Quad Channel Ultrasound Echo Multiplexer with T/R Switch

Features

- Quad channel analog echo signal MUX switches
- $\pm 130 \mathrm{~V} 20 \mathrm{~ns} \mathrm{~T} / \mathrm{R}$ switch built-in for each channel
- 17Ω total on-resistance for low insertion loss
- $0.8 \mathrm{nV} / \mathrm{rt} . \mathrm{Hz}$ low RF input noise at 5 MHz
- DC to 100 MHz small signal bandwidth
- -65dB off-Isolation and -55 dB crosstalk
- Single +5 V power supply
- Low power consumption
- 20MHz serial interface 3.3 V CMOS logic
- -55dB HD2 very low echo signal distortions

Applications

- Medical imaging ultrasound beamforming receiver
- Software programmable echo multiplex switching
- High resolution phase array ultrasound NDT
- Ultrasonic phase array receiver focusing
- Array PZT transducer echo phase processing

General Description

The MDO200 is a multi-channel, low voltage, analog multiplex switch with a high voltage T/R switch and diode voltage limiter circuit. It is designed for medical ultrasound image system receive beamforming applications. It also can be used in NDT and other ultrasound applications.

The MD0200 circuit consists of a low voltage CMOS analog switch and digital logic serial interface circuits. This analog switch not only has very low insertion loss and noise and wide frequency response, it also has high isolation and low channel to channel crosstalk. The inputs of the analog switch are connected to the output of the two terminal type of ultrasound T/R switch, and two back-to-back diode voltage limiter circuits.
The shift-register and latch-register serial interface has allowed the IC maximum flexibility to connect a large number of channels together to form the echo multiplexing dynamic-focusing circuit for ultrasound image receive beamforming.

Block Diagram

Ordering Information

Part Number	Package Options	Packing
MD0200K6-G	18-Lead DFN (5×5)	$490 /$ Tray
MD0200K6-G M932	18-Lead DFN (5×5)	$2500 /$ Reel

-G denotes a lead (Pb)-free / RoHS compliant package

Absolute Maximum Ratings ${ }^{1}$

Parameter	Value
GND reference voltage	0 V
X0 ~ 3 input pins to GND voltage	0 to $\pm 140 \mathrm{~V}$
$V_{\text {DD }}$ positive supply	-0.5 V to +6.5 V
All logic input pins	-0.5 V to +6.5 V
Maximum junction temperature	$+125^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Note:

1. Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Typical Thermal Resistance

Package	$\boldsymbol{\theta}_{j a}$
18-Lead DFN	$30^{\circ} \mathrm{C} / \mathrm{W}$

ESD Sensitive Device

Pin Configuration

Product Marking

L = Lot Number
YY = Last Digit of Year Sealed
WW = Code for Week Sealed
A = Assembler ID
$C=$ Country of Origin
-_= "Green" Packaging
18-Lead DFN
Package may or may not include the following marks: Si or $\$ 7$

Operating Supply Voltages (Over operating conditions unless othemises specified, $\left.V_{00}=+5 V, T_{T}=5^{\circ} \mathrm{C}\right)$

Sym	Parameter	Min	Typ	Max	Unit	Conditions
$\mathrm{V}_{\text {SIG }}$	Signal input range (p-p)	-	± 400	-	mV	---
$V_{\text {D }}$	Positive voltage power supply	4.75	5.00	5.25	V	$\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {ON }}$	Total switch ON-resistance X_{0-3} to O_{0-3}	-	17.5	-	Ω	$\mathrm{I}_{\mathrm{x}}= \pm 5.0 \mathrm{~mA}, \mathrm{~V}_{\text {x0-3 }}= \pm 300 \mathrm{mV}$
$\Delta \mathrm{R}_{\text {ON }}$	Ch to Ch $\mathrm{R}_{\text {oN }}$ difference	-	± 5	-	\%	---
$V_{\text {F }}$	Diode forward voltage	-	0.8	1.0	V	1 mA
		-	1.25	1.50		100 mA
$I_{\text {FM }}$	Diode forward continuous current	-	100	-	mA	---
$\mathrm{I}_{\text {DD }}$	V_{DD} supply current 0 MHz	-	0.1	0.2	mA	$\mathrm{f}_{\mathrm{CLK}}=0 \mathrm{~Hz}$
$\mathrm{I}_{\text {DD20 }}$	$\mathrm{V}_{\text {DD }}$ supply current 20 MHz	-	8.0	10	mA	$\mathrm{f}_{\mathrm{CLK}}=20 \mathrm{~Hz}$
HD2	Second harmonic distortion	-	-55	-	dB	5 MHz sine wave, $\pm 300 \mathrm{mV}$ p-p input

T/R Switch Characteristics (Over operating conditions unless othemise specified, $\left.V_{o c}=+5 V, T_{T}=25^{\circ} \mathrm{C}\right)$

Sym	Parameter	Min	Typ	Max	Unit	Conditions
V_{x}	Max X_{0-3} to GND input voltage	± 130	-	-	V	$\mathrm{I}_{\mathrm{x}}= \pm 500 \mu \mathrm{~A}$
$\mathrm{R}_{\text {TRSW }}$	Switch ON-resistance of T/R SWX_{0-3} to O_{0-3}	-	15	-	Ω	$\mathrm{I}_{\mathrm{x}}= \pm 5.0 \mathrm{~mA}, \mathrm{~V}_{\text {x0-3 }}= \pm 300 \mathrm{mV}$
$\mathrm{V}_{\text {TRIP }}$	VX_{0-3} trip point to turn off	-	± 1.0	± 2.0	V	---
$\mathrm{V}_{\text {OFF }}$	T/R switch turn off voltage	-	± 2.0	-	V	$\mathrm{I}_{A \cdot B}= \pm 1.0 \mathrm{~mA}$
$\mathrm{I}_{\text {PEAK }}$	Peak T/R switch current	-	± 60	-	mA	---
$\mathrm{T}_{\text {OfF }}$	Turn-OFF time	-	-	20	ns	---
$\mathrm{T}_{\text {ON }}$	Turn-ON time	-	-	20	ns	---
$\mathrm{C}_{\text {sw(ON) }}$	Switch ON-capacitance	-	15	-	pF	T/R SW = ON
$\mathrm{C}_{\text {sw(OFF) }}$	Switch OFF-capacitance	-	9.0	-	pF	$\mathrm{V}_{(\times 0-3)}= \pm 25 \mathrm{~V}$
BW	Small signal bandwidth	-	100	-	MHz	$\mathrm{R}_{\text {LOAD }}=50 \Omega$

Clock and Logic I/O Characteristics
(Over operating conditions unless otherwise specified, $V_{D D}=+5 \mathrm{~V}, T_{j}=25^{\circ} \mathrm{C}$)

V_{IH}	Input logic high voltage	2.5	3.3	5.0	V	Design for 3.3V Logic
V_{IL}	Input logic low voltage	0	-	0.6	V	
I_{HH}	Input logic high current	-	-	1.0	$\mu \mathrm{~A}$	---
I_{LL}	Input logic low current	-1.0	-	-	$\mu \mathrm{A}$	---
C_{IN}	Input capacitance	-	10	12	pF	---
I_{OH}	Output logic high current	-	-	-2.0	mA	---
I_{OL}	Output logic low current	-	-	2.0	mA	---
V_{OH}	Output logic high voltage	4.5	-	-	V	$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	Output logic low voltage	-	-	0.35	V	$\mathrm{I}_{\mathrm{OL}}=-2.0 \mathrm{~mA}$

AC Electrical Characteristics (Over operating conditions unness othemises specified, $\left.V_{o 0}=+5 V, T_{=}=25^{\circ} \mathrm{C}\right)$

Q_{c}	LV SW charge injection	-	3.0	7.0	pC	$V_{(x 0-3)}=0 V,$ $03 \sim 1$ to GND 1 nF load
BW	Small signal bandwidth	-	100	-	MHz	$\mathrm{R}_{\text {LOAD }}=50 \Omega$
K	OFF-Isolation	-	-60	-	dB	At 10 MHz ,$R_{\text {LOAD }}=50 \Omega, \pm 300 \mathrm{mVp}-\mathrm{p}$
K_{CR}	On-channel crosstalk	-	-55	-	dB	
$\mathrm{C}_{\text {(ON) }}$	On-capacitance output to GND	-	42	45	pF	From O0~O3 to GND
$\mathrm{C}_{\text {(OFF) }}$	OFF-capacitance output to GND	-	22	25	pF	---
$\mathrm{f}_{\text {CLK }}$	Clock frequency	20	25	-	MHz	---
$\mathrm{t}_{\text {sD }}$	Setup time before $\overline{\mathrm{LE}}$ rises	10	-	-	ns	---
t_{H}	Data hold time	10	-	-	ns	---
$\mathrm{t}_{\mathrm{f}} / \mathrm{t}_{\text {f }}$	CLK rise or fall time	-	-	5.0	ns	---

AC Electrical Characteristics (cont.) (Overo operating oonditions uness othemises specified, $V_{00}=+5 V_{,} T_{1}=25^{\circ} \mathrm{C}$)

Sym	Parameter	Min	Typ	Max	Unit	Conditions
$\mathrm{t}_{\text {WLE }}$	Time width of $\overline{\overline{E E}}$	10	-		ns	---
$\mathrm{t}_{\text {su }}$	Data setup time	10	-		ns	---
t_{Do}	CLK delay time to data out	-	-		ns	---
dv/dt	Maximum V_{x} slew rate	-	-		V/ns	---
$\mathrm{t}_{\text {ON }}$	ON time delay	-	3.0	5.0	$\mu \mathrm{s}$	From CLK rise 50\% to the switch full on or off time, at $\overline{L E}=0$
$\mathrm{t}_{\text {OFF }}$	OFF time delay	-	3.0	5.0	$\mu \mathrm{s}$	
$\mathrm{V}_{\text {SPK }}$	Spike of LV SW turning ON	-	5.0	10	mV	50Ω on O0~3 to GND $1 \mathrm{k} \Omega$ on $\mathrm{XO} \sim 3$ to GND
	Spike of LV SW turning OFF	-	5.0	10		

Logic Timing Waveforms

T/R Switch Typical I-V Curve

Pin Description

Pin	Name	Description
1	O0	Low voltage analog switch channel 0 output
2	O1	Low voltage analog switch channel 1 output
3	DIN	Serial Data Input
4	CLK	Shift register clock input
5	VDD	Positive voltage power supply +5 V
6	$\overline{\text { LE }}$	Latch-Enable input - the switch status latched at the rising edge of $\overline{\text { LE. When }} \overline{\text { LE }}$ is low the shift 7 regist data flow through the latch
8	O2	Serial Data Output
9	O3	Low voltage analog switch channel 2 output
10	NC	No internal connection
11	X3	T/R switch channel 3 high voltage input
12	NC	No internal connection
13	X2	T/R switch channel 2 high voltage input
14	NC	No internal connection
15	X1	T/R switch channel 1 high voltage input
16	NC	No internal connection
17	X0	T/R switch channel 0 high voltage input
18	NC	No internal connection
DAP	GND	The bottom thermal pad of DFN-18, Ground (0V)

Note: DAP must be connected to the ground on the PCB.

18-Lead DFN Package Outline (K6)

$5.00 \times 5.00 \mathrm{~mm}$ body, 1.00 mm height (max), 0.50 mm pitch

Notes:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded marklidentifier; an embedded metal marker; or a printed indicator.
2. Depending on the method of manufacturing, a maximum of 0.15 mm pullback (L1) may be present.
3. The inner tip of the lead may be either rounded or square.

Symbol		A	A1	A3	b	D	D2	E	E2	e	L	L1	θ
Dimension (mm)	MIN	0.80	0.00	$\begin{aligned} & 0.20 \\ & \text { REF } \end{aligned}$	0.18	4.85*	4.20^{+}	4.85*	$3.50{ }^{+}$	$\begin{aligned} & 0.50 \\ & \text { BSC } \end{aligned}$	0.30^{+}	0.00*	0°
	NOM	0.90	0.02		0.25	5.00	$4.35{ }^{+}$	5.00	$3.65{ }^{+}$		0.40^{+}	-	-
	MAX	1.00	0.05		0.30	5.15*	$4.45{ }^{+}$	5.15*	$3.75{ }^{+}$		$0.50{ }^{+}$	0.15	14°

JEDEC Registration MO-229, Variation VJJD-2, Issue C, Aug 2003.

* This dimension is not specified in the JEDEC drawing.
\dagger This dimension differs from the JEDEC drawing.
Drawings not to scale.
Supertex Doc. \#: DSPD-18DFNK65X5P050, Version A013111.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

