NCV890201 Automotive Grade High-Frequency Buck Regulator Evaluation Board User's Manual

ON

ON Semiconductor®

http://onsemi.com

EVAL BOARD USER'S MANUAL

Description

The NCV890201 demonstration board provides a convenient way to evaluate a high-frequency buck converter design. No additional components are required, other than dc supplies for the input and enable voltages. An external clock can be used to synchronize the switching frequency; and the board also provides a synchronization output, enabling it to be used as a master. It is configured for a 3.3 V output with a 2 MHz switching frequency and a 2.0 A maximum output current, over the typical 4.5 V to 18 V automotive input voltage range. In addition, the board regulates up to 36 V thanks to switching frequency foldback.

Key Features

- 3.3 V Output Voltage
- 2 MHz Switching Frequency
- 2.0 A Current Limit
- Wide Input Voltage of 4.5 V to 36 V
- Regulates through Load Dump Conditions
- External Clock Synchronization up to 2.5 MHz
- Synchronization Output
- Automotive Grade

Figure 1. NCV890201GEVB Board Picture

Table 1. DEMONSTRATION BOARD TERMINALS

Terminal	Function	
VIN	Positive dc input voltage	
GND	Common dc return	
VOUT	Regulated dc output voltage	
EN	Enable input	
SYNCI	Input for external clock synchronization	
SYNCO	Output for synchronizing other boards	

Table 2. ABSOLUTE MAXIMUM RATINGS

(Voltages are with respect to GND)

Rating	Value	Units
Dc supply voltage (VIN, EN)	-0.3 to 36 V	V
Dc supply voltage (SYNCI)	-0.3 to 6 V	V
Junction Temperature (NCV890201)	-40 to 150	°C
Ambient temperature (Demo Board)	-40 to 85	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C,\,4.5\;V \leq V_{IN} \leq 40\;V,\,V_{EN} = 2\;V,\,V_{OUT} = 3.3\;V,\,0 \leq I_{OUT} \leq 2.0\;A,\,unless\;otherwise\;specified)$

Characteristics	Conditions	Typical Value	Units
Regulation		•	•
Output Voltage		3.30	V
Voltage Accuracy		4	%
Line Regulation	I _{OUT} = 1.0 A	0.12	%
Load Regulation	V _{IN} = 13.2 V	0.03	%
Switching		•	•
Switching Frequency		2.0	MHz
Soft-start Time		1.4	ms
SYNCI Frequency range		1.8 to 2.5	MHz
Current Limit	·	•	
Average Current Limit	V _{IN} = 6 to 18 V	1.8	Α
Cycle-by-cycle Current Limit		2.45	Α
Protections	•	•	•
Input Undervoltage Lockout (UVLO)	V _{IN} decreasing	4.2	V
Thermal Shutdown	T _A increasing	170	°C

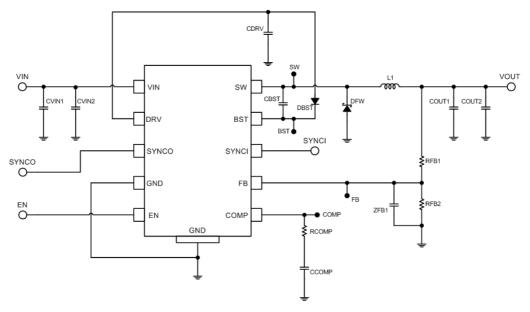


Figure 2. NCV890201GEVB Board Schematic

Operational Guidelines

- 1. Connect a dc input voltage, within the 4.5 V to 36 V range, between VIN and GND
- 2. Connect a load between VOUT and GND
- 3. Connect a dc enable voltage, within the 4.5 V to 36 V range, between EN and GND
- 4. Optionally, for external clock synchronization, connect a pulse source between SYNCI and GND. The high state level should be within the 2 to 6 V range, and the low state level within the -0.3 V to 0.8 V range, with a minimum pulse width of 40 ns and a frequency within the 1.8 to 2.5 MHz range.

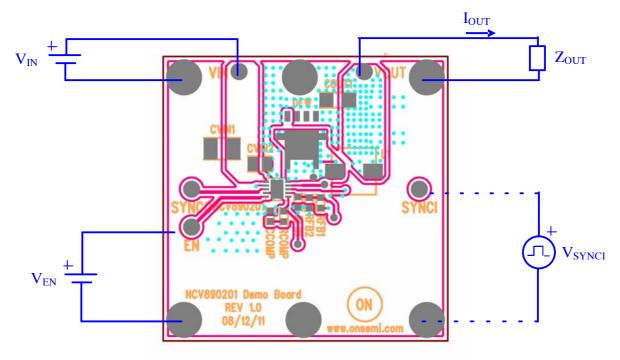


Figure 3. NCV890201GEVB Board Connections

TYPICAL PERFORMANCE

Efficiency

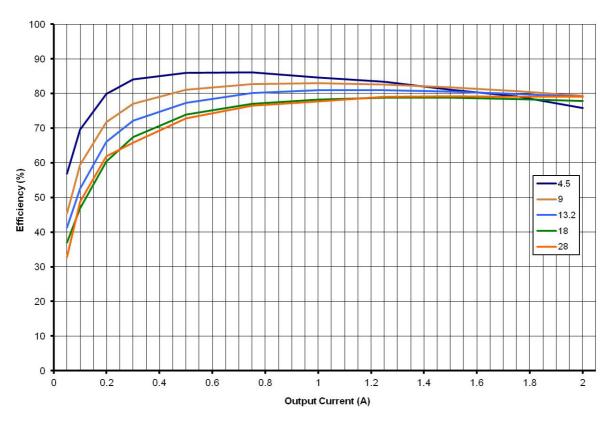


Figure 4. Efficiency at 2 MHz for a 3.3 V output

Start-up

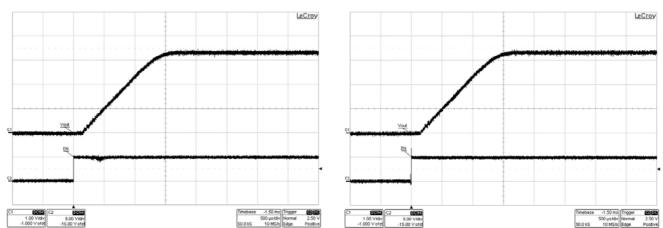


Figure 5. Typical start–up with V $_{\mbox{\footnotesize IN}}$ = 13.2 V, $V_{\mbox{\footnotesize OUT}}$ = 3.3 V and $I_{\mbox{\footnotesize OUT}}$ = 0.2 A

Figure 6. Typical start–up with V_{IN} = 13.2 V, V_{OUT} = 3.3 V and I_{OUT} = 1.8 A

Load Transients

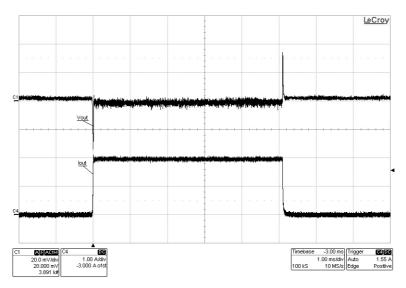


Figure 7. Load transient 0.1 A to 2.0 A, with V_{OUT} = 3.3 V and V_{IN} = 13.2 V

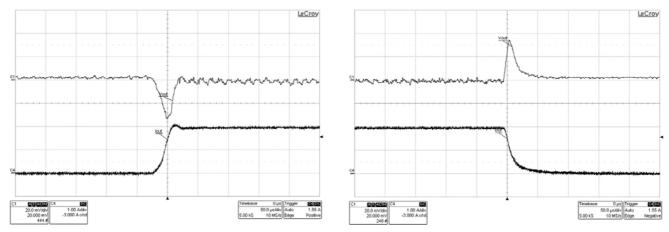


Figure 8. Load transient 0.2 A to 2.0 A, with V_{OUT} = 3.3 V and V_{IN} = 13.2 V

Figure 9. Load transient 2.0 A to 0.2 A, with V_{OUT} = 3.3 V and V_{IN} = 13.2 V

Synchronization

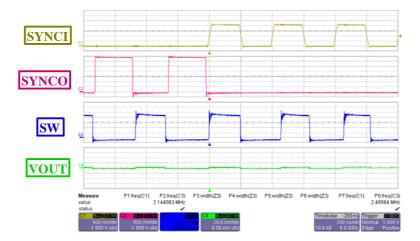


Figure 10. Starting synchronization at 2.5 MHz (from free-running)

Minimum on time

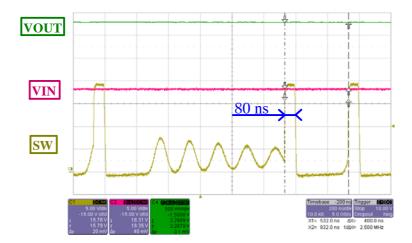
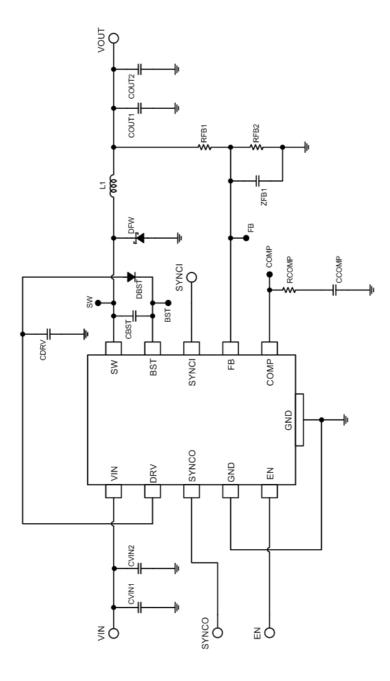



Figure 11. Minimum on time seen during a load transient

Schematic

PCB LAYOUT

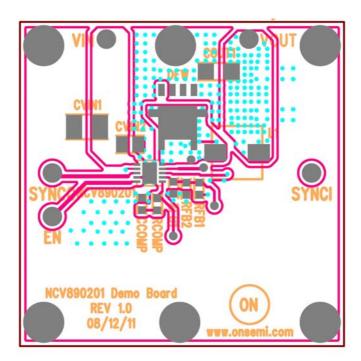


Figure 12. Top View

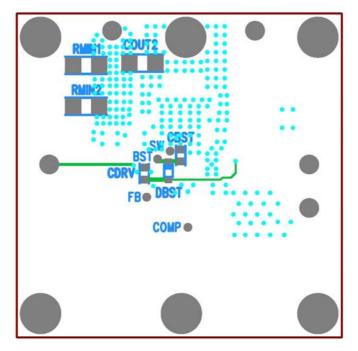


Figure 13. Bottom View

Table 4. BILL OF MATERIALS

Reference	Value	Part #	Manufacturer	Description	Package
U1		NCV890201	ON Semiconductor	Integrated circuit	3x3 DFN10
L1	4.7 μΗ	7447786004	Wurth	Inductor	WE-PD-XS
DFW		MBR340MFS	ON Semiconductor	Diode, Schottky, 1.5A, 40V	SMB
DBST		BAS16HT1	ON Semiconductor	Diode, Switching, 200mA, 75V	SOD-323
CVIN1	4.7 μF		Murata	Capacitor, Ceramic, 50V, X7R	1210
CVIN2	1 μF		Murata	Capacitor, Ceramic, 50V, X5R	0805
CDRV, CBST	0.1 μF		Kemet	Capacitor, Ceramic, 10V, X7R	0603
ZFB1	4.7 nF		Murata	Capacitor, Ceramic, 50V, X7R	0603
COUT1, COUT2	10 μF		Murata	Capacitor, Ceramic, 10V, X7R	1206
CCOMP	330 pF		Murata	Capacitor, Ceramic, 50V, C0G	0603
RCOMP	12.4 KΩ		Vishay	Resistor, 1%	0603
RFB1	100 Ω		Vishay	Resistor, 1%	0603
RFB2	31.6 Ω		Vishay	Resistor, 1%	0603

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative