RECTIFIER, up to 150V, 1.8A, 30ns 1N6073 1N6074 1N6075 FF10 FF15 January 7, 1998 TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com # AXIAL LEADED HERMETICALLY SEALED SUPERFAST RECTIFIER DIODE - · Very low reverse recovery time - Hermetically sealed in Metoxilite fused metal oxide - Low switching losses - Low forward voltage drop - Soft, non-snap off, recovery characteristics ## QUICK REFERENCE DATA - $V_R = 50 150V$ - $I_F = 1.8A$ - $t_{rr} = 30nS$ - $V_F = 1.2V$ # ABSOLUTE MAXIMUM RATINGS (@ 25°C unless otherwise specified) | | Symbol | 1N6073
FF05 | 1N6074
FF10 | 1N6075
FF15 | Unit | |--|-------------------------------------|----------------|----------------------------|----------------|------| | Working reverse voltage | V _{RWM} | 50 | 100 | 150 | V | | Repetitive reverse voltage | V _{RRM} | 50 | 100 | 150 | V | | Average forward current (@ 55°C, lead length = 0.375") | I _{F(AV)} | 4 | 1.8 | _ | Α | | Repetitive surge current (@ 55°C, lead length = 0.375") | I _{FRM} | 4 | | | Α | | Non-repetitive surge current (tp = 8.3ms, @ V _R & Tj _{max}) | I _{FSM} | | — 35.0 — | | A | | Storage temperature range Operating temperature range | T _{STG}
T _{OP} | • | -65 to +150
-65 to +150 | | °C | | | | 4 | | | ` | #### **MECHANICAL** These products are qualified to MIL-S-19500/503. They can be supplied fully released as JAN, JANTX, and JANTXV versions. These products are qualified in Europe to DEF STAN 59-61 (PART 80)/029 available to F and FX levels. 1N6073 1N6074 1N6075 FF05 FF10 FF15 January 7, 1998 # ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise specified) | | Symbol | 1N6073
FF05 | 1N6074
FF10 | 1N6075
FF15 | Unit | |---|---|----------------|----------------------------|----------------|----------------------------| | Average forward current max. (pcb mounted; T _A = 55°C) for sine wave for square wave (d = 0.5) | I _{F(AV)}
I _{F(AV)} | | 0.85
0.90 | | A
A | | Average forward current max.
$T_L = 70^{\circ}\text{C}$; $L = 0$ ".
$T_L = 55^{\circ}\text{C}$; $L = 3/8$ " | I _F (AV) | | 3.0 | | A | | for sine wave
for square wave
I ² t for fusing (t = 8.3mS) max. | IF(AV)
I _F (AV)
I ² t | - | 1.7
1.8
5.0 | | A
A
A ² S | | Forward voltage drop max.
@ IF = 1.5A, $T_j = 25^{\circ}C$ | V _F | - | — 1.2 — | | v | | Reverse current max. @ V_{RWM} , $T_j = 25^{\circ}C$ @ V_{RWM} , $T_j = 100^{\circ}C$ | I _R
IR | — | <u> </u> | | μA
μA | | Reverse recovery time 0.5A I _F , 1.0A I _R , 0.25A I _{RR} . | t _{rr} | 4 | 30 | | nS | | Junction capacitance typ. @ $V_R = 5V$, $f = 1MHz$ | C _j | - | 28 | | ρF | ### THERMAL CHARACTERISTICS | | Symbol | 1N6073
FF05 | 1N6074
FF10 | 1N6075
FF15 | Unit | |---|--|----------------|----------------------|----------------|----------------------| | Thermal resistance - junction to lead Lead length = 0.375" Lead length = 0.0" Thermal resistance - junction to amb. on 0.06" thick pcb. 1 oz. copper. | R _{OJL}
R _{OJL}
R _{OJA} | - | 46 —
13 —
95 — | | °C/W
°C/W
°C/W | 1N6073 1N6074 1N6075 FF05 FF10 FF15 January 7, 1998 Fig 1. Forward voltage drop as a function of forward current. Fig 2. Maximum power versus lead temperature. Fig 3. Transient thermal impedance characteristic. Fig 4. Typical junction capacitance as a function of reverse voltage. **FF15** 1N6075 January 7, 1998 Fig 5. Forward power dissipation as a function of forward current, for sinusoidal operation. Fig 6. Forward power dissipation as a function of forward current, for square wave operation. Fig 7. Maximum repetitive forward current as a function of pulse width at 55°C; R_{OJL} = 45 °C/W; V_{RWM} during 1 - δ. Fig 8. Maximum repetitive forward current as a function of pulse width at 100° C; $R_{\theta JL} = 110^{\circ}$ C/W; V_{RWM} during 1 - δ.