RF POWER MOSFET

N-CHANNEL ENHANCEMENT MODE

25MHz

The ARF1519 is an RF power transistor designed for very high power scientific, commercial, medical and industrial RF power generator and amplifier applications up to 25 MHz .

```
- Specified 250 Volt, 13.56 MHz Characteristics:
Output Power \(=750\) Watts.
Gain = 17dB (Class C)
Efficiency > 75\%
```

- High Performance Power RF Package.
- Very High Breakdown for Improved Ruggedness.
- Low Thermal Resistance.
- Nitride Passivated Die for Improved Reliability.
MAXIMUM RATINGS All Ratings: $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	ARF1519	UNIT
$\mathrm{V}_{\mathrm{DSS}}$	Drain-Source Voltage	1000	Volts
I_{D}	Continuous Drain Current $@ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	20	Amps
V_{GS}	Gate-Source Voltage	± 30	Volts
P_{D}	Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	1350	Watts
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\mathrm{STG}}$	Operating and Storage Junction Temperature Range	-55 to 175	C
T_{L}	Lead Temperature: 0.063 " from Case for 10 Sec.	300	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
$\mathrm{BV}_{\text {DSs }}$	Drain-Source Breakdown Voltage ($\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=300 \mu \mathrm{~A}$)	1000			Volts
$\mathrm{V}_{\text {DS(ON) }}$			5	7	ts
$I_{\text {DSS }}$	Zero Gate Voltage Drain Current ($\left.\mathrm{V}_{\mathrm{DS}}=1000 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}\right)$			300	$\mu \mathrm{A}$
	Zero Gate Voltage Drain Current ($\left.\mathrm{V}_{\mathrm{DS}}=800 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$			3000	
$\mathrm{I}_{\text {GSS }}$	Gate-Source Leakage Current ($\left.\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\right)$			± 600	nA
g_{fs}	Forward Transconductance ($\left.\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}\right)$	3	14		mhos
$\mathrm{V}_{\text {isolation }}$	RMS Voltage (60 Hz Sinewave from terminals to mounting surface for 1 minute)	TBD			Volts
$\mathrm{V}_{\mathrm{GS} \text { (TH) }}$	Gate Threshold Voltage ($\left.\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=6 \mathrm{~mA}\right)$	2		4	Volts

THERMAL CHARACTERISTICS

Symbol	Characteristic (per package unless otherwise noted)	MIN	TYP	MAX	UNIT
$R_{\theta J C}$	Junction to Case			0.13	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\theta C S}$	Case to Sink (Use High Efficiency Thermal Joint Compound and Planar Heat Sink Surface.)		0.09		

隹 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

ARF1519

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{gathered} V_{G S}=0 V \\ V_{D S}=150 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		4600	5600	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			310	350	
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			90	120	

FUNCTIONAL CHARACTERISTICS

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
G_{PS}	Common Source Amplifier Power Gain	$\begin{gathered} f=13.56 \mathrm{MHz} \\ V_{G S}=0 \mathrm{~V} \quad V_{D D}=200 \mathrm{~V} \\ P_{\text {out }}=750 \mathrm{~W} \end{gathered}$	17	20		dB
η	Drain Efficiency		70	75		\%
Ψ	Electrical Ruggedness VSWR 10:1		No Degradation in Output Power			

[^0]Microsemi reserves the right to change, without notice, the specifications and information contained herein.

Per transistor section unless otherwise specified.

Figure 3，Typical Threshold Voltage vs Temperature

figure 4，Typical Output Characteristics

Figure 5，Maximum Effective Transient Thermal Impedance，Junction－to－Case vs．Pulse Duration

Table 1 －Typical Class AB Large Signal Impedance－－ARF1519

$F(\mathrm{MHz})$	$Z_{\text {in }}(\Omega)$	$Z_{\mathrm{oL}}(\Omega)$
2.0	$10.6-\mathrm{j} 12.2$	$31-\mathrm{j} 4.7$
13.5	$0.5-\mathrm{j} 2.7$	$15.6-\mathrm{j} 16$

$Z_{\text {in }}$－Gate shunted with $25 \Omega I_{D Q}=100 \mathrm{~mA}$
Z_{oL}－Conjugate of optimum load for 750 Watts output at $\mathrm{V}_{\mathrm{dd}}=200 \mathrm{~V}$

ARF1519 -- 13.56 MHz Test Circuit

C1-C3 1nF X7R 100V smt
C4 $2 \times 8.2 \mathrm{nF} 1 \mathrm{kV} \mathrm{COG}$
C5 270pF x2 ATC 100C
C7-C10 8.2 nF 1 kv COG
C11 $390+27 \mathrm{pF}$ ATC 100 C
L1 2uH-22t \#24 enam. .312" dia.
L2 $368 \mathrm{nH}-5 \mathrm{t} \# 12$. $625^{\prime \prime}$ dia.$^{\prime \prime \prime}$ ।
L3 500 nH 2 t on $850 \mathrm{u} .5^{5}$ bead
R1 2.2k 0.5W
T1 10:1t transformer

Parts placement - Not to Scale.

Thermal Considerations and Package Mounting:

The rated 1350 W power dissipation is only available when the package mounting surface is at $25^{\circ} \mathrm{C}$ and the junction temperature is $200^{\circ} \mathrm{C}$. The thermal resistance between junctions and case mounting surface is $0.12^{\circ} \mathrm{C} / \mathrm{W}$. When installed, an additional thermal impedance of $0.1^{\circ} \mathrm{C} / \mathrm{W}$ between the package base and the mounting surface is typical. Insure that the mounting surface is smooth and flat. Thermal joint compound must be used to reduce the effects of small surface irregularities. The heatsink should incorporate a copper heat spreader to obtain best results. Use 4-40 or M3 screws torqued to $\mathrm{T}=4-6 \mathrm{in}-\mathrm{lb}(0.45-0.68 \mathrm{~N}-\mathrm{m})$.

HAZARDOUS MATERIAL WARNING
The ceramic portion of the device between leads and mounting surface is beryllium oxideBeO. Beryllium oxide dust is toxic when inhaled. Care must be taken during handling and mounting to avoid damage to this area These devices must never be thrown away with general industrial or domestic waste.

1 Drain
2 Source
3 Source
4 Gate

[^0]: (1) Pulse Test: Pulse width < $380 \mu \mathrm{~S}$, Duty Cycle < 2\%.

