
Vishay Semiconductors

Ultrafast Rectifier, 16 A FRED Pt®

T_J max.

Diode variation

175 °C

Common cathode

FEATURES

- Ultrafast recovery time
- Low forward voltage drop
- 175 °C operating junction temperature
- · Low leakage current
- AEC-Q101 qualified, meets JESD 201 class 2 whisker test

ROHS COMPLIANT HALOGEN FREE

PRODUCT SUMMARY					
Package	TO-220AB				
I _{F(AV)}	2 x 8 A				
V_{R}	400 V				
V _F at I _F	1.3 V				
t _{rr} (typ.)	24 ns				

DESCRIPTION/APPLICATIONS

FRED Pt® series are the state of the art ultrafast recovery rectifiers specifically designed with optimized performance of forward voltage drop and ultrafast recovery time.

The planar structure and the platinum doped life time control, guarantee the best overall performance, ruggedness and reliability characteristics.

These devices are intended for use in the output rectification stage of SMPS, UPS, DC/DC converters as well as freewheeling diode in low voltage inverters and chopper motor drives.

Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Peak repetitive reverse voltage	V_{RRM}		400	V	
per leg			8		
Average rectified forward current total device	I _{F(AV)}	T _C = 155 °C, rated V _R	16	٨	
Non-repetitive peak surge current	I _{FSM}	T _C = 25 °C	100	Α	
Peak repetitive forward current	I _{FRM}	T _C = 155 °C, rated V _R , square wave, 20 kHz	16		
Operating junction and storage temperatures	T _J , T _{Stg}		- 65 to 175	°C	

ELECTRICAL SPECIFICATIONS PER LEG (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Breakdown voltage, blocking voltage	V _{BR} , V _R	Ι _R = 100 μΑ	400	-	-		
Forward voltage V _F		I _F = 8 A	-	1.19	1.3	V	
		I _F = 8 A, T _J = 150 °C	=	0.94	1.0		
Deverse leekees europt		$V_R = V_R$ rated	-	0.2	10		
Reverse leakage current I _R		T _J = 150 °C, V _R = V _R rated	-	20	500	μA	
Junction capacitance	C _T	V _R = 400 V	=	14	-	pF	
Series inductance	L _S	Measured lead to lead 5 mm from package body		8.0	-	nH	

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS PER LEG (T _J = 25 °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS	
		$I_F = 1.0 \text{ A}, dI_F/dt = 50 \text{ A/}\mu\text{A}, V_R = 30 \text{ V}$		-	35	-		
Reverse recovery time t _{rr}	t _{rr}	$I_F = 1.0 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{A}, V_R = 30 \text{ V}$		-	24	-		
		T _J = 25 °C	I _F = 8 A dI _F /dt = 200 A/μs V _R = 200 V	-	43	-	ns	
		T _J = 125 °C		-	67	-		
Peak recovery current I _R	_	T _J = 25 °C		-	2.8	-	Α	
	IRRM	T _J = 125 °C		-	6.3	-		
Reverse recovery charge	Q_{rr}		T _J = 25 °C		=	60	-	nC
		T _J = 125 °C		-	210	-	IIC	

THERMAL MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Maximum junction and storage temperature range	T _J , T _{Stg}		- 65	-	175	°C
Thermal resistance, per leg	, _B		-	3.6	4	
junction to case per device	R _{thJC}		-	1.8	2]
Thermal resistance, junction to ambient	R _{thJA}	Typical socket mount	-	-	50	°C/W
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.5	-	
Mojaht			-	2.0	-	g
Weight			-	0.07	-	oz.
Mounting torque			6.0	_	12	kgf · cm
wounting torque			(5.0)	-	(10)	(lbf · in)
Marking device		Case style TO-220AB	16CTU04H			

www.vishay.com

Vishay Semiconductors

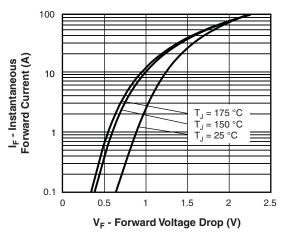


Fig. 1 - Typical Forward Voltage Drop Characteristics

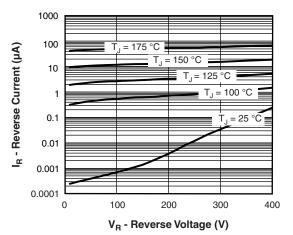


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

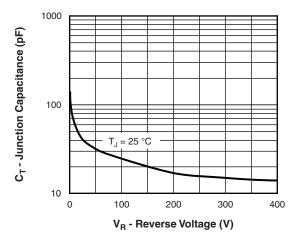


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

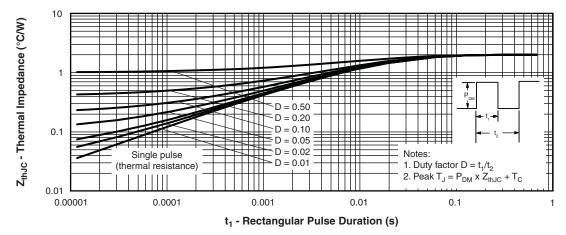


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

www.vishay.com

Vishay Semiconductors

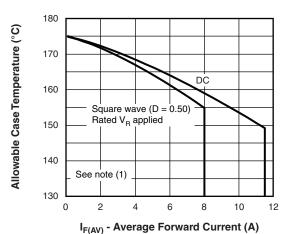
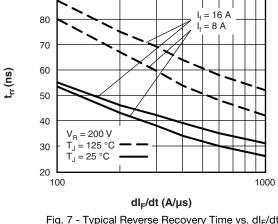



Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

90

Fig. 7 - Typical Reverse Recovery Time vs. dl_F/dt

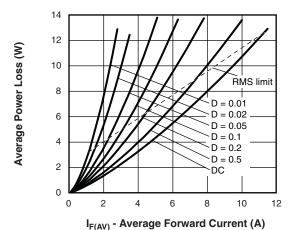


Fig. 6 - Forward Power Loss Characteristics

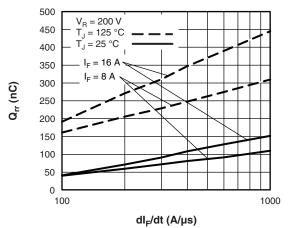
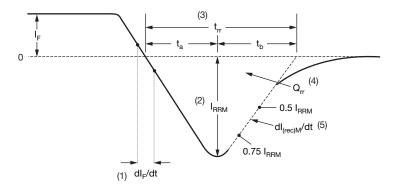



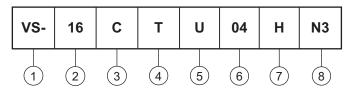
Fig. 8 - Typical Stored Charge vs. dl_F/dt

Note

(1) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward\ power\ loss = I_{F(AV)}\ x\ V_{FM}\ at\ (I_{F(AV)}/D)\ (see\ fig.\ 6);$ $Pd_{REV} = Inverse\ power\ loss = V_{R1}\ x\ I_R\ (1\ -\ D);\ I_R\ at\ V_{R1} = Rated\ V_R$

Vishay Semiconductors

- (1) dl_F/dt rate of change of current through zero crossing
- (2) I_{RRM} peak reverse recovery current
- (3) $\rm t_{rr}$ reverse recovery time measured from zero crossing point of negative going $\rm I_F$ to point where a line passing through 0.75 $\rm I_{RRM}$ and 0.50 $\rm I_{RRM}$ extrapolated to zero current.
- (4) $\rm Q_{rr}$ area under curve defined by $\rm t_{rr}$ and $\rm I_{RRM}$


$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

(5) $dI_{(rec)M}/dt$ - peak rate of change of current during t_b portion of t_{rr}

Fig. 1 - Reverse Recovery Waveform and Definitions

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - Current rating (16 = 16 A)

3 - Circuit configuration:

C = Common cathode

4 - Package:

T = TO-220

5 - Ultrafast recovery

6 - Voltage rating (04 = 400 V)

7 - H = AEC-Q101 qualified

8 - Environmental digit:

N3 = Halogen-free, RoHS-compliant and totally lead (Pb)-free

ORDERING INFO	RMATION (Example)		
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION
VS-16CTU04HN3	50	1000	Antistatic plastic tube

LINKS TO RELATED DOCUMENTS				
Dimensions <u>www.vishay.com/doc?95222</u>				
Part marking information	www.vishay.com/doc?95028			

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000