MIC24056 Evaluation Board 12A, High-Efficiency, Synchronous DC/DC Buck Regulator with HyperLight Load[®] SuperSwitcher II™ ## **General Description** The MIC24056 DC/DC synchronous buck regulator operates over an input supply range of 4.5V to 19V and provides a regulated output at up to 12A of load current. The output voltage is adjustable down to 0.8V with a typical accuracy of $\pm 1\%$. Micrel's HyperLight Load[®] architecture maintains high efficiency under light load conditions by transitioning to variable frequency, discontinuous mode operation. The Hyper Speed Control allows using smaller output capacitance. The device operates at a switching frequency of 600kHz, which remains relatively constant with changes in input voltage and output load. The MIC24056 utilizes an adaptive T_{ON} ripple control architecture. An undervoltage lockout feature is provided to ensure proper operation under power-sag conditions. An internal soft-start feature is provided to reduce the inrush current. Foldback current limit and "hiccup" mode short-circuit protection and thermal shutdown ensures protection of the IC during fault conditions. The HyperLight Load and Hyper Speed Control features allow ideal transition from light load to full load and vice versa. The 19V operating rating of the device provides ample design safety margin for 12V input applications. The basic parameters of the MIC24056 evaluation board are a VIN supply of 5V to 19V, output voltage of 0.8V to 5V at 12A⁽¹⁾, and 600kHz switching frequency. #### Note: Refer to the temperature curves presented in the Evaluation Board Performance section. Also, note that the typical minimum input voltage to maximum output voltage conversion is limited by the maximum duty cycle. Datasheets and support documentation are available on Micrel's web site at: www.micrel.com. #### Requirements The MIC24056 evaluation board requires only a single power supply with at least 10A current capability. The MIC24056 has internal VDD LDO so no external linear regulator is required to power the internal biasing of the IC. When VIN < 5.5V, VDD should be tied to PVIN pins to bypass the internal linear regulator by a jumper. The output load can either be an active or passive load. #### **Power-Up Precautions** The evaluation board does not have reverse polarity protection. Applying a negative voltage to the VIN terminal may damage the device. The maximum VIN operating voltage of the MIC24056 evaluation board is 19V. It has two different layout designs, one (Figure 1) optimized for evaluation and a second (Figure 2) optimized for a smaller footprint. The evaluation board is only populated with components shown in Figure 1. ## **Getting Started** ## 1. VIN Supply. Connect a supply to the VIN and GND terminals, paying careful attention to the polarity and the supply range (5V < VIN < 19V). An ammeter may be placed between the input supply and the VIN terminal to the evaluation board. Ensure that the supply voltage is monitored at the VIN terminal. The ammeter and/or power lead resistance can reduce the voltage supplied to the input. Do not apply power until Step 4. # Connect the load to the VOUT and ground terminals. The load can be either passive (resistive) or active (as in an electronic load). An ammeter can be placed between the load and the VOUT terminal. Ensure that the output voltage is monitored at the VOUT terminal. #### 3. Enable Input. An EN connector is provided on the evaluation board for users to easily access the enable feature. The output of the MIC24056 turns on when VDD exceeds the UVLO threshold. The output of the MIC24056 may be turned off by shorting the EN pin to ground. ### 4. Turn on the power. Turn on VIN power supply and verify that the output voltage is regulated to 1.8V. ## **Ordering Information** | Part Number | Description | | | |----------------|--|--|--| | MIC24056YJL EV | 12A HLL DC/DC Buck Regulator
Evaluation Board | | | HyperLight Load is a registered trademark of Micrel, Inc. Hyper Speed Control, SuperSwitcher II, and Any Capacitor are trademarks of Micrel, Inc. Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com February 11, 2013 Revision 1.0 ## **Output Voltage** The output voltage on the MIC24056 evaluation board is adjustable. It is set by adjusting the feedback resistors, referring Equation 1: $$V_{OUT} = V_{FB} \times \left(1 + \frac{R4}{R_{BOTTOM}}\right)$$ Eq. 1 where $V_{FB} = 0.8V$ and R_{BOTTOM} is one of the R5, R6, R7, R8, R9, R10, R11, R12 which corresponds to 0.9V, 1.0V, 1.2V, 1.5V, 1.8V, 2.5V, 3.3V, or 5V. Leaving the R_{BOTTOM} open gives a 0.8V output voltage. The output voltage above is set at the factory for a 1.8V output, but it can easily be changed by moving the jumper to a respective position to get an indicated voltage on the board. If a desired voltage is not shown on the board, it is easily modified by removing R_{BOTTOM} and replacing it with the values that yield the desired output voltage. Once R4 is selected, R_{BOTTOM} can be calculated using Equation 2: $$R_{BOTTOM} = \frac{R4 \times V_{FB}}{V_{OUT} - V_{FB}}$$ Eq. 2 For $V_{FB} = 0.8V$, as in Equation 3: $$R_{BOTTOM} = \frac{R4 \times 0.8V}{V_{OUT} - 0.8V}$$ Eq. 3 The output voltage should not be set to exceed 5V due to the 6.3V rating of the output capacitor and limitation on line regulation. Please refer to the "Setting the Output Voltage" and Ripple Injection" subsections in the *Application Information* section of the MIC24056 datasheet for more detailed information. ## **Evaluation Board Performance** **Die Temperature***: The temperature measurement was taken at the hottest point on the MIC24056 case mounted on a 5 square inch 4 layer, 0.62 inch, FR-4 PCB with 2oz finish copper weight per layer, see the *Thermal Measurement* section in the MIC24056 datasheet. Actual results will depend upon the size of the PCB, ambient temperature and proximity to other heat-emitting components. ## **Evaluation Board Schematic** Figure 1. Schematic of MIC24056 Evaluation Board (J11, R13, and R15 are for testing purposes) ## **Evaluation Board Schematic (Continued)** Figure 2. Schematic of MIC24056 Evaluation Board – Optimized for Smaller Footprint (J11, R13, and R15 are for testing purposes) ## **Bill of Materials** | Part Number | Manufacturer | Description | Qty. | |--------------------|---|---|---| | Open | | | | | 12103C475KAT2A | AVX ⁽¹⁾ | 4.7μF Ceramic Capacitor, X7R, Size 1210, 25V | 2 | | GRM32DR71E475KA61K | Murata ⁽²⁾ | | | | C3225X7R1E475K | TDK ⁽³⁾ | | | | 12106D107MAT2A | AVX | | 3 | | GRM32ER60J107ME20L | Murata | 100μF Ceramic Capacitor, X5R, Size 1210, 6.3V | | | C3225X5R0J107M | TDK | | | | Open | | | | | 06035C104KAT2A | AVX | | 3 | | GRM188R71H104KA93D | Murata | 0.1μF Ceramic Capacitor, X7R, Size 0603, 50V | | | C1608X7R1H104K | TDK | | | | 0603ZC105KAT2A | AVX | 1.0μF Ceramic Capacitor, X7R, Size 0603, 10V | 1 | | GRM188R71A105KA61D | Murata | | | | C1608X7R1A105K | TDK | | | | 0603ZD225KAT2A | AVX | 2.2μF Ceramic Capacitor, X5R, Size 0603, 10V | 1 | | GRM188R61A225KE34D | Murata | | | | C1608X5R1A225K | TDK | | | | 06035C472KAZ2A | AVX | 4.7nF Ceramic Capacitor, X7R, Size 0603, 50V | 1 | | GRM188R71H472K | Murata | | | | C1608X7R1H472K | TDK | | | | B41851F7227M | EPCOS ⁽⁴⁾ | 220µF Aluminum Capacitor, 35V | 1 | | Open | | | | | SD103AWS | MCC ⁽⁵⁾ | | | | SD103AWS-7 | Diodes Inc. (6) | 40V, 350mA, Schottky Diode, SOD323 | | | SD103AWS | Vishay ⁽⁷⁾ | | <u> </u> | | HCF1305-2R2-R | Cooper Bussmann ⁽⁸⁾ | 2.2µH Inductor, 15A Saturation Current | 1 | | CRCW06032R21FKEA | Vishay Dale | 2.21Ω Resistor, Size 0603, 1% | 1 | | CRCW06032R00FKEA | Vishay Dale | 2.00Ω Resistor, Size 0603, 1% | 1 | | CRCW060319K6FKEA | Vishay Dale | 19.6kΩ Resistor, Size 0603, 1% | 1 | | CRCW06032K49FKEA | Vishay Dale | 2.49kΩ Resistor, Size 0603, 1% | 1 | | CRCW060320K0FKEA | Vishay Dale | 20.0kΩ Resistor, Size 0603, 1% | 1 | | | Open 12103C475KAT2A GRM32DR71E475KA61K C3225X7R1E475K 12106D107MAT2A GRM32ER60J107ME20L C3225X5R0J107M Open 06035C104KAT2A GRM188R71H104KA93D C1608X7R1H104K 0603ZC105KAT2A GRM188R71A105KA61D C1608X7R1A105K 0603ZD225KAT2A GRM188R61A225KE34D C1608X5R1A225K 06035C472KAZ2A GRM188R71H472K C1608X7R1H472K C1608X7R1H472K B41851F7227M Open SD103AWS SD103AWS SD103AWS-7 SD103AWS HCF1305-2R2-R CRCW06032R00FKEA CRCW060319K6FKEA CRCW06032K49FKEA | Open 12103C475KAT2A AVX ⁽¹⁾ GRM32DR71E475KA61K Murata ⁽²⁾ C3225X7R1E475K TDK ⁽³⁾ 12106D107MAT2A AVX GRM32ER60J107ME20L Murata C3225X5R0J107M TDK Open 06035C104KAT2A AVX GRM188R71H104KA93D Murata C1608X7R1H104K TDK 0603ZC105KAT2A AVX GRM188R71A105KA61D Murata C1608X7R1A105K TDK 0603ZD225KAT2A AVX GRM188R61A225KE34D Murata C1608X5R1A225K TDK 06035C472KAZ2A AVX GRM188R71H472K Murata C1608X7R1H472K TDK B41851F7227M EPCOS ⁽⁴⁾ Open SD103AWS MCC ⁽⁵⁾ SD103AWS MCC ⁽⁶⁾ SD103AWS Vishay ⁽⁷⁾ HCF1305-2R2-R Cooper Bussmann ⁽⁸⁾ CRCW06032R21FKEA Vishay Dale CRCW060319K6FKEA Vishay Dale CRCW06032K49FKEA Vishay Dale </td <td>Open 12103C475KAT2A AVX⁽¹⁾ GRM32DR71E475KA61K Murata⁽²⁾ 4.7μF Ceramic Capacitor, X7R, Size 1210, 25V C3225X7R1E475K TDK⁽³⁾ 12106D107MAT2A AVX GRM32ER60J107ME20L Murata 100μF Ceramic Capacitor, X5R, Size 1210, 6.3V Open D6035C104KAT2A AVX GRM188R71H104KA93D Murata 0.1μF Ceramic Capacitor, X7R, Size 0603, 50V C1608X7R1H104K TDK 0603ZC105KAT2A AVX GRM188R71A105KA61D Murata 1.0μF Ceramic Capacitor, X7R, Size 0603, 10V C1608X7R1A105K TDK 0603ZD225KAT2A AVX GRM188R61A225KE34D Murata 2.2μF Ceramic Capacitor, X5R, Size 0603, 10V C1608X7R1H472K TDK 4.7nF Ceramic Capacitor, X5R, Size 0603, 10V C1608X7R1H472K Murata 4.7nF Ceramic Capacitor, X5R, Size 0603, 50V C1608X7R1H472K TDK 4.7nF Ceramic Capacitor, X7R, Size 0603, 50V D6035C472KAZ2A AVX 4.7nF Ceramic Capacitor, X7R, Size 0603, 50V C1608X7R1H472K TDK 4.7nF Ceramic Capacitor, X7R, Size 0603, 50V D609n Vishay 4.7nF Ceramic Capa</td> | Open 12103C475KAT2A AVX ⁽¹⁾ GRM32DR71E475KA61K Murata ⁽²⁾ 4.7μF Ceramic Capacitor, X7R, Size 1210, 25V C3225X7R1E475K TDK ⁽³⁾ 12106D107MAT2A AVX GRM32ER60J107ME20L Murata 100μF Ceramic Capacitor, X5R, Size 1210, 6.3V Open D6035C104KAT2A AVX GRM188R71H104KA93D Murata 0.1μF Ceramic Capacitor, X7R, Size 0603, 50V C1608X7R1H104K TDK 0603ZC105KAT2A AVX GRM188R71A105KA61D Murata 1.0μF Ceramic Capacitor, X7R, Size 0603, 10V C1608X7R1A105K TDK 0603ZD225KAT2A AVX GRM188R61A225KE34D Murata 2.2μF Ceramic Capacitor, X5R, Size 0603, 10V C1608X7R1H472K TDK 4.7nF Ceramic Capacitor, X5R, Size 0603, 10V C1608X7R1H472K Murata 4.7nF Ceramic Capacitor, X5R, Size 0603, 50V C1608X7R1H472K TDK 4.7nF Ceramic Capacitor, X7R, Size 0603, 50V D6035C472KAZ2A AVX 4.7nF Ceramic Capacitor, X7R, Size 0603, 50V C1608X7R1H472K TDK 4.7nF Ceramic Capacitor, X7R, Size 0603, 50V D609n Vishay 4.7nF Ceramic Capa | #### Notes: AVX: www.avx.com. Murata: www.murata.com. TDK: www.tdk.com. EPCOS: www.epcos.com. MCC: www.mccsemi.com. Diodes, Inc.: www.diodes.com. 7. Vishay: www.vishay. 8. Cooper Bussmann: www.cooperbussmann.com. ## **Bill of Materials (Continued)** | Item | Part Number | Manufacturer | Description | Qty. | |---|-------------------|-----------------------------|---|------| | R6, R14, R17 | CRCW060310K0FKEA | Vishay Dale | 10.0kΩ Resistor, Size 0603, 1% | 3 | | R7 | CRCW06034K99FKEA | Vishay Dale | 4.99kΩ Resistor, Size 0603, 1% | 1 | | R8 | CRCW06032K87FKEA | Vishay Dale | 2.87kΩ Resistor, Size 0603, 1% | 1 | | R9 | CRCW06032K006FKEA | Vishay Dale | 2.00kΩ Resistor, Size 0603, 1% | 1 | | R10 | CRCW06031K18FKEA | Vishay Dale | 1.18kΩ Resistor, Size 0603, 1% | 1 | | R11 | CRCW0603806RFKEA | Vishay Dale | 806Ω Resistor, Size 0603, 1% | 1 | | R12 | CRCW0603475RFKEA | Vishay Dale | 475Ω Resistor, Size 0603, 1% | 1 | | R13 | CRCW06030000FKEA | Vishay Dale | 0Ω Resistor, Size 0603, 5% | 1 | | R15 | CRCW060349R9FKEA | Vishay Dale | 49.9Ω Resistor, Size 0603, 1% | 1 | | R16, R18 | CRCW06031R21FKEA | Vishay Dale | 1.21Ω Resistor, Size 0603, 1% | 2 | | R20 | Open | | | | | All Reference
designators ending
with "A" | Open | | | | | U1 | MIC24056YJL | Micrel. Inc. ⁽⁹⁾ | 12A, High-Efficiency, Synchronous DC/DC
Buck Regulator with Hyper Light Load | 1 | ## Note: 9. Micrel, Inc.: www.micrel.com. # PCB Layout Recommendations⁽¹⁾ **Top Layer** Mid-Layer 1 #### Note: 1. Refer to "PCB Layout Guideline" section for component placement and layout in MIC24056 datasheet on Micrel web page (<u>www.micrel.com</u>) # PCB Layout Recommendations⁽¹⁾ (Continued) Mid-Layer 2 **Bottom Layer** ### MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2013 Micrel, Incorporated. February 11, 2013 10 Revision 1.0 ## **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: Micrel: MIC24056YJL-EV