288	342	385	ns max	V _s = 2.5 V; see Figure 31
30			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		21	ns min	$V_{S1} = V_{S2} = 2.5 V$; see Figure 30
70			pC typ	$V_s = 2.5 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 32
70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 25
70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 27
0.09			% typ	$R_L = 110 \Omega$, f = 20 Hz to 20 kHz, Vs = 3.5 V p-p; see Figure 28
16			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 26
				$V_s = 2.5 V, f = 1 MHz$
				$V_s = 2.5 V, f = 1 MHz$
				$V_s = 2.5 V, f = 1 MHz$
			17: 77	$V_{\text{DD}} = 5.5 \text{ V}$
0.001			uA tvp	Digital inputs = $0 \text{ V} \text{ or } V_{DD}$
0.001				
		1	µA max	
	174 228 288 30 70 70 70	25°C $+85°C$ 1.72.152.40.050.090.120.40.530.55 ± 0.05 ± 1 ± 0.2 ± 1 ± 0.2 ± 2 ± 0.1 ± 2 ± 0.4 ± 2 0.001817528330707070701670300400	25°C +85°C +125°C 0 V to V _{DD} 0.7 1.7 2.15 2.4 2.7 0.05 0.09 0.12 0.15 0.9 0.12 0.15 0.4 0.53 0.55 0.6 0.4 ±0.05 ±1 ±8 16 ±0.2 ±1 ±16 16 ±0.1 ±2 ±16 16 ±0.4 ±2 ±16 16 0.001	25°C $+85°C$ $+125°C$ Unit 1.7 $0 V \text{ to } V_{DD}$ V 2.15 2.4 2.7 $\Omega \text{ typ}$ 0.05 $\Omega \text{ typ}$ $\Omega \text{ typ}$ $\Omega \text{ typ}$ 0.09 0.12 0.15 $\Omega \text{ max}$ 0.4 $\Omega \text{ typ}$ $\Omega \text{ max}$ 0.4 0.55 0.6 $\Omega \text{ max}$ ± 0.05 ± 1 ± 8 $nA \text{ typ}$ ± 0.2 ± 1 ± 8 $nA \text{ typ}$ ± 0.2 ± 2 ± 16 $nA \text{ max}$ ± 0.4 ± 2 ± 16 $nA \text{ max}$ $\mu 0.4$ ± 2 ± 16 $nA \text{ max}$ 0.001 $\mu \text{ typ}$ $\mu \text{ typ}$ $\mu \text{ typ}$ 175 $ns \text{ max}$ $ns \text{ typ}$ $ns \text{ max}$ 135 $ns \text{ typ}$ $ns \text{ max}$ $ns \text{ typ}$ 174 194 212 $ns \text{ max}$ 128 342 385 $ns \text{ max}$ 30 </td

3.3 V SINGLE SUPPLY

 V_{DD} = 3.3 V, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 4.

Parameter	25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0VtoV_{\text{DD}}$	V	
On Resistance (R _{ON})	3.2	3.4	3.6	Ωtyp	$V_{\text{S}} = 0 \text{ V to } V_{\text{DD}}, I_{\text{S}} = -10 \text{ mA}, V_{\text{DD}} = 3.3 \text{ V}, \\ V_{\text{SS}} = 0 \text{ V}; \text{ see Figure 22}$
On Resistance Match Between Channels (ΔR_{ON})	0.06	0.07	0.08	Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = -10 \text{ mA}$
On Resistance Flatness (R _{FLAT(ON)})	1.2	1.3	1.4	Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = -10 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 3.6 V, V_{SS} = 0 V$
Source Off Leakage, Is (Off)	±0.02			nA typ	$V_{\rm S} = 0.6 \text{V}/3 \text{V}, V_{\rm D} = 3 \text{V}/0.6 \text{V}; \text{ see Figure 23}$
	±0.25	±1	±8	nA max	
Drain Off Leakage, I _D (Off)	±0.02			nA typ	$V_{\rm S} = 0.6 \text{V}/3 \text{V}, V_{\rm D} = 3 \text{V}/0.6 \text{V}; \text{ see Figure 23}$
	±0.25	±2	±16	nA max	
Channel On Leakage, I _D , Is (On)	±0.05			nA typ	$V_s = V_D = 0.6 V$ or 3 V; see Figure 24
	±0.6	±2	±16	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.001			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	8			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, transition	280			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	460	526	575	ns max	$V_s = 1.5 V$; see Figure 29
ton (EN)	227			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	308	332	346	ns max	$V_s = 1.5 V$; see Figure 31
t _{off} (EN)	357			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	480	549	601	ns max	$V_s = 1.5 V$; see Figure 31
Break-Before-Make Time Delay, t _D	25			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			20	ns min	$V_{S1} = V_{S2} = 1.5 V$; see Figure 30
Charge Injection	60			pC typ	$V_s = 1.5 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 32
Off Isolation	70			dB typ	R_L = 50 $\Omega,$ C_L = 5 pF, f = 100 kHz; see Figure 25
Channel-to-Channel Crosstalk	70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 27
Total Harmonic Distortion + Noise	0.15			% typ	$R_L = 110 \Omega$, f = 20 Hz to 20 kHz, V _s = 2 V p-p; see Figure 28
–3 dB Bandwidth	15			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 26
C _s (Off)	76			pF typ	$V_s = 1.5 V, f = 1 MHz$
C _D (Off)	316			pF typ	$V_s = 1.5 V, f = 1 MHz$
C _D , C _S (On)	420			pF typ	$V_s = 1.5 V, f = 1 MHz$
POWER REQUIREMENTS					V _{DD} = 3.6 V
ldd	0.001			µA typ	Digital inputs = $0 V \text{ or } V_{DD}$
		1.0	1.0	µA max	
V _{DD}			3.3/16	V min/max	

CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 5.

Parameter	25°C	85°C	125°C	Unit
CONTINUOUS CURRENT, S OR D				
$V_{DD} = +5 V, V_{SS} = -5 V$				
TSSOP ($\theta_{JA} = 150.4^{\circ}C/W$)	315	189	95	mA maximum
LFCSP ($\theta_{JA} = 48.7^{\circ}$ C/W)	504	259	112	mA maximum
$V_{DD} = 12 V, V_{SS} = 0 V$				
TSSOP ($\theta_{JA} = 150.4^{\circ}C/W$)	378	221	112	mA maximum
LFCSP ($\theta_{JA} = 48.7^{\circ}C/W$)	627	311	126	mA maximum
$V_{DD} = 5 V, V_{SS} = 0 V$				
TSSOP ($\theta_{JA} = 150.4^{\circ}C/W$)	249	158	91	mA maximum
LFCSP ($\theta_{JA} = 48.7^{\circ}$ C/W)	403	224	105	mA maximum
$V_{DD} = 3.3 V, V_{SS} = 0 V$				
TSSOP ($\theta_{JA} = 150.4^{\circ}C/W$)	256	165	98	mA maximum
LFCSP ($\theta_{JA} = 48.7^{\circ}C/W$)	410	235	116	mA maximum

ABSOLUTE MAXIMUM RATINGS

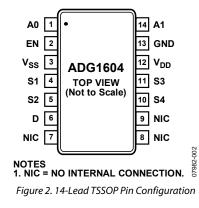
 $T_A = 25^{\circ}C$, unless otherwise noted.

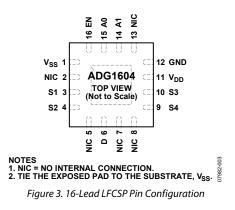
Table 6.

Parameter	Rating						
V _{DD} to V _{SS}	18 V						
V _{DD} to GND	–0.3 V to +18 V						
Vss to GND	+0.3 V to -18 V						
Analog Inputs ¹	V _{ss} – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first						
Digital Inputs ¹	GND – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first						
Peak Current, S or D	1150 mA (pulsed at 1 ms, 10% duty-cycle maximum)						
Continuous Current, S or D ²	Data + 15%						
Operating Temperature Range							
Industrial (Y Version)	-40°C to +125°C						
Storage Temperature Range	–65°C to +150°C						
Junction Temperature	150°C						
θ _{JA} Thermal Impedance							
16-Lead TSSOP, 2-Layer Board	150.4°C/W						
16-Lead LFCSP, 4-Layer Board	48.7°C/W						
Reflow Soldering Peak Temperature, Pb free	260°C						

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

² See Table 5.


Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 7. Pin Function Descriptions

Pin	No.		
14-Lead TSSOP	16-Lead LFCSP	Mnemonic	Description
1	15	A0	Logic Control Input.
2	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, the Ax logic inputs determine the on switch.
3	1	Vss	Most Negative Power Supply Potential.
4	3	S1	Source Terminal. This pin can be an input or output.
5	4	S2	Source Terminal. This pin can be an input or output.
6	6	D	Drain Terminal. This pin can be an input or output.
7, 8, 9	2, 5, 7, 8, 13	NIC	No Internal Connection.
10	9	S4	Source Terminal. This pin can be an input or output.
11	10	S3	Source Terminal. This pin can be an input or output.
12	11	V _{DD}	Most Positive Power Supply Potential.
13	12	GND	Ground (0 V) Reference.
14	14	A1	Logic Control Input.
N/A ¹	0	EPAD	Exposed Pad. Tie the exposed pad to the substrate, Vss.

¹ N/A means not applicable.

Table 8. ADG1604 Truth Table

EN	A1	A0	S1	S2	S3	S4
0	Х	Х	Off	Off	Off	Off
1	0	0	On	Off	Off	Off
1	0	1	Off	On	Off	Off
1	1	0	Off	Off	On	Off
1	1	1	Off	Off	Off	On

TYPICAL PERFORMANCE CHARACTERISTICS

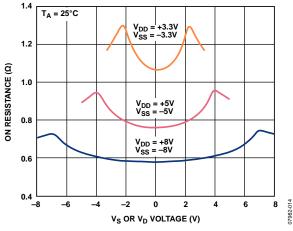


Figure 4. On Resistance as a Function of V_D (V_s) for Dual Supply

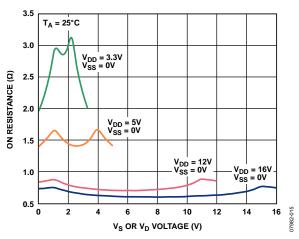


Figure 5. On Resistance as a Function of V_D (V_S) for Single Supply

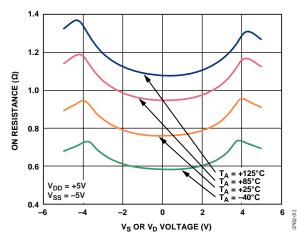


Figure 6. On Resistance as a Function of $V_{\rm D}$ (Vs) for Different Temperatures, ± 5 V Dual Supply

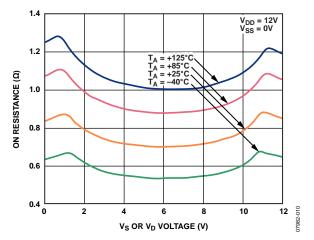


Figure 7. On Resistance as a Function of V_D (V_s) for Different Temperatures, 12 V Single Supply

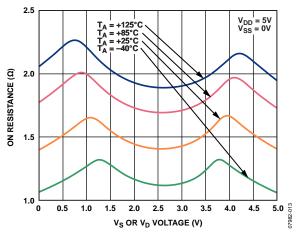


Figure 8. On Resistance as a Function of V_D (V_s) for Different Temperatures, 5 V Single Supply

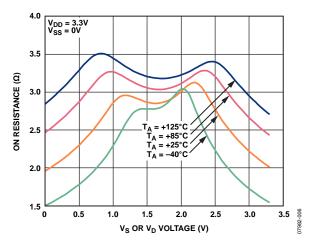


Figure 9. On Resistance as a Function of V_D (V₃) for Different Temperatures, 3.3 V Single Supply

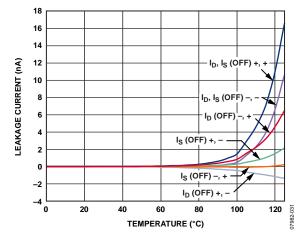
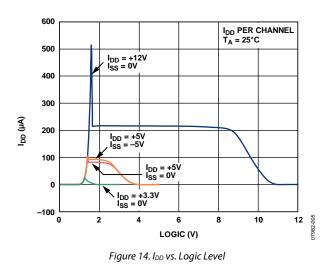
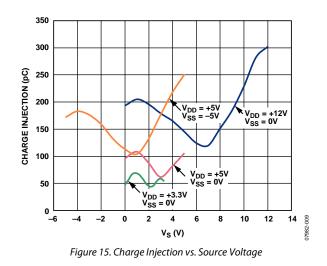




Figure 13. Leakage Currents as a Function of Temperature, 3.3 V Single Supply

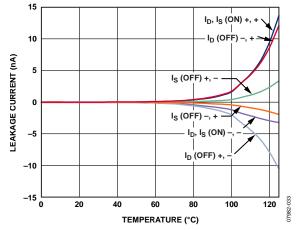


Figure 10. Leakage Currents as a Function of Temperature, ± 5 V Dual Supply

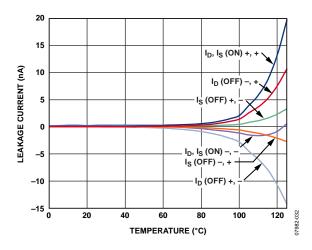


Figure 11. Leakage Currents as a Function of Temperature, 12 V Single Supply

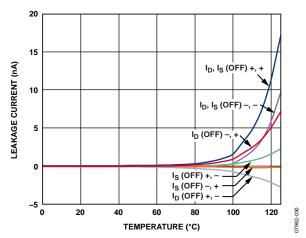


Figure 12. Leakage Currents as a Function of Temperature, 5 V Single Supply

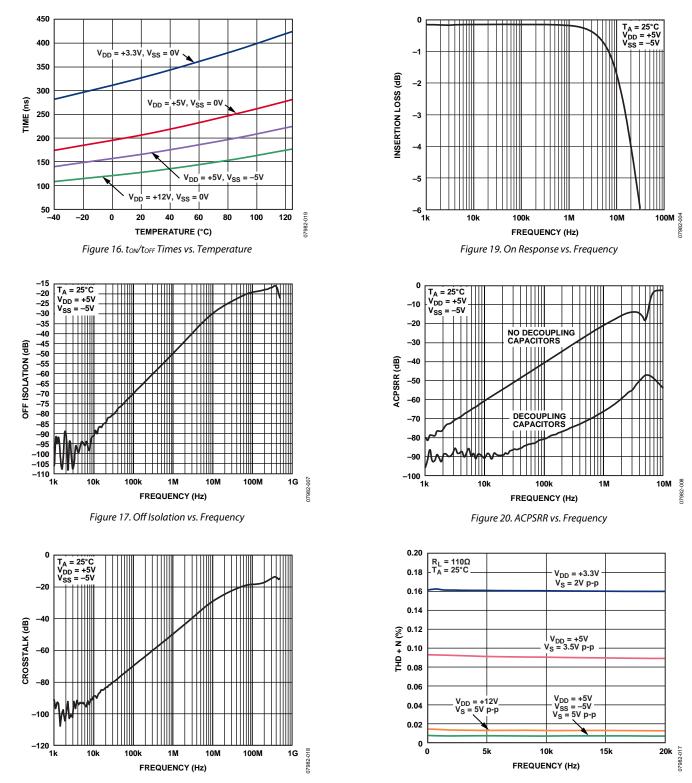
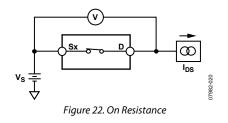
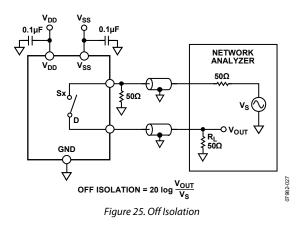




Figure 21. THD + N vs. Frequency

Figure 18. Crosstalk vs. Frequency

TEST CIRCUITS

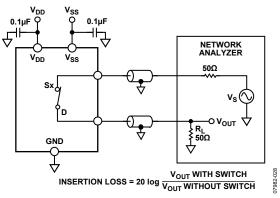
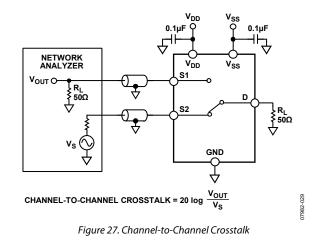
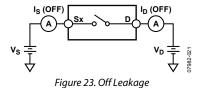
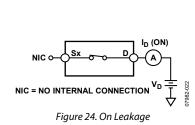





Figure 26. Bandwidth

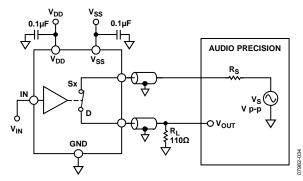


Figure 28. THD + Noise

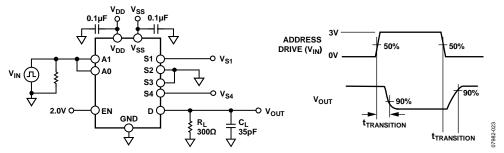
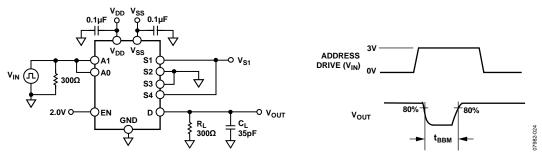
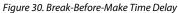




Figure 29. Address to Output Switching Times

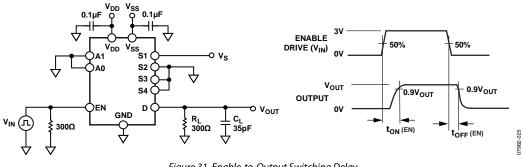


Figure 31. Enable-to-Output Switching Delay

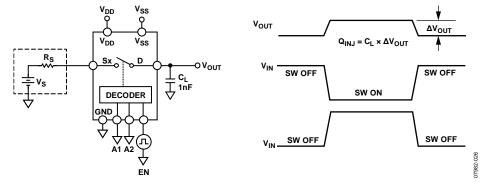


Figure 32. Charge Injection

TERMINOLOGY

IDD

The positive supply current.

Iss

The negative supply current.

$V_D (V_s)$

The analog voltage on Terminal D and Terminal S.

Ron

The ohmic resistance between Terminal D and Terminal S.

R_{FLAT}(ON)

Flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

Is (Off)

The source leakage current with the switch off.

 \mathbf{I}_{D} (Off) The drain leakage current with the switch off.

 I_D , I_S (On) The channel leakage current with the switch on.

V_{INL} The maximum input voltage for Logic 0.

 $V_{\mbox{\scriptsize INH}}$ The minimum input voltage for Logic 1.

I_{INL} (I_{INH}) The input current of the digital input.

Cs (Off)

The off switch source capacitance, which is measured with reference to ground.

C_D (Off)

The off switch drain capacitance, which is measured with reference to ground.

C_D , C_s (On)

The on switch capacitance, which is measured with reference to ground.

CIN

The digital input capacitance.

tTRANSITION

The delay time between the 50% and 90% points of the digital input and switch on condition when switching from one address state to another. See Figure 29.

ton (EN)

The delay between applying the digital control input and the output switching on. See Figure 31.

toff (EN)

The delay between applying the digital control input and the output switching off. See Figure 31.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching. See Figure 32.

Off Isolation

A measure of unwanted signal coupling through an off switch. See Figure 25.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance. See Figure 27.

Bandwidth

The frequency at which the output is attenuated by 3 dB. See Figure 26.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental. See Figure 28.

AC Power Supply Rejection Ratio (ACPSRR)

The ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

OUTLINE DIMENSIONS

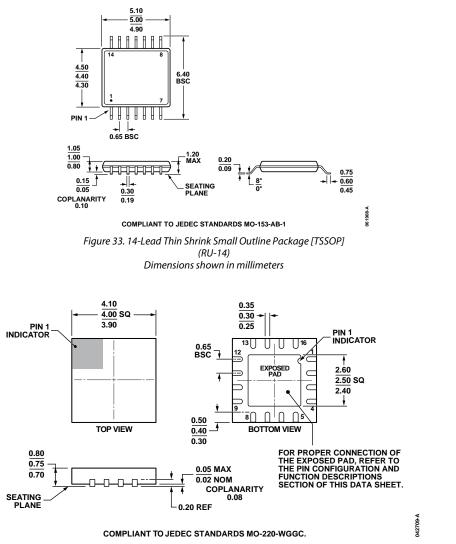


Figure 34. 16-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-16-26) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG1604BRUZ	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1604BRUZ-REEL	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1604BRUZ-REEL7	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1604BCPZ-REEL	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26
ADG1604BCPZ-REEL7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26

 1 Z = RoHS Compliant Part.

NOTES

NOTES

NOTES

www.analog.com

©2009–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07982-0-3/16(B)

Rev. B | Page 20 of 20