

Description

These extremely compact DC-DC converters incorporate all necessary input and output filters, signaling and protection features, which are required in the majority of applications. The converters provide important advantages, such as flexible output power through primary-side current limitation, extremely high efficiency, excellent reliability, very low ripple and RFI noise levels, full input-to-output isolation, negligible inrush current, soft start, overtemperature protection and input over- and undervoltage lockout.
The converters are particularly suitable for rugged environments, such as railway applications. They have been de-

Features

- RoHS lead-free-solder and lead-solder-exempted products available
- Wide input voltage ranges up to 150 VDC
- 1, 2, 3 or 4 isolated outputs up to 96 V
- Class I equipment
- Very high efficiency up to 90%
- Extremely low inrush current, hot-swappable
- Excellent surge and transient protection
- Many output configurations available with flexible load distribution
- Externally adjustable output voltage
- Inhibit primary or secondary referenced
- Redundant operation ($n+1$), sense lines, current sharing option
- Extremly slim case (4 TE, 20 mm), fully enclosed
- Hipot test voltage 2.1 kVDC
- All PCBs coated with protective lacquer
- Telecom-compatible input voltage range of DP models according to ETS 300132-2
- CompactPCI-compatible output voltage (xP4720)

Safety-approved to IEC/EN 60950-1 and UL/CSA 60950-1 $2^{\text {nd }}$ Ed.

signed in accordance with the European railway standards EN 50155 and EN 50121-3-2. All printed circuit boards are coated with a protective lacquer. The converter inputs are protected against surges and transients occurring on the source lines and cover a total input voltage range from 16 to 150 VDC with five different types. The outputs are continuously open- and short-circuit proof.
Full system flexibility and $n+1$ redundant operating mode are possible due to series or parallel connection capabilities of the outputs under the specified conditions. When several converters (with 3.3 and 5.1 V outputs) are connected in parallel, the T option allows for a single-wire connection between the converters to ensure good current sharing.
Table of Contents Page Page
Model Selection 2 18
Functional Description 6
Electrical Input Data7 Safety and Installation Instructions19
Electrical Output Data 9 Description of Options20
Auxiliary Functions 14
Electromagnetic Compatibility (EMC) 16

LEDs at the front panel and an isolated output OK option indicate the status of the converter. Voltage suppressor diodes and an independent second control loop protect the outputs against an internally generated overvoltage.
The converters are designed using planar magnetics transformers and control circuits in hybrid technology. There are always two powertrains fitted to a converter, each consisting either of a single output with synchronous rectifier or of a controlled main output with a tracking second output. The output power may be flexibly distributed among the main and the tracking output of each powertrain. Close magnetic coupling in the transformers and output conductors together with circuit symmetry ensure tight tracking of the auxiliary
output. The switching frequency is fixed.
As a modular power supply or as part of a distributed power supply system, the low-profile design significantly reduces the required volume without sacrificing high reliability. The converters are particularly suitable for 19" rack systems occupying 3U/4TE only, but they can also be chassismounted by means of four screws. Connector type is H 15 (or H15S2 for some single-output models). The fully enclosed black-coated aluminium case acts as heat sink and RFI shield and protects the converter together with the coating of all components against environmental impacts.

Model Selection

Note: Only standard models are listed. Other voltage configurations are possible as well; please contact Power-One !

Table 1a: Model types BP, CP

Output 1, 4			Output 2, 3			Input voltage range and efficiency				Options
$V_{\text {onom }}$ [V]	$P_{\text {onom }}$ [W]	$P_{\text {omax }}$ [W]	$V_{\text {onom }}$ [V]	$P_{\text {onom }}$ [W]	$P_{\text {omax }}$ [W]	$\begin{aligned} & \eta^{2} \\ & {[\%]} \end{aligned}$	$\begin{aligned} & V_{i \min }-V_{i \max } \\ & 16-36 \mathrm{~V} \end{aligned}$	$\begin{gathered} \eta^{2} \\ {[\%]} \end{gathered}$	$\begin{aligned} & V_{i \min }-V_{i_{\max }} \\ & 33.6-75 \mathrm{~V} \end{aligned}$	
3.3	100	132	-	-	-	84^{8}	BP1101-9R	84^{8}	CP1101-9R	-7
5.1	122	183	-	-	-	87^{8}	BP1001-9R	88^{8}	CP1001-9R	D, $\mathrm{T}^{5}, \mathrm{~K}^{8}$
12	120	192	-	-	-	87.5	BP1301-9R	88.5	CP1301-9R	B1, B3
15	120	194	-	-	-	87.5	BP1501-9R	88.5	CP1501-9R	G
24	120	192	-	-	-	88	BP1601-9R	89	CP1601-9R	
3.3	50	66	5.1	60	91	86	BP2101-9R	86	CP2101-9R	-7
5.1	60	91	5.1	60	91	87	BP2001-9R	88	CP2001-9R	D, T^{6}
5.1	60	91	12	60	96	87	BP2020-9R	88	CP2020-9R	B1, B3
12	60	96	12	60	96	87.5	BP2320-9R	88.5	CP2320-9R	G
15	60	96	15	60	96	87.5	BP2540-9R	88.5	CP2540-9R	
24	60	96	24	60	96	88	BP2660-9R	89	CP2660-9R	
5.1	60	91	12, 12^{3}	60^{1}	96^{1}	87	BP3020-9R	88	CP3020-9R	
5.1	60	91	15, 15^{3}	60^{1}	96^{1}	87.5	BP3040-9R	88.5	CP3040-9R	
5.1	60	91	24, $24{ }^{3}$	60^{1}	96^{1}	87.5	BP3060-9R	88.5	CP3060-9R	
24	60	96	5.1, 5.13	51^{1}	82^{1}	-	-	87	CP3601-9R	
5.1, 3.3^{7}	30	50	12, 12^{3}	60^{1}	961	85	BP4720-9R ${ }^{\text {a }}$	-	CP4720-9R ${ }^{\text {9 }}$	-7
12, 12^{3}	60^{1}	$96{ }^{1}$	12, 12^{3}	60^{1}	$96{ }^{1}$	87.5	BP4320-9R	88.5	CP4320-9R	D
15, $15{ }^{3}$	60^{1}	961	15, 15^{3}	60^{1}	961	87.5	BP4540-9R	88.5	CP4540-9R	B1, B3
24, 243	60^{1}	96^{1}	24, 243	60^{1}	96^{1}	88	BP4660-9R	89	CP4660-9R	G

1 The power of both outputs shall in sum not exceed the total power for the specified ambient temperature.
${ }^{2}$ Min efficiency at $V_{\mathrm{inom}}, P_{\mathrm{onom}}, T_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Typical values are approx. 2% better.
3 Isolated tracking output ($\pm 5 \% V_{0}$ nom, if each output is loaded with $\geq 5 \%$ of $P_{0 \text { nom }}$). Parallel or series configuration is possible.
4 Short deviations below $V_{i \min }$ and beyond $V_{\text {i max }}$ according to EN 50155 possible
5 Only available for models with 5.1 or 3.3 V output.
6 Option T is only available for outputs with 5.1 or 3.3 V . Opt. T excludes opt. R; refer to table 13, pin allocations
7 Outputs 5.1 and 3.3 V have a common return. Nominal values: $5.1 \mathrm{~V} / 4 \mathrm{~A}, 3.3 \mathrm{~V} / 3 \mathrm{~A}$. Max. values: $5.1 \mathrm{~V} / 6.5 \mathrm{~A}, 3.3 \mathrm{~V} / 5 \mathrm{~A}$.
8 H 15 standard connector for xP 1101 and xP1001 models; without option K , the η value for xP 1101 is approx 2% better and for xP 1001 approx 1% better than for models with option K.
9 Compatible to CompactPCI ${ }^{\circledR}$ specification; for detailed specification contact Power-One.

Table 1b: Model types DP, EP

Output 1, 4			Output 2, 3			Input voltage range and efficiency ${ }^{2}$				Options
$\begin{aligned} & V_{\text {onom }} \\ & {[\mathrm{V}]} \end{aligned}$	$P_{\text {onom }}$ [W]	$\begin{gathered} P_{\mathrm{omax}} \\ {[\mathrm{~W}]} \end{gathered}$	$\begin{aligned} & V_{\text {onom }} \\ & {[\mathrm{V}]} \end{aligned}$	$\begin{gathered} P_{\text {onom }} \\ {[W]} \end{gathered}$	$\begin{gathered} P_{o \max } \\ {[W]} \end{gathered}$	$\begin{gathered} \eta^{2} \\ {[\%]} \end{gathered}$	$\begin{gathered} V_{i \min }-V_{i \max }{ }^{4} \\ 40-100.8 \mathrm{~V}^{9} \end{gathered}$	$\begin{gathered} \eta^{2} \\ {[\%]} \end{gathered}$	$\begin{aligned} & V_{\mathrm{imin}}-V_{\mathrm{imax}}{ }^{4} \\ & 66-150 \mathrm{~V} \end{aligned}$	
3.3	100	132	-	-	-	848	DP1101-9R	84^{8}	EP1101-9R	-7
5.1	122	183	-	-	-	88^{8}	DP1001-9R	87.5^{8}	EP1001-9R	D, $\mathrm{T}^{5}, \mathrm{~K}^{8}$
12	120	192	-	-	-	88	DP1301-9R	87.5	EP1301-9R	B1, B3
15	120	194	-	-	-	88	DP1501-9R	87	EP1501-9R	G
24	120	192	-	-	-	88.5	DP1601-9R	87.5	EP1601-9R	
3.3	50	66	5.1	60	91	86	DP2101-9R	86	EP2101-9R	-7
5.1	60	91	5.1	60	91	88	DP2001-9R	87.5	EP2001-9R	D, T^{6}
5.1	60	91	12	60	96	88	DP2020-9R	87.5	EP2020-9R	B1, B3
12	60	96	12	60	96	88	DP2320-9R	87.5	EP2320-9R	G
15	60	96	15	60	96	88	DP2540-9R	87	EP2540-9R	
24	60	96	24	60	96	88.5	DP2660-9R	87.5	EP2660-9R	
5.1	60	91	12, 12^{3}	60^{1}	96^{1}	87.5	DP3020-9R	87.5	EP3020-9R	
5.1	60	91	15, $15{ }^{3}$	60^{1}	96^{1}	88	DP3040-9R	88	EP3040-9R	
5.1	60	91	24, $24{ }^{3}$	60^{1}	$96{ }^{1}$	88	DP3060-9R	88	EP3060-9R	
5.1, 3.3 ${ }^{7}$	30	50	12, 12^{3}	60^{1}	96^{1}	85	DP4720-9R ${ }^{9}$	-	EP4720-9R ${ }^{9}$	-7
12, 12^{3}	60^{1}	96^{1}	12, 12^{3}	60^{1}	96^{1}	88	DP4320-9R	87.5	EP4320-9R	D
15, 15^{3}	60^{1}	$96{ }^{1}$	15, 15^{3}	60^{1}	96^{1}	87.5	DP4540-9R	87	EP4540-9R	B1, B3
$24,24^{3}$	60^{1}	96^{1}	24, $24{ }^{3}$	60^{1}	96^{1}	88.5	DP4660-9R	87.5	EP4660-9R	G

Table 1c: Model types GP

Output 1, 4			Output 2, 3			Input voltage range and efficiency ${ }^{2}$		Options
$\begin{gathered} V_{\text {onom }} \\ {[\mathrm{V}]} \end{gathered}$	$P_{\text {o nom }}$ [W]	$P_{\text {omax }}$ [W]	$V_{\text {onom }}$ [V]	$P_{\text {onom }}$ [W]	$P_{\text {omax }}$ [W]	$\begin{gathered} \eta^{2} \\ {[\%]} \end{gathered}$	$\begin{aligned} & V_{i \min }-V_{i \max }{ }^{4} \\ & 21.6-50.4 \mathrm{~V} \end{aligned}$	
3.3	100	132	-	-	-	848	GP1101-9R	-7
5.1	122	183	-	-	-	88^{8}	GP1001-9R	D, $\mathrm{T}^{5}, \mathrm{~K}^{8}$
12	120	192	-	-	-	88	GP1301-9R	B1, B3
15	120	194	-	-	-	88.5	GP1501-9R	G
24	120	192	-	-	-	88	GP1601-9R	
3.3	50	66	5.1	60	91	86	GP2101-9R	-7
5.1	60	91	5.1	60	91	88	GP2001-9R	D, T^{6}
5.1	60	91	12	60	91	87.5	GP2020-9R	B1, B3
12	60	96	12	60	96	88	GP2320-9R	G
15	60	96	15	60	96	88.5	GP2540-9R	
24	60	96	24	60	96	88	GP2660-9R	
5.1	60	91	12, 12^{3}	60^{1}	$96{ }^{1}$	87.5	GP3020-9R	
5.1	60	91	15, 15^{3}	60^{1}	96^{1}	88.5	GP3040-9R	
5.1	60	91	24, $24{ }^{3}$	60^{1}	$96{ }^{1}$	88.5	GP3060-9R	
5.1, 3.3 ${ }^{7}$	30	50	12, 12^{3}	60^{1}	$96{ }^{1}$	-	GP4720-9R ${ }^{9}$	-7
12, 12^{3}	60^{1}	$96{ }^{1}$	12, 12^{3}	60^{1}	$96{ }^{1}$	88	GP4320-9R	D
15, $15{ }^{3}$	60^{1}	$96{ }^{1}$	15, $15{ }^{3}$	60^{1}	961	88.5	GP4540-9R	B1, B3
24, 243	60^{1}	96^{1}	24, 243	60^{1}	96^{1}	88	GP4660-9R	G

1 The power of both outputs may in sum not exceed the total power for the specified ambient temperature.
${ }^{2}$ Min efficiency at $V_{\mathrm{i} \text { nom }}, P_{\text {o nom }}, T_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Typical values are approx. 2% better.
${ }^{3}$ Isolated tracking output ($\pm 5 \% V_{\text {o nom }}$, if each output is loaded with $\geq 5 \%$ of $P_{\text {o nom }}$). Parallel or series configuration possible
${ }^{4}$ Short deviations below $V_{\mathrm{i} \text { min }}$ and beyond $V_{\mathrm{i} \max }$ according to EN 50155 possible
${ }^{5}$ Only available for models with 5.1 or 3.3 V output
6 Option T is only available for outputs with 5.1 or 3.3 V . Opt. T excludes opt. R; refer to table 13, pin allocations
7 Outputs 5.1 and 3.3 V have a common return. Nominal values: $5.1 \mathrm{~V} / 4 \mathrm{~A}, 3.3 \mathrm{~V} / 3 \mathrm{~A}$. Max. values: $5.1 \mathrm{~V} / 6.5 \mathrm{~A}, 3.3 \mathrm{~V} / 5 \mathrm{~A}$.
${ }^{8} \mathrm{H} 15$ standard connector for xP1101 and xP1001 models; without option K, the η value for xP1101 is approx 2% better and for xP1001 approx 1% better than for models with option K.
${ }^{9}$ Compatible to CompactPCI ${ }^{\circledR}$ specification; for detailed specification contact Power-One.

Part Number Description

Note: The sequence of options must follow the order above.

Example: CP2540-9DTB1G: DC-DC converter, input voltage 33.6 to 75 V , 2 regulated outputs each providing 15 V , equipped with option T for output 1, heatsink, ambient temperature of -40 to $71^{\circ} \mathrm{C}$, RoHS.

Note: All models exhibit the following auxiliary functions, which are not shown in the type designation: input and output filters, primary referenced inhibit, sense lines (single-, double- and triple-output models only) and LED indicators.

Product Marking

Basic type designation, safety approval and recognition marks, CE mark, warnings, pin allocation, Power-One patents, company logo, specific type designation, input voltage range, nominal output voltages and output currents, degree of protection, batch no., serial no. and data code including production site, modification status and date of production. Identification of LEDs.

Output Configuration

The P Series allows high flexibility in output configuration to cover almost every individual requirement, by simply wiring outputs in parallel, in seriel, or in independent configuration, as shown in the following diagrams.
Parallel or serial operation of several converters with equal output voltage is possible, however it is not advantageous to

Fig. 1
Standard configuration (single-output model)

Fig. 2
Series output configuration of a double-output model.
The second output is fully regulated.

Fig. 3
Independent double-output configuration. Both outputs are fully regulated
connect converters in parallel without measures to provide reasonable current sharing. Choose suitable single-output models, if available.

Note: Unused tracking outputs should be connected parallel to the respective regulated outputs.

Fig. 4

Independent triple-output configuration. Output 3 is tracking

Fig. 5
Common ground configuration of output 1 with 4 and independent configuration of output 2 and 3

Fig. 6
Series configuration of all outputs ($V_{0}=96 \mathrm{~V}$ for $x P 4660$). The R1-input influences only outputs 1 and 4. For the values of R1 and R2 see Output Voltage Adjust.

Functional Description

The power supplies are equipped with two independent flight-forward converters, switching 180° phase-shifted to minimize the ripple current at the input. They use primary and secondary control circuits in hybrid technology. The two converters, called "powertrains" (PT), each generate either a single output with synchronous rectifier or two isolated outputs, one fully regulated and the other one tracking (semiregulated), thus providing up to four output voltages. In some models, both outputs of a powertrain are connected in parallel internally.
The highly efficient input filter together with very low input capacitance results in very low and short inrush current. After transformer isolation and rectification the output filter reduces ripple and noise to a minimum without affecting the dynamic response. Outputs 3 and 4, if available, are tracking (semiregulated) and rely upon the close magnetic coupling of the transformer and the output inductor together with the circuit symmetry for their voltage regulation. A current limitation is located on the primary side of each powertrain limiting the total output current from that powertrain in overload
conditions. This allows flex power operation of the outputs from each powertrain. All outputs can either be connected in series or in parallel; see Electrical Output Data.
An auxiliary converter provides the bias voltages for the primary and secondary referenced control logic and the option circuits. An oscillator generates a clock pulse of $307 \pm 1 \% \mathrm{kHz}$, which is fed to the control logic of each powertrain. The pulsewidth modulation and the magnetic feedback are provided by special ASICs. The converter is only enabled, if the input voltage is within the operating voltage range.
Double-output powertrains are equipped with a suppressor diode and an independant monitor sensing the output voltage of the tracking output. It influences the contol logic in order to reduce via the pulse width the voltages of both outputs.
Single-output powertrains are protected by a suppressor diode.
The temperature of the heat sink is monitored and causes the converter to disable the outputs, until the temperature drops; then the converter will automatically resume.

Fig. 7
Block diagram. Powertrains PT1 and PT2 have isolated outputs.
Pin allocation see table 12

Electrical Input Data

General Conditions:
$-T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless T_{C} is specified

- Sense lines connected directly at the connector, inhibit (28) connected to Vi- (32)
- R input open

Table 2a: Input data

Input				BP			GP			CP		Unit
Characteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	
V_{i}	Operating input voltage	$\begin{aligned} & I_{0}=0-I_{0 \text { max }} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \end{aligned}$	16		36	21.6		50.4	33.6		75	V
$V_{\text {inom }}$	Nominal input voltage		24			36			48			
$V_{\text {i } 100 \mathrm{~ms}}$	for $\leq 100 \mathrm{~ms}$	without lockout	14.4		40	20		52	28.8		81	
$V_{\text {i abs }}$	for $\leq 3 \mathrm{~s}$	without damage	0		50	0		63	0		100	
I_{i}	Typical input current ${ }^{1}$	$V_{\text {inom }}, I_{\text {o nom }}$	5.6			3.7			2.8			A
$P_{\mathrm{i}} 0$	No-load input power ${ }^{1}$	$\begin{aligned} & V_{\mathrm{imin}}-V_{\mathrm{imax}} \\ & I_{0}=0 \end{aligned}$	4		6.5	4		6.5	5		10	W
$P_{\mathrm{i} \text { inh }}$	Idle input power ${ }^{14}$		1		1.5	1		1.5	1		1.5	
$l_{\text {inr }} \mathrm{p}$	Peak inrush current ${ }^{2}$	$V_{\text {imax }}, l_{\text {max }}$	61			64			66			A
$t_{\text {inr r ise }}$	Rise time inrush		50			32			30			$\mu \mathrm{s}$
t_{r}	Rise time inhibit ${ }^{3}$	$I_{\text {omax }}-V_{\text {inom }}$	5			5			5			ms
t_{f}	Fall time inhibit ${ }^{3}$		5			5			5			
$t_{\text {d on }}$	Start-up time ${ }^{3}$	$0 \rightarrow V_{\text {imin }} l_{0 \text { max }}$	110			150			300			

Table 2b: Input data

Input			DP ${ }^{2}$		EP		Unit
Characteristics		Conditions	min	typ max	min	typ max	
V_{i}	Operating input voltage	$\begin{aligned} & I_{0}=0-I_{0 \text { max }} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \end{aligned}$	40^{2}	100.8	66	150	V
$V_{\text {inom }}$	Nominal input voltage			72		110	
$V_{\text {i } 100 \mathrm{~ms}}$	for $\leq 100 \mathrm{~ms}$	without lockout	36	115	55	176	
$V_{\text {i abs }}$	for $\leq 3 \mathrm{~s}$	without damage	0	125	0	200	
I_{i}	Typical input current ${ }^{1}$	$V_{\text {inom, }} I_{\text {o nom }}$		1.9		1.2	A
$P_{\text {i } 0}$	No-load input power ${ }^{1}$	$V_{i \text { min }}-V_{i \text { max }}$	5	11	5	12	W
$P_{\text {i inh }}$	Idle input power ${ }^{14}$	$I_{0}=0$	1	1.7	1.1	1.7	
$l_{\text {inr } p}$	Peak inrush current ${ }^{2}$	$V_{\text {imax }}, I_{\text {max }}$		57		65	A
$t_{\text {inr r ise }}$	Rise time inrush			20		20	$\mu \mathrm{s}$
t_{r}	Rise time inhibit ${ }^{3}$	$I_{\text {omax }}, V_{\text {inom }}$		5		5	ms
t_{f}	Fall time inhibit ${ }^{3}$			5		6	
$t_{\text {d on }}$	Start-up time ${ }^{3}$	$0 \rightarrow V_{\text {i min, }} I_{o \text { max }}$		200		200	

1 Typical values depending on model
${ }^{2}$ According to ETS 300132-2
${ }^{3}$ See fig. 18
${ }^{4}$ Converter inhibited

Input Fuse and Reverse Polarity

A fuse mounted inside the converter protects against further damage in case of a failure. The fuse is not user-accessible. Reverse polarity at the input will cause the fuse to blow.

Table 3: Fuse specification

Model	Fuse type	Rating	Reference
BP	very fast blow	$2 \times 10 \mathrm{~A}, 125 \mathrm{~V}$	Littelfuse Pico 251
GP	very fast blow	$2 \times 10 \mathrm{~A}, 125 \mathrm{~V}$	Littelfuse Pico 251
CP	very fast blow	$10 \mathrm{~A}, 125 \mathrm{~V}$	Littelfuse Pico 251
DP	very fast blow	$7 \mathrm{~A}, 125 \mathrm{~V}$	Littelfuse Pico 251
EP	very fast blow	$5 \mathrm{~A}, 250 \mathrm{~V}$	Littelfuse Pico 263

Input Transient Protection

A VDR (Voltage Dependent Resistor), the input fuse, and a symmetrical input filter form an effective protection against input transients, which typically occur in most installations, but especially in battery-driven mobile applications.
Nominal battery voltages in use are: 24, 36, 48, 60, 72, 96, and 110 V . In most cases each nominal value is specified in a tolerance of -30% to $+25 \%$, with short excursions to $\pm 40 \%$ or even more.

In some applications, surges according to RIA 12 are specified in addition to those defined in IEC 60571-1 or EN 50155. The power supply must not switch off during these surges, and since their energy can practically not be absorbed, an extremely wide input range is required. The P Series input range has been designed and tested to meet these requirements; see Electromagnetic Immunity.

Input Under- / Overvoltage Lockout

If the input voltage is below approx. $0.9 V_{i \min }$ or exceeds approx. $1.1 V_{\mathrm{i} \text { max }}$, an internally generated inhibit signal disables the output(s). However, short extentions specified in EN 50155 will be withstood without shutdown.

Inrush Current

The inherent inrush current value is lower than specified in the standard ETS 300132-2 (ver. 3.1). The units operate with relatively small input capacitance resulting in low inrush current of short duration. As a result in a power-bus system the units can be hot plugged-in or disconnected causing negligible disturbance at the input side.

Input Stability with Long Supply Lines

If a P Series converter is connected to the power source with long input lines exhibiting a considerable inductance, an additional external capacitor connected in parallel to the input improves the stability and avoids oscillations.
Actually, a P Series converter with nominal load acts like a negative resistor, as the input current rises when the input voltage decreases. It tends to oscillate with a resonant frequency determined by the line inductance $L_{\text {ext }}$ and the input capacitance $C_{\mathrm{i}}+C_{\text {ext }}$ and damped by the resistors $R_{\mathrm{i}}+$
$R_{\text {ext. }}$ The whole system is not linear at all and eludes a simple calculation. One basic condition is given by the formula:

$$
R_{\text {ext }} \ll \frac{V_{\text {in }}{ }^{2}}{P_{0}} \cdot \eta
$$

$R_{\text {ext }}$ is the series resistor of the source voltage including input lines. If this condition is not fulfilled, the converter cannot reach stable operating conditions. Worst case conditions are a low input voltage V_{i} and a high output power P_{0}.

Low inductance $L_{\text {ext }}$ of the input lines and a parallel connected input capacitor $C_{\text {ext }}$ are helpful. Recommended values for $C_{\text {ext }}$ are given in table 4 , which should allow stable operation up to an input inductance of 2 mH .

Fig. 8
Input configuration

Table 4: Recommended values for $C_{\text {ext }}$

Model	Capacitance	Voltage
BP	$1500 \mu \mathrm{~F}$	40 V
GP	$1000 \mu \mathrm{~F}$	63 V
CP	$470 \mu \mathrm{~F}$	100 V
DP	$220 \mu \mathrm{~F}$	125 V
EP	$100 \mu \mathrm{~F}$	200 V

Electrical Output Data

General Conditions:
$-T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless T_{C} is specified.

- Sense lines connected directly at the connector, inhibit (28) connected to Vi- (32).
- R input not connected

Table 5a: Output data for single-output powertrains

Outp		Single-outp	put powertrain		3.3 V			5.1 V			12 V		Unit
Characteristics			Conditions	min	typ	max	min	typ	max	min	typ	max	
V_{0}	Output voltage ${ }^{1}$		$V_{\text {inom, }} I_{\text {o nom }}$	3.28	3.3	3.32	5.07	5.1	5.13	11.94	12	12.06	V
Vow	Worstcase output voltage		$\begin{aligned} & V_{\mathrm{imin}}-V_{\mathrm{imax}} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \\ & (0.02-1) I_{\mathrm{omax}} \end{aligned}$	3.24		3.35	5.02		5.18	11.82		12.18	
$V_{0} \mathrm{P}$	Overvoltage protection ${ }^{2}$			4.1	4.8		6.45	6.8	7.14	14.3	15	15.8	
$I_{\text {onom }}$	Nominal output current				15			12			5		A
$I_{0 \text { max }}$	Max. output current		$\begin{aligned} & V_{\mathrm{imin}}-V_{\mathrm{imax}} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \end{aligned}$		20			18			8		
$I_{0} \mathrm{~L}$	Output current limit ${ }^{3}$			20.5	22	25	18.9	19.8	22.5	8.4	8.8	10.0	
v_{0}	Output noise ${ }^{4}$	Switch. frequ.	$V_{\text {inom }}, l_{\text {max }}$ $B W=20 \mathrm{MHz}$	5			5			15			mV Vp
		Total incl.spikes		20			20			30			
Vod	Dynamic load regulation	Voltage deviation	$\begin{aligned} & V_{\text {inom }} \\ & I_{0 \text { max }} \leftrightarrow 1 / 2 I_{0 \text { max }} \end{aligned}$		0.7			0.8		1.2			V
$t_{d}{ }^{5}$		Recovery time		0.4			0.3			0.15			ms
$V_{\text {otr }}$	Output voltage trim range (via R input)		$\begin{aligned} & 1.1 V_{i \min }-V_{i \max } \\ & (0.1-1) I_{0 \text { max }} \end{aligned}$	1.79		3.63	2.75		5.61	6.5		13.2	V
$\alpha^{\text {Vo }}$	Temp. coe	efficient of V_{0}	$I_{\text {onom, }} T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }}$		± 0.02			± 0.02			± 0.02		\%/K

Table 5b: Output data for single-output powertrains. General conditions as in table 5a

Outp	t	Single-outp	ut powertrain		15 V			24 V		Unit
Characteristics			Conditions	min	typ	max	min	typ	max	
V_{0}	Output voltage ${ }^{1}$		$V_{\text {inom, }}$, $I_{\text {o nom }}$	14.93	15	15.08	23.88	24	24.12	V
$V_{\text {ow }}$	Worstcase output voltage		$\begin{aligned} & V_{\mathrm{imin}-V_{\mathrm{imax}}}^{T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }}} \\ & (0.02-1) I_{\mathrm{omax}} \\ & \hline \end{aligned}$	14.78		15.23	23.64		24.36	
$V_{0} \mathrm{P}$	Overvoltage protection ${ }^{2}$			17.1	18	18.9	28.5	30	31.5	
Ionom	Nominal output current				4			2.5		A
$I_{\text {max }}$	Max. output current		$\begin{aligned} & V_{\text {imin }}-V_{\mathrm{imax}} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \end{aligned}$		6.5			4		
10 L	Output current limit ${ }^{3}$			6.8	7.2	8.2	4.2	4.4	5.0	
v_{0}	Output noise ${ }^{4}$	Switch. frequ.	$\begin{aligned} & V_{\text {inom, }} I_{0 \text { max }} \\ & B W=20 \mathrm{MHz} \end{aligned}$		15			15		mV pp
		Total incl.spikes			40			50		
$V_{\text {od }}$	Dynamic load regulation	Voltage deviation	$\begin{aligned} & V_{i_{\text {nom }}} \\ & I_{0 \text { max }} \leftrightarrow 1 / 2 I_{0 \text { max }} \end{aligned}$		1.2			0.5		V
$t_{\mathrm{d}}{ }^{5}$		Recovery time			0.2			0.15		ms
$V_{\text {otr }}$	Output voltage trim range (via R input)		$\begin{aligned} & 1.1 V_{\text {min }}-V_{i \text { max }} \\ & (0.1-1) I_{o} \text { max } \end{aligned}$	8.1		16.5	13		26.4	V
$\alpha_{\text {vo }}$	Temp. coefficient of V_{0}		$I_{\text {onom, }}, T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }}$	± 0.02			± 0.02			\%/K

${ }^{1}$ If the output voltages are increased above V_{0} nom through R-input control or remote sensing, the output power should be reduced accordingly, so that $P_{0 \text { max }}$ and $T_{\mathrm{C} \text { max }}$ are not exceeded.
${ }^{2}$ Breakdown voltage of the incorporated suppressor diode at $10 \mathrm{~mA}(3.3 \mathrm{~V}, 5.1 \mathrm{~V})$ or $1 \mathrm{~mA}(\geq 12 \mathrm{~V})$. Value for 3.3 V for version ≥ 112. Exceeding this value might damage the suppressor diode.
${ }^{3}$ See Output Power at Reduced Temperature
${ }^{4}$ Measured according to IEC/EN 61204 with a probe described in annex A
${ }^{5}$ Recovery time until V_{0} returns to $\pm 1 \%$ of V_{0}; see Dynamic Load Regulation
ρ

Table 5c: Output data for double-output powertrains. General conditions as in table 5a

Table 5d: Output data for double-output powertrains. General conditions as in table 5a

Output		Double-output powertrain		15 V						24 V						Unit
				Mai	in outp	put	Trac	g	utput	Main	outp		Trac	g	utput	
Characteristics			Conditions	min	typ	max										
V_{0}	Output voltage ${ }^{1}$		$V_{\text {inom, }} I_{\text {o nom }}$	14.85	15	15.15	14.7	15	15.3	23.88	24	24.12	23.76	24	24.24	V
$V_{\text {ow }}$	Worstcase output voltage		$\begin{aligned} & V_{i_{\text {min }}}-V_{\mathrm{imax}} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \\ & (0.02-1) I_{\mathrm{max}} \end{aligned}$	14.78 15.23			See Output Voltage Regulation			$23.64 \quad 24.36$			See Output Voltage Regulation			
$V_{\text {or }}$	Overvoltage protection ${ }^{2}$			none			17.1	18	18.9		none		28.5	30	31.5	
$V_{\text {OL }}$	Overvoltage limitation ${ }^{6}$				none			17.6			none			28.8		
Ionom	Nominal output current				2			2			1.25			1.25		A
$I_{\text {max }}$	Max. output current		$\begin{aligned} & V_{i_{\text {min }}}-V_{i_{\text {max }}} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \end{aligned}$	3.25			3.25			2			2			
10 L	Output current limit ${ }^{3}$			3.4	3.6	4.1	3.4	3.6	4.1	2.1	2.2	2.5	2.1	2.2	2.5	
v_{0}	Output noise ${ }^{4}$	Switch. frequ.	$\begin{aligned} & V_{\text {inom, }}, I_{0 \text { max }} \\ & B W=20 \mathrm{MHz} \end{aligned}$		15			15			15			15		$m V_{p p}$
		Total incl.spikes			40			40			50			50		
$v_{0 d}$	Dynamic load regulation	Voltage deviation	$\begin{aligned} & V_{\text {inom }} \\ & I_{0 \text { max } \leftrightarrow 1 / 2} I_{\text {o max }} \end{aligned}$	1.2			1.2			0.5			0.5			V
$t_{d}{ }^{5}$		Recovery time		0.2				0.2		0.15			0.15			ms
$V_{\text {otr }}$	Output voltage trim range (via R input)		$\begin{aligned} & 1.1 V_{i \min }-V_{i \max } \\ & (0.1-1) I_{0 \text { max }} \end{aligned}$	8.1		16.5	$\begin{array}{r} \mathrm{S} \\ \text { Volta } \end{array}$	Out, ye Reg	ut ulation	13		26.4	$\begin{array}{r} \mathrm{Se} \\ \text { Voltag } \end{array}$	$\begin{aligned} & \text { e Out, } \\ & \text { e Regu } \end{aligned}$	put ulation	V
$\alpha_{\text {vo }}$	Temp. coefficient of V_{0}		$\begin{aligned} & I_{\text {onom }} \\ & T_{\mathrm{C}_{\text {min }}}-T_{\mathrm{C} \text { max }} \end{aligned}$	± 0.02						± 0.02						$\% / K$

1 If the output voltages are increased above V_{0} nom through R-input control or remote sensing, the output power should be reduced accordingly, so that P_{0} max and $T_{\mathrm{C} \text { max }}$ are not exceeded.
${ }^{2}$ Breakdown voltage of the incorporated suppressor diode at 1 mA . Exceeding this voltage might damage the suppressor diode.
${ }^{3}$ See Output Power at Reduced Temperature
4 Measured according to IEC/EN 61204 with a probe described in annex A
${ }^{5}$ Recovery time until V_{0} returns to $\pm 1 \%$ of V_{0}; see Dynamic Load Regulation
6 Output voltage limitation by an additional control loop

Parallel and Series Connection

The first outputs of power trains with equal nominal output voltage can be connected in parallel. Where available, we recommend ordering of option T.
Any output can be connected in series with any other output. If the main and the tracking output of the same power train are connected in series, consider that the effect of the R-input is doubled.

Notes:

- If a tracking output is not used, connect it in parallel to the respective regulated main output.
- Connection of several outputs in parallel should include measures to approximate all output currents. 3.3 and 5 V outputs with option T have current-share pins (T or T1), which must be interconnected. For other outputs, the load lines should exhibit similar resistance. Parallel connection of regulated outputs without such precautions is not recommended.
- The maximum output current of a serial-connected outputs is limited by the output with the lowest current limit.

Fig. 9
Series connection of double-output models. Sense lines connected at the connector.

- Rated output voltages above 48 V (SELV = Safety Extra Low Voltage) require additional safety measures in order to comply with international safety requirements.
Parallel operation of two double-output converters with series-connected outputs is shown in fig. 10. The link between the T1 pins ensures proper current sharing, even though only the first outputs are influenced by T1. Sense lines are connected directly at the connector, and load lines have equal length and section.

Fig. 10
Parallel operation of 2 double-output converters with series-connected outputs.

Redundant Systems

An example of a redundant system using converters with 2 regulated ouputs (xP 2020) is shown in fig. 11. Load 1 is powered with 5.1 V and load 2 with 12 V .
The converters are separated with ORing diodes. If one converter fails, the remaining one still delivers the power to the loads. If more power is needed, the system may be extended to more parallel converters ($\mathrm{n}+1$ redundancy).
Current sharing of the 5.1 V outputs is ensured by the interconnected T1 pins, whereas the sense lines are

Fig. 11
Redundant configuration
connected after the ORing diodes to maintain the correct output voltage.
For the 12 V outputs, no current-share feature (option T) is available. As a result, 2 little diodes D_{s} (loaded by little resistors R_{s}) simulate the voltage drop of the ORing diodes. Reasonable current sharing is provided by load lines of equal length and section.

Hot Swap

Important: For applications using the hot swap capabilities, dynamic output voltage changes during plug-in and plug-out operations may occur.

Hold-up time

The converters provide virtually no hold-up time. If a hold-up time is required, use external output capacitors or input capacitors of adequate size and decoupling diodes.
Formula for additional external input capacitor:

$$
C_{\mathrm{i} \text { ext }}=\frac{2 \cdot P_{\mathrm{o}} \cdot t_{\mathrm{h}} \cdot 100}{\left(V_{\mathrm{ti}}{ }^{2}-V_{\mathrm{imin}}{ }^{2}\right) \cdot \eta}
$$

whereas:

Fig. 12
Typical dynamic load regulation of
output voltage

$C_{\text {iext }}[\mathrm{mF}]$	$=$ external input capacitance
P_{o}	$=$ output power $[\mathrm{W}]$
η	$=$ efficiency $[\%]$
t_{h}	$=$ hold-up time $[\mathrm{ms}]$
$V_{\mathrm{imin}}[\mathrm{V}]$	$=$ minimum input voltage
V_{ti}	$=$ threshold level $[\mathrm{V}]$

Output Voltage Regulation

Line and load regulation of the regulated outputs is so good that input voltage and output current have virtually no influence to the output voltage.
However, if the tracking output is not loaded, the second control loop may slightly reduce the voltage of the main output. Thus, unused tracking outputs should be connected in parallel to the respective main output.

The dynamic load regulation is shown in fig. 12.

Tracking Outputs

The main outputs 1 and 2 are regulated to $V_{\text {o nom }}$ independent of the output current. If the loads on outputs 3 and 4 are too low ($<10 \%$ of I_{0} nom), their output voltage tends to rise. V_{03} and V_{04} depend upon the load distribution: If all outputs are loaded with at least 10% of $I_{0 \text { nom }}, V_{03}$ and V_{04} remain within $\pm 5 \%$ of $V_{\text {o nom. }}$. The following diagrams show the regulation of the tracking outputs under different load conditions up to the current limit. If $I_{01}=I_{04}$ and $I_{02}=I_{03}$ or if the tracking outputs are connected in series with their respective regulated outputs, then V_{03} and V_{04} remain within $\pm 1 \%$ of $V_{0 \text { nom }}$ provided that the load is at least $I_{0 \text { min }}$. A $2^{\text {nd }}$ control loop protects the tracking outputs against overvoltage by reducing the voltage of the respective regulated main output.
Because the P Series uses main transformers and main chokes in planar technology, the tracking outputs follow the main outputs very closely. Fig. 13 shows the voltage of the tracking output depending on its own output current and the output current of the respective regulated output.

Note: If the tracking output (V_{03} or V_{04} is not loaded, it should be connected in parallel to the respective main output (V_{03} parallel to V_{02}, V_{04} parallel to V_{01}).

Fig. 13

5 V tracking output V_{04} versus I_{04} (powertrain 1) or V_{03} versus I_{03} (powertrain 2). $V_{i}=V_{\text {inom }}$

Fig. 14

12 V tracking output V_{04} versus I_{04} (powertrain 1) or V_{03} versus I_{03} (powertrain 2). $V_{i}=V_{\text {i nom }}$

Fig. 15

15 V tracking output $V_{0}=f\left(I_{0}\right), V_{i}=V_{\text {inom }}$

Fig. 16
$24 V$ tracking output $V_{0}=f\left(l_{0}\right), V_{i}=V_{\text {inom }}$

Output Current Limitation

All outputs are continously protected against open-circuit (no load) and short-circuit by an electronic current limitation.
Single- and double-output powertrains have a rectangular current limitation characteristic. In double output powertrains only the total current is limited allowing free choice of load distribution between the two outputs of each power train up to a total $I_{01}+I_{04}=I_{0 \text { max }}$ or $I_{02}+I_{03}=I_{0 \text { max }}$.

Thermal Considerations and Protection

If a converter is mounted upright in free air, allowing unrestricted convection cooling, and is operated at its nominal input voltage and output power at $T_{\mathrm{A} \max }$ (see table Temperature specifications), the temperature measured at the measurement point on the case T_{C} (see Mechanical Data) will approach $T_{\text {C max }}$ after an initial warm-up phase. However the relationship between T_{A} and T_{C} depends heavily on the operating conditions and system integration. The thermal conditions are influenced significantly by the input voltage, the output current, airflow, and the temperature of the adjacent elements and surfaces. $T_{\text {A max }}$ is therefore contrary to $T_{\mathrm{C} \text { max }}$ only an indicative value.
A temperature sensor fitted on the main PCB disables the output, when the case temperature exceeds $T_{\text {C max }}$. The converter automatically resumes, when the temperature drops below this limit. An additional temperature sensor on each power train reduces the output current limit of that power train, when the temperature exceeds a safe level.

Output Power at Reduced Temperature

Operating the converters with an output current between I_{0} nom and $I_{0 \text { max }}$ requires a reduction in maximum ambient temperature or forced air cooling in order to keep T_{C} below $95{ }^{\circ} \mathrm{C}$. When $T_{\mathrm{C} \text { max }}$ is exceeded, the thermal protection is activated and disables the outputs.
Note: Forced cooling or an additional heat sink can improve the reliability or allow T_{A} to go beyond $T_{\mathrm{A} \text { max }}$, provided that $T_{\mathrm{C} \text { max }}$ is not exceeded. In rack systems without proper thermal management the converters should not be packed too closely together! In such cases the use of a 5 or 6 TE front panel is recommended.

Fig. 17
Output power derating versus T_{A}.

Auxiliary Functions

Primary Inhibit (Remote On / Off)

The inhibit input enables (logic low, pull down) or disables (logic high, pull up or open-circuit) the output, if a logic signal (TTL, CMOS) is applied. In systems consisting of several converters, this feature may be used to control the activation sequence by logic signals or to enable the power source to start up, before full load is applied.

Note: If this function is not used, pin 28 must be connected with pin 32, otherwise the internal logic will disable the output.

Table 6: Inhibit characteristics

Characteristic			Conditions	min	typ	max	Unit
$V_{\text {inh }}$	Inhibit Voltage	$V_{0}=0 n$	$\begin{aligned} & V_{\text {imin }}-V_{i_{\text {max }}} \\ & T_{\mathrm{C} \text { min }}-T_{\mathrm{C} \text { max }} \end{aligned}$	-50		0.8	V
		$V_{0}=$ off		2.4		50	
$I_{\text {inh }}$	Inhibit current		$\begin{aligned} & V_{\text {inh }}=-50 \mathrm{~V} \\ & V_{\text {inh }}=0 \mathrm{~V} \\ & V_{\text {inh }}=50 \mathrm{~V} \end{aligned}$		$\begin{gathered} -1000 \\ -40 \\ 900 \end{gathered}$		$\mu \mathrm{A}$

Note: The secondary referenced inhibit function, refers to the description of option i.

The output response after enabling or disabling the output by the inhibit input is shown in the figure below. See also Input Data.

Fig. 18
Output response as a function of V_{i} (on/off switching) or inhibit control

Output Voltage Adjust of V_{01} and V_{04}

Note: With open R input, $V_{0}=V_{\text {o nom }}$.
The converters offer adjust of the voltage of powertrain 1. Powertrain 2 can not be adjusted. The programming is performed either by an external control voltage $V_{\text {ext }}$ or an external resistor R_{1} or R_{2}, connected to the R-input. Trimming is limited to the values given in the table Electrical Output Data.

Note: With open R input, $V_{0}=V_{\text {onom }}$.
With double output powertrains, both outputs are influenced by the R-input setting simultaneously.

Caution: To prevent damage, $V_{\text {ext }}$ should not exceed 20 V , nor be negative.

Note: If output voltages are set higher than V_{0} nom, the output currents should be reduced accordingly, so that the maximum specified output power is not exceeded.
a) Adjustment by means of an external voltage:

$$
V_{\mathrm{ext}} \approx \frac{2.72 V_{01}}{V_{\mathrm{onom}}}-0.28 \mathrm{~V}
$$

Fig. 19
Output adjust of V_{01} and V_{04} with an external voltage $V_{\text {ext. }}$. The other outputs are not influenced.
b) Adjustment by means of an external resistor:

The adjust resistor R_{1} is connected between pin 16 and S - (14) to set $V_{0}<V_{0}$ nom, or the adjust resistor R_{2} is connected between pin 16 and $S+(12)$ to set $V_{0}>V_{0}$ nom.

Note: R inputs of n converters with paralleled outputs may be connected together, but if only one external resistor is used, its value should be R_{1} / n or R_{2} / n.

Fig. 20
Output adjust of V_{01} and V_{04} using R_{1} or R_{2}. The other outputs are not influenced.

Table 7a: R_{1} for $V_{0}<V_{0}$ nom; approximate values (V_{inom}, I_{0} nom, series $E 96$ resistors); R_{2} not fitted

$V_{\text {onom }}=3.3 \mathrm{~V}$		$V_{\text {onom }}=5.1 \mathrm{~V}$		$V_{\text {onom }}=12 \mathrm{~V}$			$V_{\text {o nom }}=15 \mathrm{~V}$			$V_{\text {onom }}=24 \mathrm{~V}$		
V_{0} (V)	$R_{1}[\mathrm{k} \Omega$]	$V_{0}(\mathrm{~V})$	$R_{1}[\mathrm{k} \Omega$]	$V_{0}[\mathrm{~V}]^{1}$		R_{1} [k ${ }^{\text {] }}$]	$V_{0}[\mathrm{~V}]{ }^{1}$		R_{1} [k ${ }^{\text {] }}$]	$V_{0}[\mathrm{~V}]{ }^{1}$		$R_{1} \quad[\mathrm{k} \Omega$]
2.0	5.62	4.0	14.0	6.5	13.0	4.22	8.0	16.0	4.12	14.0	28.0	5.23
2.1	6.49	4.1	15.8	7.0	14.0	5.11	8.5	17.0	4.75	15.0	30.0	6.19
2.2	7.50	4.2	18.2	7.5	15.0	6.19	9.0	18.0	5.49	16.0	32.0	7.5
2.3	8.66	4.3	21.0	8.0	16.0	7.5	9.5	19.0	6.34	17.0	34.0	9.31
2.4	10.2	4.4	24.3	8.5	17.0	9.09	10.0	20.0	7.5	18.0	36.0	11.5
2.5	12.1	4.5	29.4	9.0	18.0	11.5	10.5	21.0	8.87	19.0	38.0	14.7
2.6	14.3	4.6	36.5	9.5	19.0	14.7	11.0	22.0	10.5	20.0	40.0	19.6
2.7	17.4	4.7	47.5	10.0	20.0	19.6	11.5	23.0	12.7	20.5	41.0	22.6
2.8	22.1	4.8	63.4	10.5	11.0	27.4	12.0	24.0	15.4	21.0	42.0	27.4
2.9	28.7	4.9	97.6	11.0	22.0	43.2	12.5	25.0	29.6	21.5	43.0	34.0
3.0	39.2	5.0	200.0	11.5	23.0	88.7	13.0	26.0	25.5	22.0	44.0	43.2
3.1	61.9						13.5	27.0	34.8	22.5	45.0	59.0
3.2	12.7						14.0	28.0	54.9	23.0	46.0	88.7
							14.5	29.0	110.0	23.5	47.0	182.0

Table 7b: R_{2} for $V_{0}>V_{\text {o nom }}$; approximate values ($V_{\mathrm{i} \text { nom }}, I_{\mathrm{o} \text { nom }}$, series $E 96$ resistors); R_{1} not fitted

$V_{\text {onom }}=3.3 \mathrm{~V}$		$V_{\text {o nom }}=5.1 \mathrm{~V}$		$V_{\text {onom }}=12 \mathrm{~V}$			$V_{\text {o nom }}=15 \mathrm{~V}$			$V_{\text {o nom }}=24 \mathrm{~V}$		
$V_{0}(\mathrm{~V})$	$R_{1}[\mathrm{k} \Omega]$	V_{0} (V)	$R_{1}[\mathrm{k} \Omega$]	$V_{0}[\mathrm{~V}]{ }^{1}$		$R_{1}[\mathrm{k} \Omega$]	$V_{0}[\mathrm{~V}]{ }^{1}$		$R_{1}[\mathrm{k} \Omega]$	$V_{0}[\mathrm{~V}]^{1}$		$\begin{aligned} & \boldsymbol{R}_{1}[\mathrm{k} \Omega] \\ & \hline 1820.0 \end{aligned}$
3.4	47.5	5.2	226.0	12.2	24.4	1100.0	15.3	30.6		24.5	49.0	
3.5	24.3	5.3	115.0	12.4	24.8	499.0	15.5	31.0	665.0	25.0	50.0	909.0
3.6	16.3	5.4	78.7	12.6	25.2	332.0	15.7	31.4	475.0	25.5	51.0	604.0
		5.5	59.0	12.8	25.6	255.0	16.0	32.0	332.0	26.0	52.0	464.0
		5.6	48.7	13.0	26.0	205.0	16.2	32.4	280.0	26.4	52.8	392
				13.2	26.4	174.0	16.5	33.0	232.0			

${ }^{1}$ First column: single output powertrains or double output powertrains with separated/paralleled outputs, second column: outputs in series connection.

Sense Lines

Important: Sense lines should always be connected. Incorrectly connected sense lines may damage the converter. If sense pins are left open-circuit, the output voltages are not accurate.
This feature enables compensation of voltage drop across the connector contacts and the load lines including ORing diodes in true redundant systems.
Applying generously dimensioned cross-section load leads avoids troublesome voltage drop. To minimize noise pick-up, wire sense lines parallel or twisted to the respective output line. To be sure, connect the sense lines directly at the female connector.
The voltage difference between any sense line and its respective power output pin (as measured on the connector) should not exceed the following values at nominal output voltage.

Table 8: Voltage compensation allowed using sense lines

Output type	Total drop	Negative line drop
$3.3,5.1 \mathrm{~V}$ output	$<0.5 \mathrm{~V}$	$<0.25 \mathrm{~V}$
$12,15,24 \mathrm{~V}$ output	$<1.0 \mathrm{~V}$	$<0.5 \mathrm{~V}$

LEDs

The P Series converters exhibit a green LED "In OK", signaling that the input voltage is within the specified range.
Another green LED "Out-OK" indicates that both power trains are working correctly, i.e., that the output voltage control loops are locked. This proves with high probability that the regulated outputs exhibit the correct voltage; see also Option D.

$2^{\text {nd }}$ Control Loop

The $2^{\text {nd }}$ output of double-output power trains is watched by an independent monitoring circuit. In the case of an overvoltage, the primary control logic of the power train is influenced to reduce the duty cycle, resulting in a lower voltage of both outputs. Such an overvoltage may occur, when the $1^{\text {st }}$ output is fully charged and the $2^{\text {nd }}$ output is nearly unloaded particularly with dynamic load changes.

Electromagnetic Compatibility (EMC)

A metal oxide VDR together with an input fuse and a symmetrical input filter form an effective protection against
high input transient voltages, which typically occur in most installations, but especially in battery-driven mobile applications. The P Series has been successfully tested to the following specifications:

Electromagnetic Immunity

Table 9: Immunity type tests

Phenomenon	Standard	Level	Coupling mode ${ }^{1}$	Value applied	Waveform	Source imped.	Test procedure	In oper.	Perf. crit. ${ }^{2}$
Supply related surge	RIA 12	B	+i/-i	$1.5 \cdot V_{\text {batt }}$	0.1/1/0.1 s	0.2Ω	1 positive surge	yes	A
	EN 50155			$1.4 \cdot V_{\text {batt }}$		1Ω			
Direct transients	RIA 12 EN 50155: 1995	D4	-i/c, +i/-i	$\pm 1800 \mathrm{~V}_{\mathrm{p}}$	5/50 $\mathrm{\mu s}$	5Ω	5 pos. and 5 neg. impulses	yes	B
		G5		$\pm 8400 \mathrm{~V}_{\mathrm{p}}$	0.05/0.1 $\mu \mathrm{s}$	100Ω			
Indirect coupled transients		H	-o/c, +o/-o, -o/-i	$1800 \mathrm{~V}_{\mathrm{p}}$	5/50 $\mu \mathrm{s}$				
		L		$8400 \mathrm{~V}_{\mathrm{p}}$	0.05/0.1 $\mu \mathrm{s}$				
Electrostatic discharge (to case)	$\begin{aligned} & \hline \text { IECEN } \\ & 61000-4-2 \end{aligned}$	4^{6}	contact discharge	$8000 \mathrm{~V}_{\mathrm{p}}$	1/50 ns	330Ω	10 positive and 10 negative discharges	yes	B
			air discharge	$15000 \mathrm{~V}_{\mathrm{p}}$					
Electromagnetic field	$\begin{aligned} & \text { IEC/EN } \\ & 61000-4-3 \end{aligned}$	x^{7}	antenna	$20 \mathrm{~V} / \mathrm{m}$	80\% AM, 1 kHz	n.a.	$80-1000 \mathrm{MHz}$	yes	A
		8	antenna	$20 \mathrm{~V} / \mathrm{m}$	80\% AM, 1 kHz	n.a.	$800-1000 \mathrm{MHz}$	yes	A
				10 Vm			$1400-2100 \mathrm{MHz}$		
				$5 \mathrm{~V} / \mathrm{m}$			$2100-2500 \mathrm{MHz}$		
Electrical fast transients/burst	$\begin{aligned} & \text { IEC/EN } \\ & 61000-4-4 \end{aligned}$	39	direct coupl. (fig. 9) $+i / c,-i / c,+i /-i$	$\pm 2000 \mathrm{~V}_{\mathrm{p}}{ }^{\text {a }}$	bursts of $5 / 50 \mathrm{~ns}$, 5 kHz over 15 ms , burst period: 300 ms	50Ω	60 s positive 60 s negative transients per coupling mode	yes	A
		4		$\pm 4000 \mathrm{~V}_{\mathrm{p}}$				yes	B
		3	capacit. (fig. 10), o/c	$\pm 2000 \mathrm{~V}_{\mathrm{p}}$				yes	B
Surges	$\begin{aligned} & \text { IEC/EN } \\ & 61000-4-5 \end{aligned}$	3^{3}	+i/c, -i/c	$\pm 2000 \mathrm{~V}^{3}$	1.2/50 $\mu \mathrm{s}$	12Ω	5 pos. and 5 neg. surges per coupling mode	yes	B
		2^{3}	+i/-i	$1000 \mathrm{~V}_{\mathrm{p}}{ }^{3}$		2Ω			
Conducted disturbances	$\begin{aligned} & \text { IEC/EN } \\ & 61000-4-6 \end{aligned}$	$3{ }^{10}$	i, o, signal wires	$\begin{gathered} 10 \mathrm{VAC} \\ (140 \mathrm{~dB} \mu \mathrm{~V}) \end{gathered}$	AM 80\% 1 kHz	150Ω	$0.15-80 \mathrm{MHz}$	yes	A
Power frequency magnetic field	$\begin{aligned} & \text { IEC/EN } \\ & 61000-4-8 \end{aligned}$	11		$100 \mathrm{~A} / \mathrm{m}$			60 s in all 3 axis	yes	A

$1 \mathrm{i}=$ input, $\mathrm{o}=$ output, $\mathrm{c}=$ case.
$2 A=$ Normal operation, no deviation from specs, $B=$ Temporary deviation from specs possible.
3 Measured with an external input capacitor specified in table 4. Complies with EN 50121-3-2:2006 table 7.3 and EN 50121-4:2006 table 2.3.
4 Corresponds to EN 50155:2001, waveform A, and EN 50121-3-2:2000 table 7.2.
5 Corresponds to EN 50155:2001, waveform B.
6 Exceeds EN 50121-3-2:2006 table 9.3 and EN 50121-4:2006 table 1.4.
7 Corresponds to EN 50121-3-2:2006 table 9.1 and exceeds EN 50121-4:2006 table 1.1.
8 Corresponds to EN 50121-3-2:2006 table 9.2 and EN 50121-4:2006 table 1.2 (compliance with digital mobile phones).
9 Corresponds to EN 50121-3-2:2006 table 7.2 and EN 50121-4:2006 table 2.2.
10 Corresponds to EN 50121-3-2:2006 table 7.1 and EN 50121-4:2006 table 3.1 (radio frequency common mode).
${ }^{11}$ Corresponds to EN 50121-4:2006 table 1.3.

Electromagnetic Emissions

All conducted emissions (fig. 20) have been tested according to IEC/EN 55022 (similar to EN 55011, much better values than requested by EN 50121-3-2, table 3.1). The limits in fig. 21 apply to quasipeak values, which are always lower then peak values.

Fig. 21a
BP 2320-7RD
Typical disturbance voltage at the input ($V_{i \text { nom }}, l_{i n o m}$, resitive load, quasi peak).

Fig. 21b
CP 1001-7RB1
Typical disturbance voltage at the input ($V_{\text {inom }}, l_{\text {inom }}$, resitive load, quasi peak).

In addition, the values for average must keep a limit $10 \mathrm{~dB} \mu \mathrm{~V}$ below the limits in fig. 20 (not shown).
Radiated emissions have been tested according to IEC/EN 55011 (similar to EN 55022), class A, as requested in EN 50121-3-2, table 6.1. The test is executed with horizontal and vertical polarization. The worse result is shown in fig. 22.

Fig. 22a
Radiated disturbances (quasi peak) in 10 m distance: BP4660-9RD, $V_{\text {inom, }} V_{0}=24 \mathrm{~V}, I_{0}=4 \times 1.25 \mathrm{~A}$

Fig. 22b
Radiated disturbances (quasi peak) in 10 m distance: EP3020-7R, $V_{\text {inom }}, V_{0}=12 \mathrm{~V}, I_{0}=2 \times 2.5 \mathrm{~A}$

Immunity to Environmental Conditions

Table 10: Mechanical and climatic stress

Test	method	Standard	Test conditions		Status
Cab	Damp heat steady state	$\begin{aligned} & \text { IEC/EN 60068-2-78 } \\ & \text { MIL-STD-810D section } 507.2 \end{aligned}$	Temperature: Relative humidity: Duration:	$\begin{aligned} & 40 \pm 2 \circ \mathrm{C} \\ & 93+2 /-3 \% \\ & 56 \text { days } \end{aligned}$	Converter not operating
Kb	Salt mist, cyclic (sodium chloride NaCl solution)	IEC/EN 60068-2-52	Concentration: Storage: Duration:	$5 \%\left(30^{\circ} \mathrm{C}\right)$ for 2 h $40^{\circ} \mathrm{C}, 93 \%$ rel. humidity 3 cycles of 22 h	Converter not operating
Fc	Vibration (sinusoidal)	IEC/EN 60068-2-6 MIL-STD-810D section 514.3	Acceleration amplitude: Frequency (1 Oct/min): Test duration:	$\begin{aligned} & 0.35 \mathrm{~mm}(10-60 \mathrm{~Hz}) \\ & 5 \mathrm{~g}_{\mathrm{n}}=49 \mathrm{~m} / \mathrm{s}^{2}(60-2000 \mathrm{~Hz}) \\ & 10-2000 \mathrm{~Hz} \\ & 7.5 \mathrm{~h}(2.5 \mathrm{~h} \text { in each axis }) \end{aligned}$	Converter operating
Fh	Random vibration broad band (digital control) and guidance	IEC/EN 60068-2-64	Acceleration spectral density: Frequency band: Acceleration magnitude: Test duration:	$\begin{aligned} & 0.05 \mathrm{~g}_{\mathrm{n}}{ }^{2} / \mathrm{Hz} \\ & 8-500 \mathrm{~Hz} \\ & 4.9 \mathrm{~g}_{\mathrm{n} \text { rms }} \\ & 1.5 \mathrm{~h}(0.5 \mathrm{~h} \text { in each axis }) \end{aligned}$	Converter operating
Eb	Bump (half-sinusoidal)	IEC/EN 60068-2-29 MIL-STD-810D section 516.3	Acceleration amplitude: Bump duration: Number of bumps:	$\begin{aligned} & 25 \mathrm{~g}_{\mathrm{n}}=245 \mathrm{~m} / \mathrm{s}^{2} \\ & 6 \mathrm{~ms} \\ & 6000(1000 \text { in each direction }) \end{aligned}$	Converter operating
Ea	Shock (half-sinusoidal)	IEC/EN 60068-2-27 MIL-STD-810D section 516.3	Acceleration amplitude: Bump duration: Number of bumps:	$\begin{aligned} & 50 \mathrm{~g}_{\mathrm{n}}=490 \mathrm{~m} / \mathrm{s}^{2} \\ & 11 \mathrm{~ms} \\ & 18 \text { (3 in each direction) } \end{aligned}$	Converter operating
--	Shock	EN 50155:2007 sect. 12.2.11 EN 61373 sect. 10, class B, body mounted ${ }^{1}$	Acceleration amplitude: Bump duration: Number of bumps:	$\begin{aligned} & 5.1 \mathrm{~g}_{\mathrm{n}} \\ & 30 \mathrm{~ms} \\ & 18 \text { (3 in each direction) } \end{aligned}$	Converter operating
--	Simulated long life testing at increased random vibration levels	EN 50155:2007 sect. 12.2.11 EN 61373 sect. 8 and 9 , class B, body mounted ${ }^{1}$	Acceleration spectral density: Frequency band: Acceleration magnitude: Test duration:	$\begin{aligned} & 0.02 g_{\mathrm{n}}{ }^{2} / \mathrm{Hz} \\ & 5-150 \mathrm{~Hz} \\ & 0.8 \mathrm{~g}_{\mathrm{nrms}} \\ & 15 \mathrm{~h}(5 \mathrm{~h} \text { in each axis) } \end{aligned}$	Converter operating

${ }^{1}$ Body mounted = chassis of a railway coach

Temperatures

Table 11: Temperature specifications, valid for an air pressure of $800-1200 \mathrm{hPa}$ ($800-1200 \mathrm{mbar}$)

Temperature			-7 (option)			-9 (standard)			Unit
Chara	teristics	Conditions	min	typ	max	min	typ	max	
$T_{\text {A }}$	Ambient temperature	Converter operating ${ }^{1}$	-25		71	-40		71	${ }^{\circ} \mathrm{C}$
$T_{\text {C }}$	Case temperature ${ }^{2}$		-25		95^{1}	-40		95^{1}	
$T_{\text {S }}$	Storage temperature	Non operational	-40		100	-55		100	
$R_{\text {th C-A }}$	Thermal resistance case to ambient in still air		2			2			K/W

${ }^{1}$ Operation with $P_{0 \text { max }}$ requires reduction to $T_{\mathrm{A} \max }=50^{\circ} \mathrm{C}, T_{\mathrm{C} \text { max }}=85^{\circ} \mathrm{C}$ respectively; see Thermal Considerations.
${ }^{2}$ Overtemperature shutdown at $T_{\mathrm{C}}>95^{\circ} \mathrm{C}$ (PTC)

Reliability

Table 12: MTBF and device hours

Ratings at specified	Model	Ground benign $40^{\circ} \mathrm{C}$		Ground fixed		Ground mobile 50
Case Temperature			Demonstrated hours between failures ${ }^{1}$			
MTBF acc. to MIL-HDBK-217F, notice 2	CP	340000 h	88000 h	42000 h	40000 h	757000 h

[^0]
Mechanical Data

The converters are designed to be inserted in a 19" rack acording to IEC 60297-3. Dimensions in mm.

Fig. 23
Case Q04, weight app. 500 g
Aluminium, fully enclosed,
Note: Long case, elongated by 60 mm for a 220 mm rack depth, is black finish and self cooling available on request.

Safety and Installation Instructions

Connector Pin Allocation

The connector pin allocation table defines the electrical potentials and the physical pin positions on the H 15 and H15S2 connector. Pin no. 26, protective earth, is a leading pin to ensure that it makes contact with the female connector first.

Notes:

- The current through each standard H15 contact depends on the female connector, the ambient temperature and the air flow in the region of the connector. We recommend to limit the mean current to 15 A at $50^{\circ} \mathrm{C}$ and to 13 A at $71^{\circ} \mathrm{C}$.
- High currents require a large cross-sectional area of the connections to the female contacts. We recommend solder or screw terminal contacts. Each faston connection exhibits a resistance of max. $8 \mathrm{~m} \Omega$, which makes it less suitable for high currents.
- For single-output models with option K, both output contacts must always be used and connected in parallel to the load with large cross-sectional area wires or thick copper lands. The efficiency is lower with option K.
- High-current contacts of P1000 models exhibit no restriction of the output current. Their resistance is only typ. $1 \mathrm{~m} \Omega$.

Fig. 24a
View of male standard H15 connector

Fig. 24b
View of male H15S2 connector (with high-current contacts) used in P1000 and P1100 without option K. Recent H15-S2 connectors have no CodeKey system.

Table 13: Pin allocation

Pin	P 1000		P2000		P3000		P4000	
$4{ }^{1}$	Vo+	Output 1 pos.	Vo1+	Output 1 pos.	Vo1+	Output 1 pos.	Vo1+	Output 1 pos.
61	Vo+	Output 1 pos.	Vo2+	Output 2 pos.	Vo2+	Output 2 pos.	Vo2+	Output 2 pos.
$8{ }^{2}$	Vo-	Output 1 neg.	Vo1-	Output 1 neg.	Vo1-	Output 1 neg.	Vo1-	Output 1 neg. ${ }^{6}$
10^{2}	Vo-	Output 1 neg.	Vo2-	Output 2 neg.	Vo2-	Output 2 neg.	Vo2-	Output 2 neg.
12	S+	Sense +	S1+	Sense 1 +	S1+	Sense 1 +	Vo4+	Output 4 pos.
14	S-	Sense -	S1-	Sense 1-	S1-	Sense 1 -	Vo4-	Output 4 neg. ${ }^{6}$
16	R	Adjust of V_{0}	R1	Adjust of V_{01}	R1	Adjust of V_{01}	R1	Adjust of $V_{01 / 4}$
			T1	Current share ${ }^{3}$	T1	Current share ${ }^{3}$		
18	T^{5}	Current share	S2+	Sense $2+$	Vo3+	Output 3 pos.	Vo3+	Output 3 pos.
20	n.c.	Not connected	S2-	Sense 2 -	Vo3-	Output 3 neg.	Vo3-	Output 3 neg.
22	n.c.	Not connected						
	Out OK+	Out OK+ ${ }^{4}$						
24	n. c.	Not connected	n.c.	Not connected	n.c.	Not connected	n.c.	Not connected
	Out OK-	Out OK-4						
26	($)$	Prot. earth PE	-	Prot. earth PE	()	Prot. earth PE	(e)	Prot. earth PE
28	i	Inhibit primary						
30	Vi+	Input pos.						
32	Vi-	Input neg.						

1 Pin 4/6 (high-current contact) for P1000 models with 3.3 V or 5.1 V output (H15S2 connector, no option K)
${ }^{2}$ Pin $8 / 10$ (high-current contact) for P1000 models with 3.3 V or 5.1 V output (H15S2 connector, no option K)
${ }^{3}$ Option T1 for 3.3 V and 5.1 V powertrains: Only I_{01} is influenced
4 Option D
${ }^{5}$ Not connected, if option T is not fitted.
${ }^{6}$ Powertrains with 5.1 V and 3.3 V outputs have a common return: Vo1- and Vo4- are connected together.

Installation Instructions

These converters are components, intended exclusively for inclusion within other equipment by an industrial assembly process or by a professionally competent person. Installation must strictly follow the national safety regulations in respect of the enclosure, mounting, creepage distances, clearance, casualty, markings and segregation requirements of the enduse application.
Connection to the system shall be made via the female connector H15 or H15S2 (see Accessories). Other installation methods may not meet the safety requirements. Check for hazardous voltages before altering any connections. Pin 26 (PE) is a leading pin and is reliably connected to the case. For safety reasons it is essential to connect this pin to the protective earth of the supply system.
The Vi- input (pin 32) is internally fused. This fuse is designed to protect the converter against overcurrent caused by a failure, but may not be able to satisfy all requirements. External fuses in the wiring to one or both input pins (no. 30 and/or no. 32) may therefore be necessary to ensure compliance with local requirements.

Important: Whenever the inhibit function is not in use, pin 28 (i) should be connected to pin 32 (Vi-) to enable the output(s).
Do not open the converters, or the warranty will be invalidated. Make sure that there is sufficient airflow available for convection cooling. This should be verified by measuring the case temperature at the specified measuring point, when the converter is operated in the end-use application. T_{C} max should not be exceeded. Ensure that a failure of the converter does not result in a hazardous condition; see also Safety of Operator-Accessible Output Circuits.

Standards and Approvals

The P Series converters are approved according to the safety standards IEC/EN 60950-1 and UL/CSA 60950-1 $2^{\text {nd }} E d$.
They have been evaluated for:

- Class I equipment
- Building in
- Double or reinforced insulation based on 250 VAC or 240 VDC between input and output and between input and auxiliary circuits
- Overvoltage category II
- Functional insulation between output(s) and case
- Functional insulation between the outputs
- Pollution degree 2 environment
- The converters fulfill the requirements of a fire enclosure. CB-scheme is available (CB 060724238 800).
The converters are subject to manufacturing surveillance in accordance with the above mentioned UL standards and with ISO 9001:2000.

Cleaning Agents

The converters are not hermetically sealed. In order to avoid possible damage, any penetration of liquids shall be avoided.

Protection Degree

The DC-DC converters correspond to protection degree IP 40 , provided that the female connector is fitted to the converter.

Railway Applications

The P Series converters have been designed observing the railway standards EN 50155:2007 and EN 50121:2006. All boards are coated with a protective lacquer.
The P Series converters are certified to the fire protection class S1 according to E DIN 5510-2:2007.

Isolation

The electric strength test is performed in the factory as routine test in accordance with EN 50116 and IEC/EN 60950 and should not be repeated in the field. Power-One will not honor any warranty claims resulting from electric strength field tests.

Table 14: Isolation

Characteristic		Input to case + outputs ${ }^{1}$	Outputs to case	Output to output ${ }^{4}$	Auxiliaries ${ }^{3}$ to input	Auxiliaries ${ }^{3}$ to case	Auxiliaries ${ }^{3}$ to outputs	Unit
Electric strength test	Factory test $>1 \mathrm{~s}$	2.1^{1}	1.0	0.5	$2.1{ }^{1}$	1.0	0.5	kVDC
	AC test voltage equivalent to actual factory test	1.5	0.7	0.35	1.5	0.7	0.35	kVAC
Insulation resistance		>300 ${ }^{2}$	>300 ${ }^{2}$	>100	>300 ${ }^{2}$	>100	>100	M Ω

[^1]
Safety of Operator-Accessible Output Circuits

If the output circuit of a DC-DC converter is operator accessible, it shall be an SELV circuit according to the IEC/ EN 60950 related safety standards.
The following table shows some possible installation configurations, compliance with which causes the output circuit of the DC-DC converter to be an SELV circuit according to IEC/EN 60950 up to a configured output voltage
(sum of nominal voltages if in series or +/- configuration) of 35 V .
However, it is the sole responsibility of the installer to ensure the compliance with the relevant and applicable safety regulations.
Use fuses and earth connections as per table below. See also Installation Instructions.

Table 15: Safety concept leading to an SELV output circuit

Conditions	Front end			DC-DC converter	Result
Nominal supply voltage	Minimum required grade of insolation, to be provided by the AC-DC front end, including mains supplied battery charger	MaximumDC output voltage from the front end ${ }^{1}$	Minimum required safety status of the front end output circuit	Measures to achieve the specified safety status of the output circuit	Safety status of the DC-DC converter output circuit
Mains ≤ 250 VAC	Functional (i.e. there is no need for electrical isolation between the mains supply circuit and the DC-DC converter input circuit)	≤ 168 V	Primary circuit (The nominal voltage between any input pin and earth shall not exceed 250 VAC or 240 VDC.)	Double or reinforced insulation, based on 250 VAC and 240 VDC (provided by the DC-DC converter) and earthed case ${ }^{2}$	SELV circuit
	Basic		Earth related hazardous voltage secondary circuit (The nominal voltage between any input pin and earth shall not exceed 250 VAC or 240 VDC.)	Double or reinforced insulation, based on the maximum nominal output voltage from the front end (both provided by the DC-DC converter) and earthed case ${ }^{2}$	
			Unearthed hazardous voltage secondary circuit	Supplementary insulation, based on 250 VAC and DC and double or reinforced insulation, based on the maximum nominal output voltage from the front end (both provided by the DC-DC converter) and earthed case ${ }^{2}$	
	Supplementary		Unearthed hazardous voltage secondary circuit ${ }^{3}$	Basic insulation, based on 250 VAC and DC (provided by the DC-DC converter)	

1 The front end output voltage should match the specified input voltage range of the DC-DC converter. The maximum rated input voltage of EP types is 150 V according to IEC/EN 60950.
2 The earth connection has to be procided by the installer according to the relevant safety standards, e.g., IEC/EN 60950.
${ }^{3}$ Has to be insulated from earth by at least supplementary insulation (by the installer) according to the relevant safety standards, e.g. IEC/EN 60950, based on the maximum nominal output voltage from the front end. If the converter case is accessible, it has to be earthed or the front end output circuit has to be insulated from the converter case by at least basic insulation, based on the maximum nominal mains supply voltage.

Fig. 25

Schematic safety concept

Description of Options

Option D: Out OK Monitor

Option D monitors the state of the output error amplifiers on both power trains rather than the input voltage, output voltage, or the current limit. It signals a fault, when one of the error amplifiers reaches its limit, which means that at least one output voltage is not within its regulation limits. This could occur, because the input voltage is below the minimum level or the load current is too high. This function is not adjustable.
A galvanically isolated open-collector output generates the "Out OK" signal. The circuit monitors simultaneously that

- the input voltage is present - same logic as LED "In OK"
- the output voltages are within their limits - same logic as LED(s) "Out OK".
The open collector is conducting, if the monitored conditions are fulfilled.

This option is located on a subassembly allowing special circuit design on customer request.
Dimensioning of resistor value $R_{p} \geq \frac{V_{p}}{50 \mathrm{~mA}}$
Caution: The Out OK circuit is protected by a Zener diode. To prevent damage, the applied current $l_{\text {OK }}$ should be limited to ± 50 mA . The Zener diode should not be exposed to more than 0.25 W .

Table 16: Output OK data

Chacteristics / Conditions		min	typ	max
Unit				
V_{OK}	Out OK voltage Output good, $I_{\mathrm{OK}}<50 \mathrm{~mA}$	0.8	1.5	V
I_{OK}	Out OK current Output out of range, $V_{\mathrm{OK}}<18 \mathrm{~V}$	25	$\mu \mathrm{~A}$	

Fig. 26
Output OK circuit (option D)

Option T: Active Current Sharing

For 3.3 V and 5.1 V outputs only. The current share facility should be used, when several converters are operated in parallel. Examples could be high reliability $\mathrm{n}+1$ redundant systems or systems providing higher output power.
Using this feature reduces the stress of individual converters and improves the reliability of the system. Interconnection of the current-sharing pins T or T1 causes the converters to share their output currents evenly.

In redundant systems, the outputs of the converters are decoupled by ORing diodes. Consequently, a failure of one converter will not lead to a system failure.
Since the voltage on the T or T1 pin is referenced to the sense pin S-, the installer must ensure that the S - pins of all parallel converters are at the same electrical potential and that there are no voltage drops across the connection lines between these pins.
Double-output converters with outputs connected in series can also be paralleled with current sharing, if pins Vo1- of all converters are connected together; sefig. 10.
If the output voltages of parallel connected single-output converters are programmed to a voltage other than V_{0} nom by means of the R pin, the outputs should be adjusted individually within a tolerance of $\pm 1 \%$.

Note: Option T is only available for 3.3 V or 5.1 V single-output power trains and only for output 1.

In double- or triple-output models, option T1 influences only output 1 ; it is connected to pin 16. Then the R -function is not present, since no pin is left for that function.

Option B1 and B3: Heat Sink

The converter is fitted with an additional heat sink.

Table 17: Thermal resistance case to ambient (approx. values)

Case	Thermal resistance	Thickness of case
Standard, 160 mm long	$1.6 \mathrm{~K} / \mathrm{W}$	$<20 \mathrm{~mm}$
Case, 220 mm long 1	$1.4 \mathrm{~K} / \mathrm{W}$	$<20 \mathrm{~mm}$
Option B1	$1.4 \mathrm{~K} / \mathrm{W}$	$<40 \mathrm{~mm}$
Option B3	$1.2 \mathrm{~K} / \mathrm{W}$	$<50 \mathrm{~mm}$

${ }^{1}$ Add 5000 to the part number.

Option G

RoHS compliant for all six substances. Option G should be chosen for new designs.

Accessories

A wide variety of electrical and mechanical accessories are available:

- Mating connectors including faston, screw, solder, or press-fit terminals
- Front panels, system Schroff, for 19 " rack in 3 U configuration 4 TE (G04-Q04), 5 TE (G05-Q04), or 6 TE (G06Q04)
- Front panels system Schroff, for 19" rack in 6 U configuration 5 TE (G05-6HE-Q04)

H15 female connector, code key system

Connector retention bracket CRB-Q

Universal mounting bracket for DIN-rail and chassis mounting. The label is located on the bottom side of the P Series converter.

- Mechanical mounting supports for chassis, DIN-rail, and PCB mounting
- Connector retention brackets CRB-Q
- Cable connector housing (cable hood)
- Additional external input or output filters

For additional accessory product information, see the accessory data sheets listed with each product series or individual model at www.power-one.com.

Front panel G05-6HE-Q04 accommodating two P units for a 19" DIN-rack with 6 U, 5 TE. The labels are visible on the back side.

[^2]
[^0]: ${ }^{1}$ Statistical values, based upon an average of 4300 working hours per year and in general field use over 5 years; upgrades and customer-induced errors are excluded.

[^1]: 1 In accordance with EN 50116, IEC/EN 60950, subassemblies are pre-tested with 4.2 kVDC.
 2 Tested at 500 VDC
 ${ }^{3}$ Insulated secondary-referenced auxiliary circuits, i.e., Out OK circuit (option D), secondary inhibit input (option i).
 4 Powertrain with 5.1 and 3.3 V output have a commun return.

[^2]: NUCLEAR AND MEDICAL APPLICATIONS - Power-One products are not designed, intended for use in, or authorized for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems without the express written consent of the respective divisional president of Power-One, Inc.

 TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

