

Part Number: 3078990861
Frequency Range: Medium Permeability, 78 (ui=2300) material
Description: $\quad 78$ ROD
Application: Inductive Components
Where Used: Open Magnetic Circuit
Part Type: Antenna/RFID Rods

Mechanical Specifications

$$
\text { Weight: } 470
$$

Part Type Information

These rods are designed for use in antenna and RFID transponder applications. Rods are available in three materials to cover a frequency range from 50 kHz to 25 MHz . Suggested frequency ranges: 78 material < $200 \mathrm{kHz}, 61$ material $0.2-5.0 \mathrm{MHz}$ and 61 material > 5.0 MHz .
-See www.fair-rite.com/newfair/catalog_rodinfo.htm graphs for temperature information for these rods.
-Rods can be supplied with a Parylene C coating. Parylene coated rods have a '4' as the last digit.
Parylene C is RoHS compliant.
-For any rod requirement not listed here, feel free to contact our customer service group for availability and pricing.
-The Antenna/RFID Kit (part number 0199000024) contains a selection of these rods.
-Explanation of Part Numbers: Digits $1 \& 2=$ product class, $3 \& 4=$ material grade, the last digit $1=$ uncoated rod and $4=$ Parylene coated rod.

Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Mechanical Specifications

Dim	mm	mm tol	nominal inch	inch misc.
A	2.50	± 0.025	0.098	-
B	-	-	-	-
C	20.00	± 0.60	0.787	-
D	-	-	-	-
E	-	-	-	-
F	-	-	-	-
G	-	-	-	-
H	-	-	-	-
J	-	-	-	-
K	-	-	-	-

Electrical Specifications

Typical Impedance (SZ)	

Electrical Properties	
U_{ROD}	34
$\mathrm{Ae}\left(\mathrm{cm}^{2}\right)$	0.04910

Fair-Rite Product's Catalog
Part Data Sheet, 3078990861
Printed: 2013-07-03

Land Patterns

V	W ref	X	Y	Z
-	-	-	-	-
-	-	-	-	-

Winding Information

Turns Tested	Wire Size	1st Wire Length	2nd Wire Length
-	-		-

Reel Information

Tape Width mm	Pitch mm	Parts 7" Reel	Parts 13 " Reel	Parts 14" " Reel
-	-	-	-	-

Package Size

Pkg Size
-
$(-)$

Connector Plate

\# Holes	\# Rows
-	-

Legend

+ Test frequency
Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.
The column $\mathrm{H}(\mathrm{Oe})$ gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures $18-23$ in the application note How to choose Ferrite Components for EMI Suppression.
A $1 / 2$ turn is defined as a single pass through a hole.
$\sum_{l / A}$ - Core Constant
A_{e} : Effective Cross-Sectional Area
A_{L} - Inductance Factor ($\frac{L}{N^{2}}$)
${ }^{1} \mathrm{e}$: Effective Path Length
V_{e} : Effective Core Volume
NI - Value of dc Ampere-turns

Ferrite Components for the Electronics Industry

Ferrite Material Constants

Specific HeatThermal Conductivity
3.5-4.5 mW/cm - ${ }^{\circ} \mathrm{C}$
Coefficient of Linear Expansion $8-10 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
Tensile Strength $4.9 \mathrm{kgf} / \mathrm{mm}^{2}$
Compressive Strength $42 \mathrm{~kg} / \mathrm{mm}^{2}$
Young's Modulus $15 \times 10^{3} \mathrm{kgf} / \mathrm{mm}^{2}$
Hardness (Knoop) 650
Specific Gravity $\approx 4.7 \mathrm{~g} / \mathrm{cm}^{3}$The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.

See next page for further material specifications.

Ferrite Components for the Electronics Industry
Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

A MnZn ferrite specifically designed for power applications for frequencies up to 200 kHz .

RFID rods, toroids, U cores, and E\&I cores are all available in 78 material.

Fair-Rite Product's Catalog
Part Data Sheet, 3078990861
Printed: 2013-07-03

Material
Declaration

78 Material Characteristics:

Property	Unit	Symbol	Value
Initial Permeability - $\mathrm{B}<10$ gauss		μ_{i}	2300
Flux Density © Field Strength	gauss oersted	$\begin{aligned} & \mathrm{B} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} 4800 \\ 5 \end{gathered}$
Residual Flux Density	gauss	B,	1500
Coercive Force	oersted	$\mathrm{H}_{\text {c }}$	0.20
Loss Factor Frequency	$\begin{aligned} & 10^{-6} \\ & \mathrm{MHz} \end{aligned}$	$\boldsymbol{\operatorname { t a n }} \delta^{\prime} \mu_{1}$	$\begin{aligned} & 4.5 \\ & 0.1 \end{aligned}$
Temperature Coefficient of Initial Permeability ($\mathbf{2 0} \mathbf{- 7 0}{ }^{\circ} \mathrm{C}$)	\%/ ${ }^{\circ} \mathrm{C}$		1.0
Curie Temperature	${ }^{\circ} \mathrm{C}$	T	>200
Resistivity	$\Omega \mathrm{cm}$	ρ	2×10^{2}

Complex Permeability vs. Frequency

Measured on an $18 / 10 / 6 \mathrm{~mm}$ toroid using the HP 4284A and the HP 4291A.

Initial Permeability vs. Temperature

Measured on an $18 / 10 / 6 \mathrm{~mm}$ toroid at 100 kHz .

Incremental Permeability vs. H

Hysteresis Loop

Measured on an $18 / 10 / 6 \mathrm{~mm}$ toroid at 10 kHz .

Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J.One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Amplitude Permeability vs. Flux Density

Measured on an $18 / 10 / 6 \mathrm{~mm}$ toroid at 10 kHz .

Power Loss Density vs. Temperature

Measured on an $18 / 10 / 6 \mathrm{~mm}$ toroid using the Clarke Hess 258 VAW.

Fair-Rite Product's Catalog
Part Data Sheet, 3078990861
Printed: 2013-07-03

Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW at $100^{\circ} \mathrm{C}$

Flux Density vs. Temperature

Measured on an $18 / 10 / 6 \mathrm{~mm}$ toroid at 10 kHz and $\mathrm{H}=5$ oersted.

