Si53301/4-EVB

Si53301/4 Evaluation Board User's Guide

Description

The Si53301/4-EVB is used for evaluation of the Si533xx family of low-jitter clock buffers/level translators. As shipped from the factory, this evaluation board has the Si53301 device installed. The entire Si533xx family of buffers use the same input circuits and output drivers, and all have the same jitter specifications. Thus, this evaluation board can be used to evaluate any Si533xx device. The Si53301 provides pin-selectable clock output signal format, drive strength control, optional clock division, and per-bank output enable. The Si53304 provides pin-selectable clock output signal format, drive strength control, and individual output enable pins for each clock output.

EVB Features

Features of this evaluation board include:

- Power supply connections for VDD, VDDOA and VDDOB, GND
- Jumpers for selection of output signal format, output enable, input clock select and output divider
- Jumpers to allow self biasing of CMOS single-ended inputs
- SMA connectors for easy access to test and evaluate the Si53301

Figure 1. Si53301/4 Evaluation Board

Si53301/4-EVB

1. Supply Voltage

Three supply voltages are required: VDD, VDDOA, and VDDOB. These supply voltages are applied at the two bottom corners of the evaluation board via J18 and J20, which are located on the bottom side of the evaluation board and function as standoffs as well as inputs for the supply voltages. Note that the J 18 and J 20 have silkscreen on the top side of the evaluation board that identifies the J18 and J20 inputs. VDD powers the input buffers, mux, and dividers. VDDOA and VDDOB provide power for the output drivers on CLKO, 1,2 and CLK3,4,5, respectively. The three input power supply voltages should all have a common external ground. A separate ground wire should be run from the common power ground to the ground on both J18 and J20. VDD, VDDOA, and VDDOB can be $1.8 \mathrm{~V} \pm 5 \%, 2.5 \mathrm{~V} \pm 5 \%$, or $3.3 \mathrm{~V} \pm 10 \%$. VDDOA, B need to be set according to the output driver format as shown in Table 1.

2. Clock Inputs

This evaluation board accepts differential clock inputs on SMA connectors labeled CLKO,CLKOB as well as CLK1,CLK1B. A single-ended CMOS input with the same voltage swing as the VDD voltage may also be applied to either CLK0 and/or CLK1. See "4.4. Jumpers P1 and P2" for more information. The clock input that is active is selected by JP1, which controls the CLK_SEL input pin 8.

3. Clock Outputs

Six clock outputs are present at the SMA connectors labeled Q0, 1, 2, 3, 4, 5. As built and delivered, the evaluation board will support differential outputs that are LVDS, CML, or low-power LVPECL without any component changes. Standard LVPECL and HCSL outputs require output resistor and/or capacitor changes. See the table in Figure 3 for these changes.

4. Jumpers

This evaluation board can be used to evaluate a Si53301 or Si53304; however, the Si53301 is installed on the evaluation board. Refer to Figures 1, 2, and 3 and Tables 1 and 2 as needed for the following discussion about the jumpers. Many of the inputs are shown on the evaluation board silkscreen and schematic with dual names, such as name1(name2), where name1 is the input pin name for the Si53301 and name2 is the input pin name for the Si53304. In two cases, the input pin of the Si 53301 is a no-connect (NC) when the Si53304 is a functional input.

4.1. Jumpers JP2 and JP3

Jumpers JP2 and JP3 set the level to SFOUTA1 and SFOUTA0 on input pins 2 and 3, respectively. Jumpers JP4 and JP5 set the level to SFOUTB1 and SFOUTB0 on input pins 22 and 23 , respectively. These inputs have three valid input levels: Ground, VDD, and Open. See Table 1.

4.2. Jumpers JP1 and JP6

For the Si53301 device, Jumpers JP1 and JP6 control the output dividers for bank A (Q0,1,2) and bank B (Q3,4,5), respectively. For the Si53304 device, Jumpers JP1 and JP6 control the enabling of output clocks Q1 and Q5, respectively. See Table 2 for the settings of these jumpers.

4.3. Jumpers P3, P4, P5, P6, and P7

For the Si53301, these jumpers control CLK_SEL, OEA, and OEB. OEA is the enable for output clocks Q0,1,2, and OEB is the enable for output clocks Q3,4,5. For the Si53304, these jumpers control CLK_SEL, OE1, OE2, OE3, and OE4. See Table 3 for more information.

4.4. Jumpers P1 and P2

Jumpers P 1 and P 2 should be left open unless a single-ended input is applied to the CLK0 or CLK1 input. When a jumper is placed across P1 (P2), the voltage from the VREF pin 17 is applied to the CLKOB (CLK1B) input pin so that a CMOS input with a voltage swing of VDD (pin7) volts can be applied to the CLKO (CLK1) pin. In addition, some resistor and capacitor changes (described in the Figure 3 schematic near P1 and P2) must be made to the evaluation board.

Table 1. JP2, JP3, JP4, and JP5 Output Signal Format

SFOUTX1 $^{\mathbf{1}}$	SFOUTX0 $^{\mathbf{1}}$	VDDOX = 3.3 V	VDDOX = 2.5 V	VDDOX = 1.8 V
Open 2	Open 2	LVPECL	LVPECL	N/A
Ground	Ground	LVDS	LVDS	LVDS
Ground	VDD	LVCMOS, 24 mA drive	LVCMOS, 18 mA drive	LVCMOS, 12 mA drive
VDD	Ground	LVCMOS, 18 mA drive	LVCMOS, 12 mA drive	LVCMOS, 9 mA drive
VDD	VDD	LVCMOS, 12 mA drive	LVCMOS, 9 mA drive	LVCMOS, 6 mA drive
Open 2	Ground	LVCMOS, 6 mA drive	LVCMOS, 4 mA drive	LVCMOS, 2 mA drive
Open 2	VDD	LVPECL Low power	LVPECL Low power	N/A
Ground $^{\text {Open }^{2}}$	CML	CML	CML	
VDD	Open 2	HCSL	HCSL	HCSL

Notes:

1. Ground means short center pin to ground pin. VDD means short center pin to VDD pin.

Open means leave center pin open.
2. SFOUTX are three-level input pins.

Table 2. Jumper Selections for JP1,6

		Si53301			Si53304		
Signal*	Jumper	Jumper Position			Jumper Position		
		Ground	Open	VDD	Ground	Open	VDD
DIVA(OE1)	JP1	12	11	$/ 4$	Q1 Disabled	Q1 Enabled	Q1 Enabled
DIVB(OE5)	JP6	12	$/ 1$	14	Q5 Disabled	Q5 Enabled	Q5 Enabled

*Note: The signal name in parentheses applies to the Si53304 device, which is not installed from the factory.

Table 3. Jumper Selections for P3,4,5,6,7

		Si53301		Si53304	
Signal*	Jumper	Jumper Position		Jumper Position	
		Shorted	Open	Shorted	Open
CLK_SEL	P3	CLK0 Selected	CLK1 Selected	CLK0 Selected	CLK1 Selected
NC(OE1)	P4	NA	NA	Q1 Disabled	Q1 Enabled
OEA(OE2)	P5	Q0,1,2 Disabled	Q0,1,2 Enabled	Q2 Disabled	Q2 Enabled
OEB(OE3)	P6	Q3,4,5 Disabled	Q3,4,5 Enabled	Q3 Disabled	Q3 Enabled
NC(OE4)	P7	NA	NA	Q4 Disabled	Q4 Enabled

*Note: The signal name in parentheses applies to the Si53304 device, which is not installed from the factory.

Figure 2. Schematic Main

		号	$\begin{aligned} & \bullet \\ & \stackrel{\circ}{\infty} \\ & \stackrel{y}{2} \end{aligned}$	号		号	号	云
		－	$\begin{gathered} \underset{\sim}{\sim} \\ \underset{\sim}{n} \end{gathered}$	－	－	－	－	－
			$\begin{aligned} & \text { n en } \\ & \text { 曾 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 崫 } \\ & \stackrel{-}{0} \end{aligned}$	$\begin{aligned} & \text { 峟 } \\ & \stackrel{+}{\circ} \end{aligned}$		$\begin{aligned} & \text { 岂 } \\ & \vdots \\ & \vdots \end{aligned}$	륳
						$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { u } \\ & u \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	焉	$\begin{aligned} & \sum_{0}^{0} \\ & \sum_{0}^{0} \end{aligned}$

[^0]

5. Bill of Materials

Table 4. Si53301/4-EVB Bill of Materials

Qty	Ref	Value	Rating	Voltage	Tol	Type	PCB Footprint	Mfr Part \#	Mfr
19	C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C19, C20, C21, C22	$0.1 \mu \mathrm{~F}$		10 V	$\pm 10 \%$	X7R	C0402	C0402X7R100-104K	Venkel
3	C16, C17, C18	$1.0 \mu \mathrm{~F}$		6.3 V	$\pm 10 \%$	X5R	C0402	C0402X5R6R3-105K	Venkel
3	C23, C24, C25	$10 \mu \mathrm{~F}$		10 V	$\pm 20 \%$	X7R	C1206	C1206X7R100-106M	Venkel
3	FB1, FB2, FB3	330Ω	1500 mA			SMT	L0805	BLM21PG331SN1	MuRata
16	$\begin{gathered} \mathrm{J1}, \mathrm{~J} 2, \mathrm{~J} 3, \mathrm{~J} 4, \\ \mathrm{J5}, \mathrm{~J} 6, \mathrm{~J} 7, \mathrm{~J} 8, \\ \mathrm{~J} 9, ~ \mathrm{~J} 10, ~ \mathrm{J11}, \\ \mathrm{~J} 12, \mathrm{~J} 13, \mathrm{~J} 14, \\ \mathrm{~J} 15, \mathrm{~J} 16 \end{gathered}$	SMA				SMA	SMA-EDGE-3	142-0701-801	Johnson Components
3	J17, J19, J21	Header 1×1				Header	CONN-1X1	TSW-101-14-T-S	Samtec
2	J18, J20	$\begin{gathered} \text { CONN } \\ \text { TRBLK } 2 \end{gathered}$	24 A			$\begin{aligned} & \text { Term } \\ & \text { BIk } \end{aligned}$	$\begin{gathered} \text { CONN-TB- } \\ 1711026 \end{gathered}$	1711026	Phoenix Contact
6	JP1, JP2, JP3, JP4, JP5, JP6	Header 1×3				Header	CONN-1X3	TSW-103-07-T-S	Samtec
9	$\begin{aligned} & \text { JS1, JS2, JS3, } \\ & \text { JS4, JS5, JS6, } \\ & \text { JS7, JS8, JS9 } \end{aligned}$	Jumper Shunt				Shunt	N/A	SNT-100-BK-T	Samtec
2	MH1, MH2	Screw/ Standoff				HDW	MH-125NP	NSS-4-4-01/2399	Various
7	$\begin{gathered} \text { P1, P2, P3, P4, } \\ \text { P5, P6, P7 } \end{gathered}$	Jumper				Header	CONN1X2	TSW-102-07-L-S	Samtec
12	R1, R2, R5, R6, R9, R10, R13, R14, R17, R18, R21, R22	0	1 A			ThickFilm	R0402	CR0402-16W-000	Venkel
4	$\begin{gathered} \text { R25, R27, R28, } \\ \text { R30 } \end{gathered}$	49.9Ω	1/16 W		$\pm 1 \%$	ThickFilm	R0402	CR0402-16W-49R9F	Venkel
3	R26, R29, R31	$1 \mathrm{k} \Omega$	1/16 W		$\pm 5 \%$	ThickFilm	R0402	CR0402-16W-102J	Venkel
1	U1	Si53301				Timing	$\begin{gathered} \text { QFN32M5X5 } \\ \text { P0.5 } \end{gathered}$	Si53301-A-GM	SiLabs

Table 4. Si53301/4-EVB Bill of Materials (Continued)

| Qty | Ref | Value | Rating | Voltage | Tol | Type | PCB
 Footprint | Mfr Part \# | Mfr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Not-Installed Components | | | | | | | | | |
| 12 | R3, R4, R7, R8,
 R11, R12, R15,
 R16, R19, R20,
 R23, R24 | 120Ω | $1 / 16 \mathrm{~W}$ | | $\pm 1 \%$ | Thick-
 Film | R0402 | CR0402-16W-1200F | Venkel |
| 6 | R32, R33, R34,
 R35, R36, R37 | $1 \mathrm{k} \Omega$ | $1 / 16 \mathrm{~W}$ | | $\pm 5 \%$ | Thick-
 Film | R0402 | CR0402-16W-102J | Venkel |

Si53301/4-EVB

Document Change List

Revision 0.1 to Revision 0.3

- Comprehensive rewrite of previous revision.

Notes:

Contact Information

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request.

Patent Notice

Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, ana-log-intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.

> The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

[^0]: Figure 3．Schematic Outputs

