RICOH

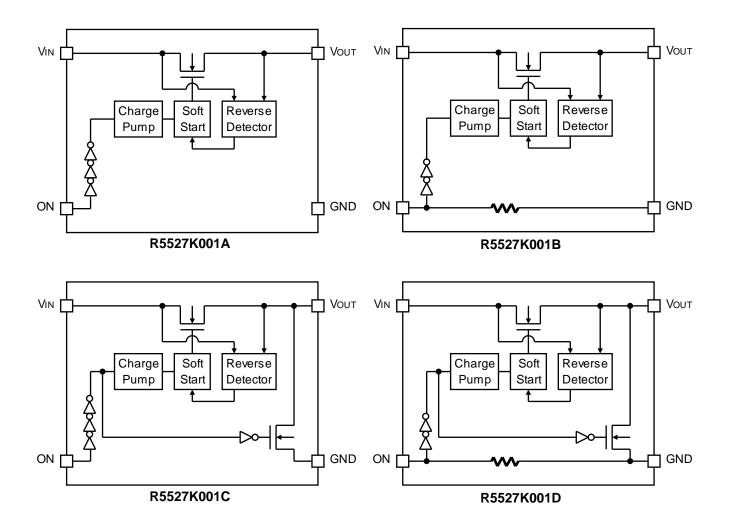
R5527K SERIES

3A Load Switch IC

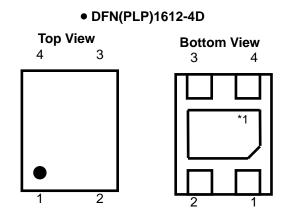
NO. EA-312-150320

OUTLINE

The R5527K is an N-channel load switch IC with low supply current, Typ. 40µA. By using an Nch transistor as a driver transistor, the features of low on resistance and the reverse current protection at on/off state are realized. The R5527K is an ideal load switch IC to supply power from the battery to the load circuit. The R5527K is available in an ultra-small DFN (PLP)1612-4D package which can achieve high-density mounting on boards.


FEATURES

- Input Voltage Range 1.8V to 5.5V
- Typical Ron ------ 48mΩ (V_{IN}=5V)
 - 46mΩ (V_{IN}=4.5V)
 - 45mΩ (V_{IN}=3.8V)
 - 68mΩ (V_{IN}=1.8V)
- 3A Maximum Continuous Current Capability
- Reverse Current Blocking (RCB)
- Package------ DFN(PLP)1612-4D


APPLICATION

- Smart Phones, Tablet PCs
- Storage, Portable Devices

BLOCK DIAGRAMS

PIN DESCRIPTION

Pin No	Symbol	Pin Description
1	Vin	Supply Input Pin
2	GND	Ground Pin
3	ON	ON/OFF Control Pin, Active High/Low
4	Vout	Switch Output Pin

^{*1} The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level).

It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

SELECTION GUIDE

The ON pin polarity and the auto-discharge function for the ICs are user-selectable options.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R5527K001*-TR	DFN(PLP)1612-4D	5,000 pcs	Yes	Yes

*: Specify a combination of the ON pin polarity and the auto-discharge function.

(A) "L" Active, without auto-discharge function at off state

(B) "H" Active, without auto-discharge function at off state

(C) "L" Active, with auto-discharge function at off state

(D) "H" Active, with auto-discharge function at off state

Auto-Discharge function quickly lowers the output voltage to 0V by releasing the electrical charge in the external capacitor when the ON signal is switched from the active mode to the standby mode.

ABSOLUTE MAXIMUM RATINGS

Symbol	ltem	Item		
V _{IN}	Input Voltage		-0.3 to 6.0	V
V _{ON}	Input Voltage (ON Pin)		-0.3 to 6.0	V
Vout	Output Voltage	-0.3 to 6.0	V	
Іоит	Output Current	3.0	Α	
Po	Power Dissipation (DFN(PLP)1612-4D) ^{*1}	Standard Land Pattern	610	mW
Та	Ambient Tmeprature		-40 to 85	°C
Tstg	Storage Temerature		-55 to 125	°C

^{*1} Refer to *PACKAGE INFORMATION* for detailed information.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

 V_{IN} = 1.8 to 5.5V, I_{OUT} = 1mA, C_{IN} = 1 $\mu\text{F},$ C_{OUT} = None, unless otherwise noted.

The specifications surrounded by \square are guaranteed by design engineering at -40°C \leq Ta \leq 85°C.

Symbol	ltem	Condition	IS	Min.	Тур.	Max.	Unit
V _{IN}	Input Voltage			1.8		5.5	V
IQ(OFF)	Off Supply Current	Von=Vin,Vout=OPEN			1	2	μA
1	Shutdown Current	V _{ON} =V _{IN} ,	Ta=25°C		1	2	μA
ISD	Shutdown Current	V _{OUT} =GND	Ta=85°C		1	10	μA
lq	Quiescent Current	Von=GND, Iout=0mA	Ą		40	70	μA
		V _{IN} =5V, I _{OUT} =1A			48	65	
		V _{IN} =4.5V, I _{OUT} =1A			46		
P		VIN=3.8V, IOUT=1A			45	60	
Ron	On Resistance	VIN=3.3V, IOUT=500mA			45		mΩ
		VIN=2.5V, IOUT=500mA			51		
		VIN=1.8V, IOUT=250mA			68		
VIH	ON Input Logic High Voltage	V _{IN} =1.8V to 5.5V		1.7			V
VIL	ON Input Logic Low Voltage	V _{IN} =1.8V to 5.5V				1.2	V
I _{ON}	ON Input Leakage	V _{ON} =V _{IN}				1	μA
VT_RCB	RCB Protection Trip Point	Vout - Vin			45		mV
V_{R_RCB}	RCB Protection Release Trip Point	Vin - Vout			25		mV
	RCB Hysteresis				70		mV
ISD_OUT	Vout Shutdown Current	V _{ON} =GND, V _{OUT} =5.5 V _{IN} =Short to GND	iV,			10	μA
tdon ^{*1}	Turn-On Delay	V _{IN} =3.8V, R _L =150 Ω , C _L =100 μ F Time from ON="H" \rightarrow "L" to V _{OUT} =V _{IN} x 10%		0.5		2.5	ms
t_R^{*1}	V _{OUT} Rise Time	V _{IN} =3.8V, R _L =150Ω, C _L =100μF Time from V _{OUT} =V _{IN} x 10% to V _{IN} x 90%		1.5		5.0	ms
ton ^{*1}	Turn-On Time	V _{IN} x 90% V _{IN} =3.8V, R _L =150Ω, C _L =100μF Time from ON="H"→"L" to V _{OUT} =V _{IN} x 90%		2.0		7.5	ms

All test items listed under ELECTRICAL CHARACTERISTICS are done under the pulse load condition (Tj≈Ta=25°C) except RCB Protection Trip Point, RCB Protection Release Trip Point, and RCB Hysteresis. ^{*1} Rise time from V_{OUT}=0V is defined. Refer to the *TIMING CHART* for detailed information.

 $V_{IN} = 1.8$ to 5.5V, $I_{OUT} = 1$ mA, $C_{IN} = 1\mu$ F, $C_{OUT} = N$ one, unless otherwise noted. The specifications surrounded by ______ are guaranteed by design engineering at -40°C \leq Ta \leq 85°C.

Symbol	Item	Condition	S	Min.	Тур.	Max.	Unit
VIN	Input Voltage			1.8		5.5	V
I _{Q(OFF)}	Off Supply Current	Von=GND,Vout=OPE	N		0.5	1	μA
1	Shutdown Current	Von=GND,	Ta=25°C		0.5	1	μA
I _{SD}	Shutdown Current	Vout=GND	Ta=85°C		0.5	10	μA
ΙQ	Quiescent Current	$V_{ON}=V_{IN}, I_{OUT}=0mA$			40	70	μA
		Vin=5V, Iout=1A			48	65	
		VIN=4.5V, IOUT=1A			46		
Ron	On Resistance	VIN=3.8V, IOUT=1A			45	60	
RON	On Resistance	VIN=3.3V, IOUT=500m	A		45		mΩ
		V _{IN} =2.5V, I _{OUT} =500mA			51		
		V _{IN} =1.8V, I _{OUT} =250mA			68		
VIH	ON Input Logic High Voltage	V _{IN} =1.8V to 5.5V		1.7			V
VIL	ON Input Logic Low Voltage	V _{IN} =1.8V to 5.5V				1.2	V
Ion	ON Input Leakage	V _{ON} =GND				1	μA
Ron_pd	Pull-Down Resistance at ON Pin	V _{IN} =V _{ON} =1.8V to 5.5V			3		MΩ
Vt_rcb	RCB Protection Trip Point	Vout - Vin			45		mV
V_{R_RCB}	RCB Protection Release Trip Point	Vin - Vout			25		mV
	RCB Hysteresis				70		mV
ISD_OUT	Vout Shutdown Current	V _{ON} =GND, V _{OUT} =5.5 ^N V _{IN} =Short to GND	V,			10	μA
tdon ^{*1}	Turn-On Delay	V _{IN} =3.8V, R _L =150Ω, C _L =100µF Time from ON="L"→"H" to V _{OUT} =V _{IN} x 10%		0.5		2.5	ms
t_R^{*1}	Vout Rise Time	$V_{IN}=3.8V, R_L=150\Omega, C_L=100\mu F$ Time from $V_{OUT}=V_{IN} \times 10\%$ to $V_{IN} \times 90\%$		1.5		5.0	ms
ton ^{*1}	Turn-On Time	V_{IN} x 90% V_{IN} =3.8V, R _L =150Ω, C _L =100µF Time from ON="L"→"H" to V_{OUT} =V _{IN} x 90%		2.0		7.5	ms

All test items listed under *ELECTRICAL CHARACTERISTICS* are done under the pulse load condition (Tj≈Ta=25°C) except RCB Protection Trip Point, RCB Protection Release Trip Point, and RCB Hysteresis.

^{*1} Rise time from $V_{OUT}=0V$ is defined. Refer to the *TIMING CHART* for detailed information.

 V_{IN} = 1.8 to 5.5V, I_{OUT} = 1mA, C_{IN} = 1µF, C_{OUT} = None, unless otherwise noted. The specifications surrounded by \square are guaranteed by design engineering at -40°C \leq Ta \leq 85°C.

Symbol	Item	Condition	S	Min.	Тур.	Max.	Unit	
Vin	Input Voltage		-	1.8		5.5	V	
		V _{ON} =V _{IN} ,	Ta=25°C		1	2	μA	
ISD	Shutdown Current	V _{OUT} =GND	Ta=85°C		1	10	μA	
lq	Quiescent Current	Von=GND, Iout=0mA			40	70	μA	
		Vin=5V, Iout=1A			48	65		
		VIN=4.5V, IOUT=1A			46			
Davi	On Registeres	VIN=3.8V, IOUT=1A			45	60		
Ron	On Resistance	VIN=3.3V, IOUT=500m	A		45		mΩ	
		V _{IN} =2.5V, I _{OUT} =500m	A		51			
		V _{IN} =1.8V, I _{OUT} =250m	A		68			
VIH	ON Input Logic High Voltage	V _{IN} =1.8V to 5.5V		1.7			V	
VIL	ON Input Logic Low Voltage	V _{IN} =1.8V to 5.5V				1.2	V	
Ion	ON Input Leakage	V _{ON} =V _{IN}				1	μA	
VT_RCB	RCB Protection Trip Point	Vout - Vin			45		mV	
V_{R_RCB}	RCB Protection Release Trip Point	Vin - Vout			25		mV	
	RCB Hysteresis				70		mV	
I _{SD_OUT}	Vout Shutdown Current	V _{ON} =GND, V _{OUT} =5.5 ^V V _{IN} =Short to GND	V,			10	μA	
t _{DON} *1	Turn-On Delay	V_{IN} =3.8V, RL=150 Ω , (Time from ON="H" \rightarrow V_{OUT} =VIN x 10%		0.5		2.5	ms	
tr ^{*1}	Vout Rise Time	V_{IN} =3.8V, R _L =150 Ω , Time from V_{OUT} = V_{IN} > V_{IN} x 90%		1.5		5.0	ms	
ton ^{*1}	Turn-On Time	V_{IN} =3.8V, R _L =150Ω, 0 Time from ON="H"→ V_{OUT} =V _{IN} x 90%		2.0		7.5	ms	
RLOW	Nch. On Resistance for Auto-Discharge	V _{IN} =V _{ON} =5.0V, V _{OUT} =	0.1V		20		Ω	

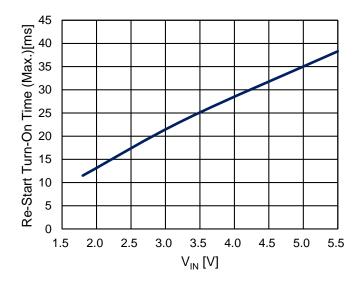
_...

All test items listed under ELECTRICAL CHARACTERISTICS are done under the pulse load condition (Tj≈Ta=25°C) except RCB Protection Trip Point, RCB Protection Release Trip Point, and RCB Hysteresis.

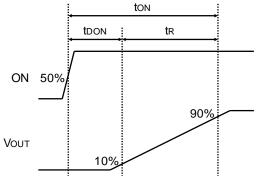
^{*1} Refer to the *TIMING CHART* for detailed information.

 V_{IN} = 1.8 to 5.5V, I_{OUT} = 1mA, C_{IN} = 1µF, C_{OUT} = None, unless otherwise noted. The specifications surrounded by \square are guaranteed by design engineering at -40°C \leq Ta \leq 85°C.

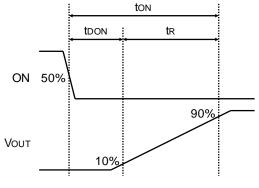
R5527K001D (Ta=25°C							
Symbol	Item	Condition	s	Min.	Тур.	Max.	Unit
VIN	Input Voltage			1.8		5.5	V
las	Shutdown Current	V _{ON} =GND,	Ta=25°C		0.5	1	μA
Isd	Shutdown Current	V _{OUT} =GND	Ta=85°C		0.5	10	μA
lq	Quiescent Current	Von=Vin, Iout=0mA			40	70	μA
		Vin=5V, Iout=1A			48	65	
		VIN=4.5V, IOUT=1A			46		
P		VIN=3.8V, IOUT=1A			45	60	
Ron	On Resistance	VIN=3.3V, IOUT=500m	A		45		mΩ
		V _{IN} =2.5V, I _{OUT} =500m/	A		51		
		V _{IN} =1.8V, I _{OUT} =250mA			68		
VIH	ON Input Logic High Voltage	V _{IN} =1.8V to 5.5V		1.7			V
VIL	ON Input Logic Low Voltage	V _{IN} =1.8V to 5.5V				1.2	V
ION	ON Input Leakage	V _{ON} =GND				1	μA
Ron_pd	Pull-Down Resistance at ON Pin	V _{IN} =V _{ON} =1.8V to 5.5V			3		MΩ
VT_RCB	RCB Protection Trip Point	Vout - Vin			45		mV
Vr_rcb	RCB Protection Release Trip Point	V _{IN} - V _{OUT}			25		mV
	RCB Hysteresis				70		mV
ISD_OUT	Vout Shutdown Current	V _{ON} =GND, V _{OUT} =5.5 V _{IN} =Short to GND	Ι,			10	μA
t _{DON} *1	Turn-On Delay	V _{IN} =3.8V, R _L =150Ω, 0 Time from ON="L"→" V _{OUT} =V _{IN} x 10%		0.5		2.5	ms
t _R *1	Vout Rise Time	V _{IN} =3.8V, R _L =150Ω, 0 Time from V _{OUT} =V _{IN} x V _{IN} x 90%	•	1.5		5.0	ms
t _{ON} *1	Turn-On Time	V _{IN} =3.8V, R _L =150Ω, 0 Time from ON="L"→" V _{OUT} =V _{IN} x 90%		2.0		7.5	ms
R _{LOW}	Nch. On Resistance for Auto-Discharge	V_{IN} =5.0V, V_{ON} =GND,	Vout=0.1V		20		Ω


All test items listed under ELECTRICAL CHARACTERISTICS are done under the pulse load condition (Tj≈Ta=25°C) except RCB Protection Trip Point, RCB Protection Release Trip Point, and RCB Hysteresis. ^{*1} Refer to the *TIMING CHART* for detailed information.

TYPICAL APPLICATION



TECHNICAL NOTES

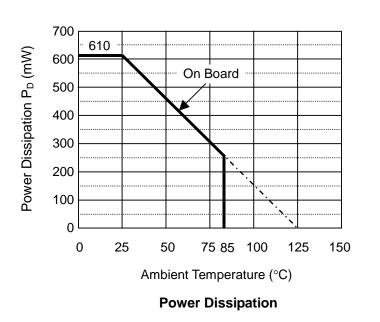

- Basically, the R5527K does not require a bypass capacitor between V_{IN} and GND, however, considering the spike noise, use 0.1µF or more capacitor (1µF [Ceramic] recommended) as a bypass capacitor. More capacitance is also acceptable depending on the application.
- When a voltage is remained in the output pin at the restart, the startup time (the time until R5527K is able to fully drive the output load from ON signal input) takes longer than the t_{ON} definition. Refer to the following graph for the maximum value of the startup time. When returning from the reverse current blocking (RCB) trip point, the following startup time is necessary based on the RCB protection release trip point.

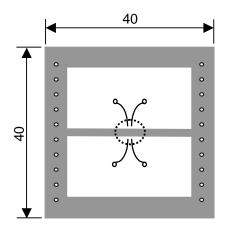
TIMING CHART

Vout Timing Chart (R5527K001B/D)

VOUT Timing Chart (R5527K001A/C)

PACKAGE INFORMATION

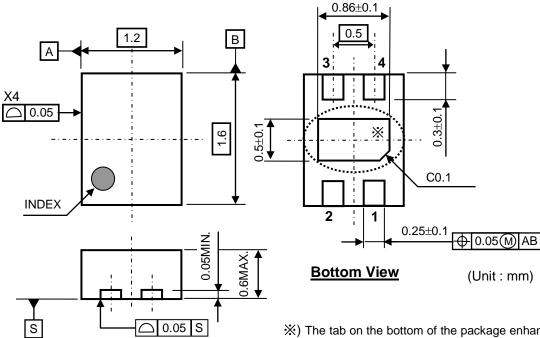

Power Dissipation (DFN(PLP)1612-4D)


Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

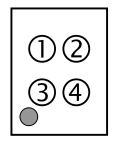
	Standard Test Land Pattern	
Environment	Mounting on Board (Wind velocity=0m/s)	
Board Material Glass cloth epoxy plastic (Double sided)		
Board Dimensions	40mm*40mm*1.6mm	
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%	
Through-holes	φ 0.54mm * 24pcs	

Measurement Result		(Ta=25°C, Tjmax=125°C)
		Standard Test Land Pattern
	Power Dissipation	610mW
	Thermal Desistance	θja = (125-25 °C)/0.61W = 164 °C/W
	Thermal Resistance	θjc = 48 °C/W



Measurement Board Pattern

Package Dimensions (DFN(PLP)1612-4D)

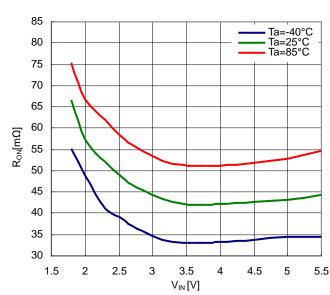


* The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

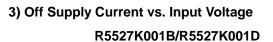
Mark Specification (DFN(PLP)1612-4D)

①②: Product Code ... <u>Refer to "R5527K Mark Specification Table".</u>

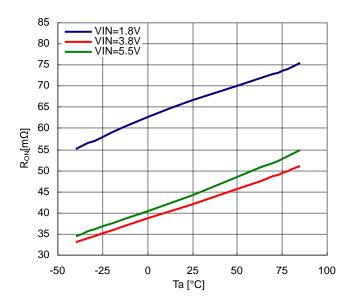
3 4: Lot Number ... Alphanumeric Serial Number

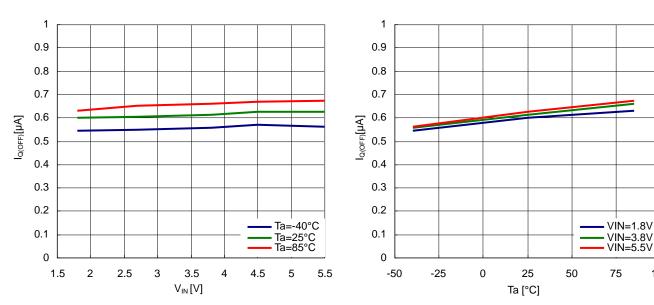

Mark Specification

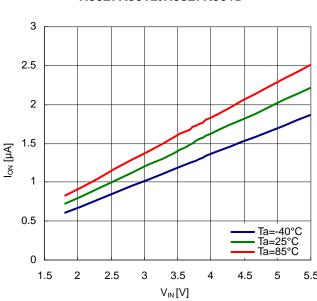
R5527K Mark Specification Table (DFN(PLP)1612-4D)


Product Name	00
R5527K001B	7A
R5527K001C	7B
R5527K001D	7C
R5527K001A	7D

TYPICAL CHARACTERISTICS


Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.


1) On Resistance vs. Input Voltage


2) On Resistance vs. Temperature

4) Off Supply Current vs. Temperature R5527K001B/R5527K001D

100

5) ON pin Pull-Down Current vs. Input Voltage R5527K001B/R5527K001D

7) ON pin Logic Threshold vs. Input Voltage

1.42

1.4

1.38

1.36

1.34

1.32

1.3

1.5

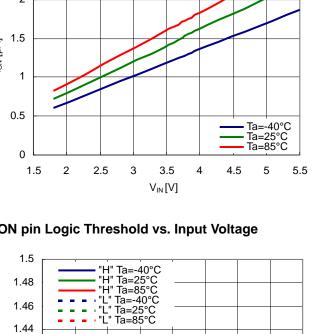
2

2.5

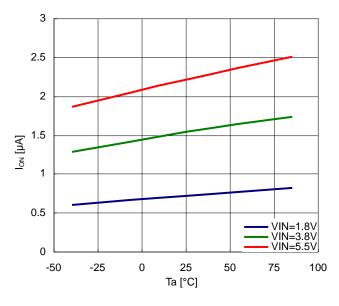
3

3.5

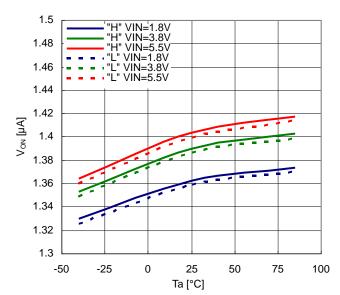
 $V_{IN}[V]$


4

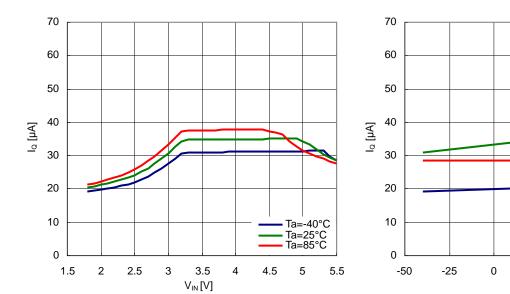
4.5


5

5.5


V_{on} [µA]

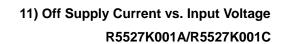
6) ON pin Pull-Down Current vs. Temperature R5527K001B/R5527K001D


8) ON pin Logic Threshold vs. Input Voltage

VIN=1.8V VIN=3.8V VIN=5.5V

100

75


9) Quiescent Current vs. Input Voltage

10) Quiescent Current vs. Temperature

25

Ta [°C]

50

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

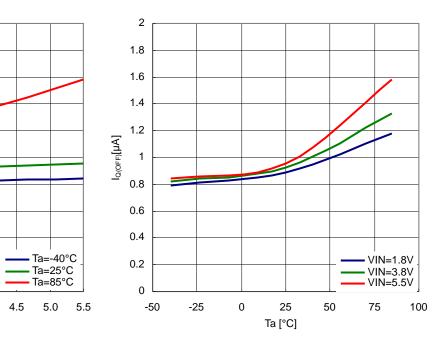
0

1.5

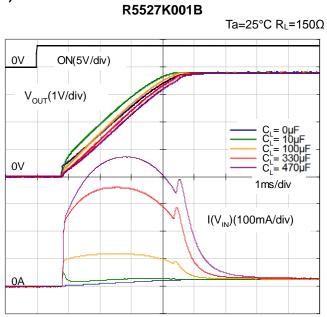
2.0

2.5

3.0


3.5

 $V_{IN}[V]$


4.0

la(off)[µA]

12) Off Supply Current vs. Temperature R5527K001A/R5527K001C

13) Inrush Current

- The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

http://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices

RICOH ELECTRONIC DEVICES CO., LTD. Higashi-Shinagawa Office (International Sales) 3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V. Semiconductor Support Centre Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309

RICOH ELECTRONIC DEVICES KOREA CO., LTD. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

RICOH ELECTRONIC DEVICES SHANGHAI CO., LTD. Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203, People's Republic of China Phone: +86.21.5027.3200, Fax: +86.21.5027.3299

RICOH ELECTRONIC DEVICES CO., LTD. Taipei office

 Taipei office

 Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)

 Phone: +886-2-2313-1621/1622

 Fax: +886-2-2313-1623

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Ricoh Electronics: R5527K001D-TR R5527K001B-TR R5527K001C-TR