RICOH

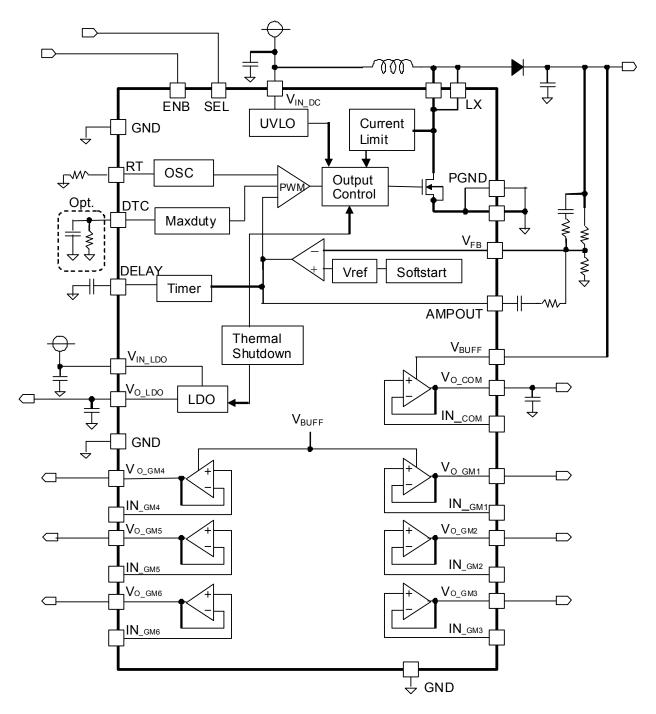
Multi Power Supply IC with Amplifier for LCD

NO.EA-301-160107

OUTLINE

The R1293K is a multi power supply IC dedicated for mid-size TFT LCD panels. The R1293K consists of a PWM control step-up DC/DC converter, an LDO regulator, a VCOM amplifier and six GAMMA amplifiers. The output noise can be reduced by SEL pin. (SEL pin "H": normal mode, SEL pin "L": low noise mode.) The MOSFET for step-up DC/DC converter is built-in and, low power operation is realized by standby mode. The package is 4mm square QFN(PLP)0404-32.

FEATURES


Ste	p-up DC/DC converter part	
•	Input Voltage Range	
•	Adjustable Output Voltage Range with external resistors	··· up to 16V
•	Feedback Voltage ·····	··· 1.0V
•	Feedback Voltage Accuracy	··· ±1.5%
•	Adjustable Oscillator Frequency with external resistors for RT pin ····	··· 300kHz to 1MHz
•	Adjustable Phase compensation with external components	
•	Internal Soft Start Time ·····	···TYP. 10ms
•	Adjustable Soft Start Time with external capacitors for DTC pin	
•	Oscillator Maximum Duty Cycle ······	···Set with external resistors for
DT	C pin (Limit TYP. 90%)	
•	UVLO detector threshold	
•	Internal 2A /16V capability Nch MOSFET Driver	…ΤΥΡ. 0.2Ω
•	Built-in Peak Current Limit Circuit	
•	Short Protection with timer latch function (Adjustable delay time with	external capacitors for DELAY pin)
	D part	
•	Input Voltage Range	2.2V to 5.5V (VIN_LDO PIN)
•	Output Voltage Range	····1.8V to 2.5V (Selectable / 0.1V Step)
•	Output Voltage Accuracy	····±1.0%
•	Maximum Output Current	····Min. 350mA guaranteed
•	Ripple Rejection	\cdots TYP. 65db (Frequency = 1kHz)
•	Built-in Fold-back Protection Circuit	···· TYP. 70mA (Current at short mode)
Buf	fer Amplifier part	
•	Input Voltage Range for Amplifiers	···5V to 16V (VBUEE pin)
•	Output Current Range for VCOM Amplifier	···-100mA to 100mA
•	Output Current Range for GAMMA Amplifier	···-10mA to 10mA
Oth	ers	
•	Built-in Thermal Shutdown Circuit	
•	Stand-by function by ENB pin	
•	Package	···QFN(PLP)0404-32

APPLICATIONS

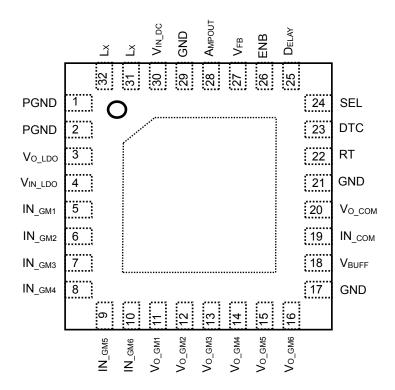
• Power sources of the medium and small sized TFT LCD panels

NO.EA-301-160107

BLOCK DIAGRAM

R1293K Block Diagram

NO.EA-301-160107


SELECTION GUIDE

The output voltage (V_{OUT}) for the ICs is a user-selectabe option.

Selection Guide

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free				
R1293Kxx1A-E2	QFN(PLP)0404-32	2,000 pcs	Yes	Yes				
xx: Designation of the LDO output voltage (V _{OUT})								
V_{OUT} can be set within the range of 1.8 V to 2.5 V in 0.1 V steps.								

PIN CONFIGURATION

QFN(PLP)0404-32 Pin Configuration

NO.EA-301-160107

PIN DESCRIPTIONS

R1293K Pin Description

Pin No	Symbol	Description	Notes
1	PGND	Power GND Pin	Make the PGND pin a short-circuit with the GND pin.
2	PGND	Power GND Pin	Make the PGND pin a short-circuit with the GND pin.
3	Vo_ldo	LDO Output Pin	
4	Vin_Ldo	LDO Power Input Pin	Input 2.2V to 5.5V to V_{IN_LDO} . Make V_{IN_LDO} a short-circuit with the V_{IN_DC} pin.
5	IN_ Gм1 ^{*1}	GAMMA1 Input Pin	
6	IN_gm2 ^{*1}	GAMMA2 Input Pin	
7	IN_gm3 ^{*1}	GAMMA3 Input Pin	
8	IN_gm4 ^{*1}	GAMMA4 Input Pin	
9	IN_gm5 ^{*1}	GAMMA5 Input Pin	
10	IN_gm6 ^{*1}	GAMMA6 Input Pin	
11	Vo_gm1	GAMMA1 Output Pin	
12	Vo_gm2	GAMMA2 Output Pin	
13	Vo_gm3	GAMMA3 Output Pin	
14	Vo_gm4	GAMMA4 Output Pin	
15	Vo_gm5	GAMMA5 Output Pin	
16	Vo_gm6	GAMMA6 Output Pin	
17	GND	GND Pin	
18	VBUFF	Buffer Amplifier Power Source Pin	Connect the VBUFF pin to Boost Output.
19	IN_ сом ^{*1}	VCOM Input Pin	
20	Vo_сом	VCOM Output Pin	
21	GND	GND Pin	
22	RT	Oscillator Frequency Setting Pin	Connect a resistor to the RT pin to set the operation frequency.
23	DTC	Maxduty/ Soft-start Time Setting Pin	By adding a resistor, the Maxduty limit can be set; otherwise the Maxduty limit will be the preset value set inside the ICs. By adding a capacitor, Maxduty can start from 0 which means startup-time can be set longer.
24	SEL ^{*1}	Noise Reduction Level Selection Pin	"L" Input: Low Noise Mode "H" Input: Normal Mode

NO.EA-301-160107

Pin No	Symbol	Description	Notes
25	DELAY	Short-circuit Protection Delay Time Setting Pin	By adding a capacitor, the DELAY pin can set a protection delay time.
26	ENB ^{*1}	Chip Enable Pin (DC/DC or Buffer Amplifier)	"L" Input: Active
27	Vfb	DC/ DC Feedback Pin	
28	AMPOUT	DC/ DC Phase Compensation Pin	
29	GND	GND Pin	
30	VIN_DC	DC/ DC Power Source Pin	Input voltage should be 2.2V to 5.5V. Make the V_{IN_DC} pin a short-circuit with the V_{IN_LDO} pin.
31	Lx	DC/ DC Switching Pin	
32	Lx	DC/ DC Switching Pin	

The exposed tab on the bottom of the package enhances thermal performance and is electrically connected to GND(substrate level). It is recommended that the exposed tab be connected to the ground plane on the board otherwise be left open.

 \star1 Do not leave the IN_GM1 to IN_GM6, IN_COM, SEL and ENB pins open.

NO.EA-301-160107

ABSOLUTE MAXIMAM RATINGS

Symbol	Item	Rating	Unit
VIN_DC	VIN_DC Pin Voltage	-0.3 to 6.5	V
Vin_ldo	VIN_LDO Pin Voltage	-0.3 to 6.5	V
VBUFF	VBUFF Pin Voltage	-0.3 to 24	V
Vrt	RT Pin Voltage	-0.3 to 4.0	V
VDTC	DTC Pin Voltage	-0.3 to 4.0	V
Vfb	V _{FB} Pin Voltage	-0.3 to 4.0	V
VAMP	AMPOUT Pin Voltage	-0.3 to 4.0	V
VDELAY	DELAY Pin Voltage	-0.3 to 4.0	V
VSEL	SEL Pin Voltage	-0.3 to 6.5	V
Venb	ENB Pin Voltage	-0.3 to 6.5	V
VLX	Lx Pin Voltage	-0.3 to 24	V
Vo_ldo	Vo_LDO Pin Output Voltage	-0.3 to V _{IN_LDO} +0.3	V
O_LDO	Vo_LDO Pin Output Current	450	mA
VIN_BUFF	Buffer Amplifier Input Voltage	-0.3 to VBUFF+0.3	V
Vo_buff	Buffer Amplifier Output Voltage	-0.3 to VBUFF+0.3	V
P₀	Power Dissipation (Standard Land Pattern)*1	1500	mW
Ta	Operating Temperature Range	-40 to +85	°C
Tstg	Storage Temperature Range	-55 to +125	°C
Tj	Junction Temperature	-40 to +125	°C

^{*1} For more information about the Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

NO.EA-301-160107

ELECTRICAL CHARACTERISTICS

 V_{IN_DC} = 3.6 V, Ta = 25°C unless otherwise noted.

R1293K Electrical Characteristics

Symbol	Item	Condi	Min.	Тур.	Max.	Unit	
Vin	V _{IN} Input Voltage	$V_{IN} = V_{IN_DC} = V_{IN}$	_LDO	2.2		5.5	V
lin	V _{IN} Supply Current	VIN_DC=5.5V , VF	в=1.1V		300	550	μA
lstb	Standby V _{IN} Current	VIN_DC=5.5V			60	90	μA
VUVLO1	UVLO Detector Threshold	VIN_DC=2.2V→1.	7V	1.8	1.9	2.0	V
VUVLO2	UVLO Release Voltage	VIN_DC=1.7V→2.2	2V		2.05	2.15	V
DC/ DC CC	DNVERTER	·					
Vfb	V _{FB} Voltage			0.985	1.000	1.015	V
Av	Opened-loop Voltage Grain				90		dB
f⊤	Single Gain-bandwidth Range	Av=0dB			1.8		MHz
Амрн	AMP "H" Output Current	VAMP=1V, VFB=0.	9V	0.3	1.4	3.5	mA
	AMP "L" Output Current	VAMP=1V, VFB=1.	1V	50	90	150	μA
fosc	Oscillator Frequency	VDELAY=VFB=0V, I	R6=24kΩ	630	700	770	kHz
DTC_duty	DTC Maximum Duty Cycle	R6=24kΩ, R5=1	00kΩ	62	72	82	%
Maxduty	Oscillator Maximum Duty Cycle	V _{FB} =0V		85	90	95	%
tss	Soft-start Time			3.5	10	16	ms
DLY	DELAY Pin Charge Current	VDELAY=0.8V, VFB=0V		2	4	6	μA
Vdly	DELAY Pin Detector Threshold Voltage	V _{FB} =0V		0.95	1.0	1.05	V
Ron	Lx ON Resistance				0.2		Ω
ILXLIM	Lx Limit Current			2.0	3.0	3.7	Α
Vovp1	OVP Detector Threshold Voltage	Vout rising			21	23	V
Vovp2	OVP Release Voltage	Vout falling		18	Vovp1-1		V
VSELL	SEL "L" Input Voltage	VIN_DC=2.2V				0.4	V
VSELH	SEL "H" Input Voltage	VIN_DC=5.5V		1.5			V
LDO					•	•	
Vo_ldo	LDO Output Voltage	VIN_DC= VO_LDO +	1.0V, Io_ldo=1mA	x 0.99		x 1.01	V
	D (1) (1)	-050	Vset*1<2.4V		600	700	mV
Vdif	Dropout Voltage	Io_ldo=250mA	Vset≥2.4V		400	500	mV
ΔV_{0_LD0} / ΔV_{IN}	Line Regulation	Io_LDO=30mA, Vo_LDO+0.5V≤VIN_LDO≤5.5V				0.2	%/V
ΔV_{O_LDO} / ΔI_{OUT}	Load Regulation	V _{IN_DC} = V _{O_LDO} + ⁻ 1mA≤Io_LDo≤250				0.4	mV /mA
RR	Ripple Rejection	f=1kHz, Ripple Rejection 0.2 Vp-p, lo_LD0=30mA			65		dB
	LDO Output Current Limit	VIN_DC= VO_LDO +	1.0V	350			mA
		1		1	1		

 $V_{IN_DC} = V_{O_LDO} + 1.0V$

70

mΑ

SC_LDO

LDO Short Current

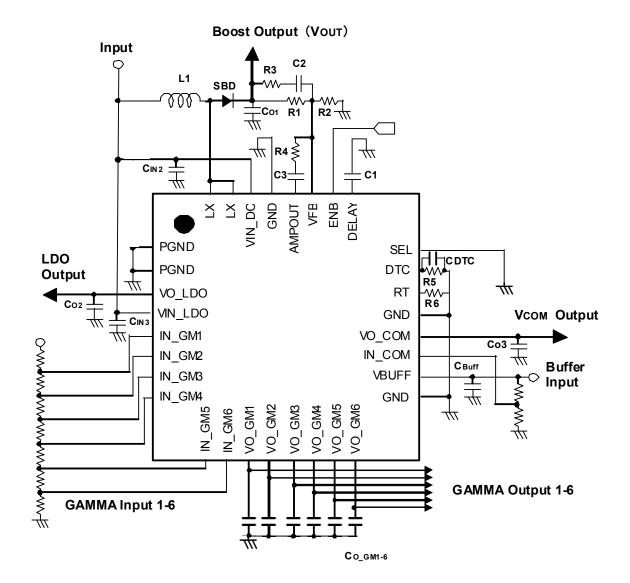
NO.EA-301-160107

 $V_{IN_{DC}}$ =3.6V, Ta = 25°C unless otherwise noted.

R1293K Electrical Characteristics

Symbol	ltem	Conditions	Min.	Тур.	Max.	Unit
BUFFER /	AMP					
VBUFF	Amplifier Power Source Voltage		5		16	V
DD_BUFF	Amplifier Supply Current	V _{BUFF} =16V, V⊨8V, VCOM 1ch + GAMMA 1 to 6ch		0.6		mA
Vos	Offset Voltage	VI=VBUFF / 2		1		mV
Vсм_сом	VCOM Common-mode Input Voltage Range	VCOM ch	1.5		V _{BUFF} -1.5	V
Vсм_gм	GAMMA Common-mode Input Voltage Range	GAMMA ch	0		VBUFF	V
Іо_сом	VCOM Output Current	VBUFF=10V, Vi=5V	-100		100	mA
Іо_дм	GAMMA Output Current	VBUFF=10V, Vi=5V	-10		10	mA
$\Delta Vo_com/$ $\Delta Iout$	VCOM Load Regulation	V _{BUFF} =10V, Vi=5V, -50mA≤Iou⊤≤+50mA		0.5	1	mV /mA
ΔV о_дм/ ΔI оит	GAMMA Load Regulation	V _{BUFF} =10V, Vi=5V, -10mA≤Iouт≤+10mA		0.5	1	mV /mA
CMRR	Input Voltage Ripple Rejection	f=0.1kHz, V _{BUFF} =10V, Vi=5V, Ripple Rejection 50mVp-p		75		dB
PSRR	Power Source Ripple Rejection	f=0.1kHz, V _{BUFF} =10V, Vi=5V, Ripple Rejection 0.2Vp-p		70		dB
Vol_com	VCOM "L" Output Voltage	VBUFF=10V, VI=1.5V, Io=+50mA		1.5	1.55	V
		VBUFF=10V, VI=0V, Io=+5mA		0.1	0.2	V
Vol_gm	GAMMA "L" Output Voltage	VBUFF=10V, VI=0.2V, Io=+10mA		0.2	0.25	V
		VBUFF=10V, VI=1.5V, Io=+10mA		1.5	1.55	V
Vон_сом	VCOM "H" Output Voltage	VBUFF=10V, VI=8.5V, Io=-50mA	8.45	8.5		V
		VBUFF=10V, VI=10V, Io=-5mA	9.8	9.9		V
V он_gm	GAMMA "H" Output Voltage	VBUFF=10V, VI=9.8V, Io=-10mA	9.75	9.8		V
		VBUFF=10V, VI=8.5V, Io=-10mA	8.45	8.5		V

CONTROL


Venbl	ENB "L" Input Voltage	VIN_DC=2.2V			0.4	V
Venbh	ENB "H" Input Voltage	VIN_DC=5.5V	1.5			V
TTSD	Thermal Shutdown Temperature	Junction Temperature		150		°C
Ttsr	Thermal Shutdown Released Temperature	Junction Temperature		100		°C

All test items listed under *Electrical Characteristics* are done under the pulse load condition (Tj≈Ta=25°C) except Opened-loop Voltage Gain (DC/ DC), Single Gain-bandwidth Range (DC/ DC), Ripple Rejection (LDO), Input Voltage Ripple Rejection (Buffer AMP) and Power Source Ripple Rejection (Buffer AMP).

*1 VSET=Set Output Voltage

NO.EA-301-160107

TYPICAL APPLICATION

R1293K Typical Application

NO.EA-301-160107

External Parts Example

Vout [V]	Frequency [kHz]	L1	CIN2	CO1	VO_GM [pF]
8~10	300	VLF5014S-4R7M1R7	C1608JB0J106M	GRM21BB31E475KA75B	1000
10~12	300	VLF5014S-4R7M1R7	C1608JB0J106M	GRM21BB31E475KA75B * 2	1000
12~16	300	NR6020T4R7N	C1608JB0J106M	GRM21BB31E475KA75B * 2	1000
8~10	700	NR4018T4R7M	GRM21BB31E475KA75B	GRM21BB31E475KA75B	1000
10~12	700	NR4018T4R7M	GRM21BB31E475KA75B	GRM21BB31E475KA75B * 2	1000
12~16	700	VLF5014S-4R7M1R7	GRM21BB31E475KA75B	GRM21BB31E475KA75B * 2	1000
8~10	1000	NR4018T4R7M	GRM21BB31E475KA75B	GRM21BB31E475KA75B	1000
10~12	1000	NR4018T4R7M	GRM21BB31E475KA75B	GRM21BB31E475KA75B * 2	1000
12~16	1000	VLF5014S-4R7M1R7	GRM21BB31E475KA75B	GRM21BB31E475KA75B * 2	1000

Vout	Frequency	CO3	CIN3	CO2
[V]	[kHz]			
8~10	300	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT
10~12	300	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT
12~16	300	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT
8~10	700	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT
10~12	700	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT
12~16	700	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT
8~10	1000	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT
10~12	1000	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT
12~16	1000	TMK316BJ106MD-TD	CM105B105K10AT	CM105B105K10AT

Vout	Frequency	R4	C3	R3	C2	R1	R2	R6	R5	CDTC	C1
[V]	[kHz]	[kΩ]	[pF]	[kΩ]	[pF]	[kΩ]	[kΩ]	[kΩ]	[kΩ]	[uF]	[uF]
8~10	300	3.3	1000	8.2	120	(VOUT-1) * R2	33	62	330	-	0.22
10~12	300	3.3	1000	8.2	120	(VOUT-1) * R2	33	62	330	-	0.22
12~16	300	4.7	1500	10	47	(VOUT-1) * R2	22	62	330	-	0.22
8~10	700	3.3	1000	8.2	120	(VOUT-1) * R2	33	24	130	-	0.22
10~12	700	3.3	1000	8.2	120	(VOUT-1) * R2	33	24	130	-	0.22
12~16	700	4.7	1500	10	47	(VOUT-1) * R2	22	24	130	-	0.22
8~10	1000	3.3	1000	8.2	120	(VOUT-1) * R2	33	16	91	-	0.22
10~12	1000	3.3	1000	8.2	120	(VOUT-1) * R2	33	16	91	-	0.22
12~16	1000	4.7	1500	10	47	(VOUT-1) * R2	22	16	91	-	0.22

NO.EA-301-160107

TECHNICAL NOTES

Output Voltage Setting (DC/ DC)

Vout controls the V_{FB} pin voltage to maintain V_{FB}=1.0V. V_{OUT} can be set using R1 and R2 in the following equation. V_{OUT} voltage should be set between 5V to 16V. Also, the sum of R1 and R2 should be equal or less than $500k\Omega$.

Vout = V_{FB} x (R1 + R2) / R2

Phase Compensation Setting (DC/ DC)

A 180 degree phase shift may be caused by the inductor (L1) and the capacitor (C_{01}). The phase shift reduces phase margin and stability of the system. Thus, it is necessary to keep a leading phase margin. In the following equation, the pole is made by L1 and C_{01} .

Fpole ~ 1 / {2 x π x $\sqrt{(L1 x C_{O1})}$

The phase compensation and the system gain can be set by using R4, C3 and C2. Please refer to *Typical Application* (P.10,11) for positioning and setting value examples. In the following equation, the zero is made by R4 and C3.

Fzero ~ 1 / (2 x π x R4 x C3)

When selecting the values for R4 and C3, please consider that the cutoff frequency of zero should be approximately equal to the cutoff frequency of pole.

For example, if L1=10 μ H and C₀₁=10 μ F, the cutoff frequency of pole is approximately 16kHz.

The gain can be set by the resistance ratio of R4 and RT which is the combined resistance of R1 and R2 (RT=R1xR2/(R1+R2)). If R4 is larger than RT, the gain becomes high. The high gain improves the response characteristic; however, the extremely high gain decreases stability of the operation. It is important to select an appropriate value for R4. In the following equation, zero is made by R1 and C2. **Fzero ~ 1 / (2 x \pi x R1 x C2)**

Set the cutoff frequency of zero lower than the cutoff frequency of pole.

Reduction of Feedback Voltage Noise (DC/ DC)

If the system noise is large, it may wrap around the V_{FB} pin and causes unstable operation. In this case, set R1 and R2 resistance values lower to reduce the noise entering the V_{FB} pin. Or, place R3 with $1k\Omega$ to $5k\Omega$ to reduce the noise entering the V_{FB} pin as shown in *Typical Application* (P.10,11).

Input Voltage Setting (DC/ DC and LDO)

The input voltage ranges of the V_{IN_DC} and V_{IN_LDO} pins are from 2.2V to 5.5V. Place a bypass capacitor between V_{IN} and GND. Use Boost Output as the input voltage for the V_{BUFF} pin.

NO.EA-301-160107

Oscillator Frequency Setting (DC/ DC)

By connecting R6 to the the RT pin, fosc can be set in the range of 300kHz to 1MHz. R6 can be calculated by inserting a desired oscillator frequency value into fosc in the following equation.

R6 = 19.128 x 10 ^ 9/ Fosc - 3443

Example: Oscillator Frequency 700kHz

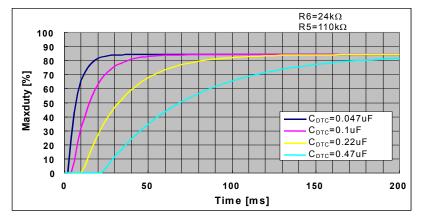
R6 = 19.128 x 10 ^ 9 / (700 x 10 ^ 3) - 3443 = 23883 ≈ 24kΩ

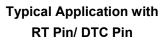
Maxduty and Maxduty Soft-start Adjustment (DC/ DC)

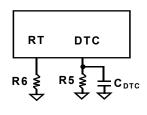
Maxduty is preset to 90% (Typ.); however, it can be set lower by adding R5 to the DTC pin. Maxduty is determined by R6 and R5 as shown in the equation below. The preset Maxduty is compared with the Maxduty set by the DTC pin, and the lower Maxduty will be selected.

Maxduty (DC) = $\frac{0.3267 \times R5 - 0.6285 \times R6 + 2367}{R6 + 3550}$

Example: R6=24kΩ, R5=110kΩ


Maxduty = (0.3267 x 110000 - 0.6285 x 24000 + 2367) / 24000 + 3550)


≈ 0.843 → 84.3%


By adding C_{DTC} to the DTC pin, Maxduty can increase gradually and the inrush current can be controlled. (Maxduty Soft-start). After start-up, Maxduty after t-time (Maxduty (t)) can be calculated by the following equation.

Maxduty (t) =
$$\frac{0.3267 \times R5 \times [1 - EXP(-t / C_{DTC} \times R5)] - 0.6285 \times R6 + 2367}{R6 + 3550}$$

Example: R6=24kΩ, R5=110kΩ, C_{DTC}=0.047µF to 0.47µF

When using Maxduty soft-start, it is recommended that latch protection delay time (t_{DLY}) be set $t_{DLY} > 6 \times (R5 \times C_{DTC})$. t_{DLY} should be longer than the soft-start time.

NO.EA-301-160107

Overcurrent Protection (DC/ DC)

The overcurrent protection circuit monitors the Nch-swich current and immediately turns off if the Nch-switch current reaches the current limit. Nch-switch turns on every internal reference clock cycle and turns off if the Nch-switch current reaches the current limit again.

Short Current Protection/ Protection Delay Time Setting (DC/ DC)

If Boost Output drops and causes the VFB voltage drop to 85% of the preset value, the IC recognizes a shortcircuit and starts to charge C1. If the short-circuit condition persists for a certain period of time and the DELAY pin voltage rechaes V_{DLY} , the latch-type protection circuit shuts down Boost Output. t_{DLY} can be set by C1 shown in the following equations.

 $t_{DLY} = C \times V_{DLY} / I_{DLY}$

To release latch state, make $V_{N,DC}$ voltage below the UVLO detector threshold and then restart, or set ENB "H" once and then set it back to "L".

Undervoltage Lock Out (DC/ DC)

If the $V_{\text{M_DC}}$ pin voltage becomes equal or lower than UVLO detector threshold, the UVLO circuit immediately disables the switching output.

Thermal Shutdown (LDO and Buffer AMP)

Thermal shutdown circuit detects overheating of the IC and turns off VCOM Output, GAMMA Output, and LDO Outputs to reset the IC if the junction temperature becomes more than the detector threshold. If the causes of overheating are removed and the junction temperature decreases to the release temperature, the IC restarts.

Standby Mode (DC/ DC and Buffer AMP)

By setting the ENB pin "H", DC/ DC and Buffer AMP go into Standby mode and the output shuts down. LDO is always-on and outputs voltage.

SEL Pin Mode Switching (DC/ DC)

By setting the SEL pin voltage "L", the switching speed of a built-in MOSFET shifts to moderate mode to reduce the influences of noise to external parts. The SEL pin voltage operates in normal mode when "H".

Diode, Inductor and Capacitor Selections (DC/ DC, LDO and Buffer AMP)

Efficiency and stability of system can be affected by the following conditions. Spike voltage may be generated by the influence of an inductor when Nch MOSFET turns off. Therefore, diodes, inductors and capacitors should not exceed the voltage tolerance of the capacitor connected to V_{OUT} or their respected rated values (voltage, current and power). Please refer to *Operation of DC/ DC Converter and Output Current* (P.15). Choose the diode with low forward voltage (schottky diode), small reverse current and fast switching speed.

NO.EA-301-160107

Operation of DC/ DC Converter and Output Current

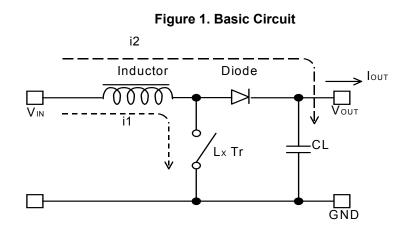
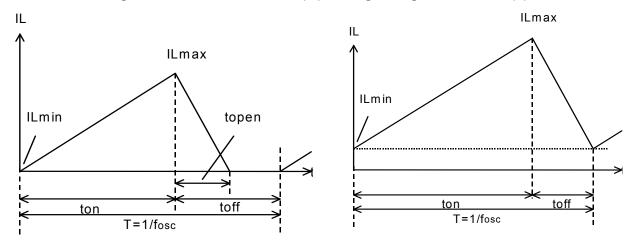
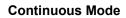




Figure 2. The inductor current (IL) flowing through the inductor (L)

Discontinuous Mode

There are two operation modes in the PWM step-up DC/ DC converter: continuous mode and discontinuous mode. When a transistor is in the On-state, the voltage to be applied to L is described as V_{IN} . An increase in the inductor current (i1) can be written as follows:

∆i1 = V_{IN} × ton / L ····· Formula 1

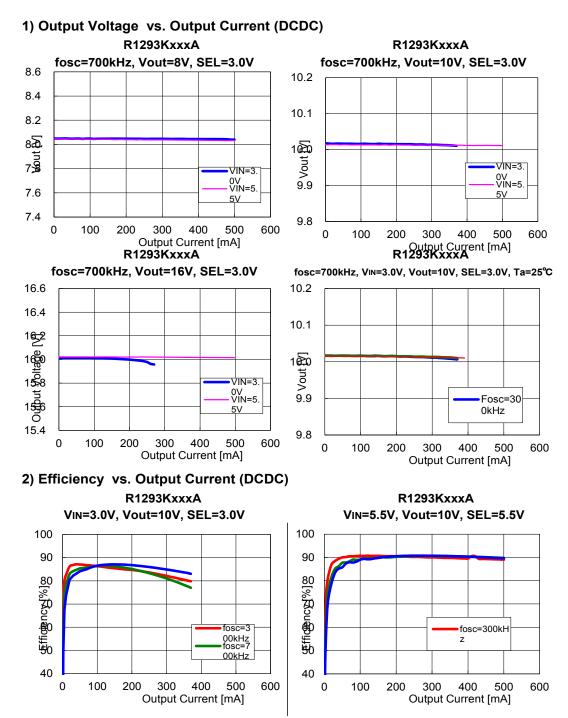
In the step-up circuit, the energy accumulated during the On-state is transferred into the capacitor even in the Off-state. A decrease in the inductor current (i2) can be written as follows:

∆i2 = (V _{OUT} − V _{IN}) × topen / L ····· Formula

NO.EA-301-160107

When the IC is in the continuous mode and operates in steady-state conditions, the variations of i1 and i2 are same:
$V_{IN} \times \text{ton} / L = (V_{OUT} - V_{IN}) \times \text{toff} / L$ ····· Formula 3
Therefore, the duty cycle in the continuous mode is:
Duty = ton / (ton + toff) = (V _{OUT} - V _{IN}) / V _{OUT} ·······Formula 4
When topen=toff, the average of IL is:
IL (Ave.) = $V_{IN} \times t_{on} / (2 \times L)$ ····· Formula 5
If the input voltage (V_IN) is equal to V_OUT, the output current (I_OUT) is:
$I_{OUT} = V_{IN}^2 \times \text{ton} / (2 \times L \times V_{OUT})$ Formula 6
If I_{OUT} is larger than Formula 6, the IC switches to the continuous mode.
ILmax flowing through L is:
ILmax = Iout × Vout / VIN + VIN × ton / (2 × L) ······ Formula 7
ILmax = Iout × Vout / VIN + VIN× T x (Vout - VIN) / (2 × L × Vout)······ Formula 8

As a result, ILmax becomes larger compared to $I_{\mbox{\scriptsize OUT}}.$


When considering the input and output conditions or selecting the external parts, please pay attention to ILmax.

The above calculations are based on the ideal operation of the ICs in the continuous mode. They do not include the losses caused by the external parts or L_X switch. The actual maximum output current will be 50% to 80% of the above calculation results. Especially, if IL is large or V_{IN} is low, it may cause the switching losses. As for V_{OUT} , please consider V_F of the diode (approximately 0.8V).

NO.EA-301-160107

TYPICAL CHARACTERISTICS

 $V_{IN} = V_{IN_DC} = V_{IN_LDO}$, unless otherwise noted.

NO.EA-301-160107

R1293KxxxA

fosc=300kHz,Vout=8V

fosc=700kHz,Vout=8V

fosc=300kHz,Vout=16V

fosc=700kHz,Vout=16V

500

600

fosc=1MHz,Vout=16V

400

fosc=1MHz,Vout=8V

VIN=5.5V, SEL=5.5V, Ta=25°C

90

80

70

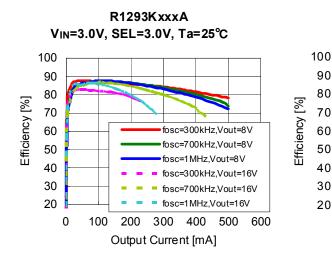
60

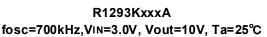
50

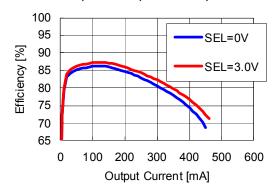
40

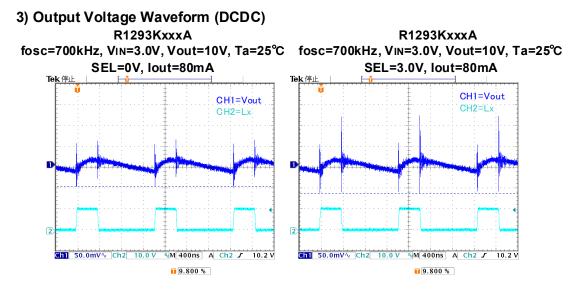
30

20

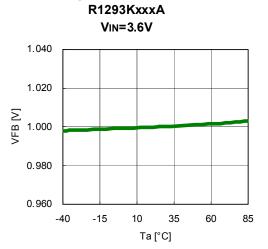

0

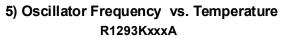

100

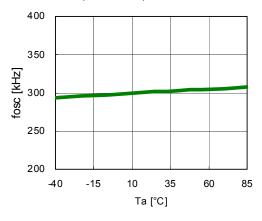

200


300

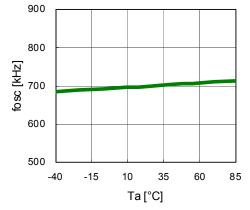
Output Current [mA]

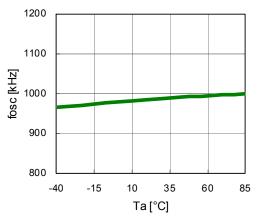


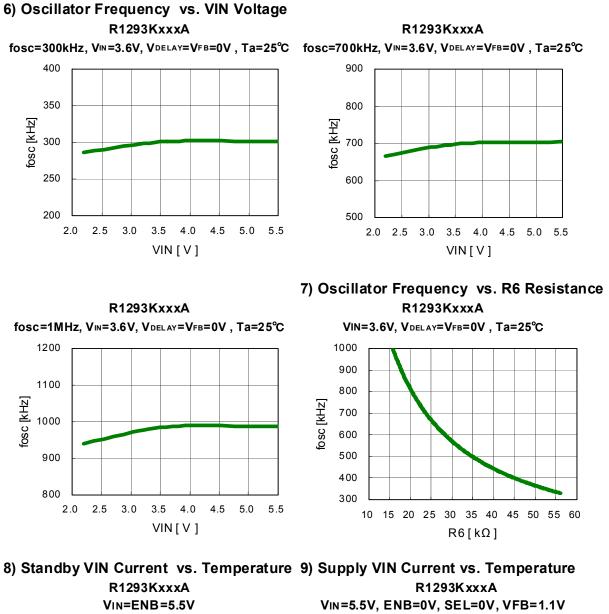


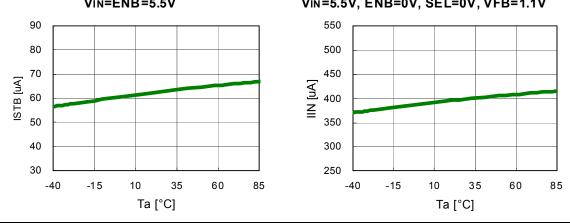

NO.EA-301-160107

4) VFB Voltage vs. Temperature

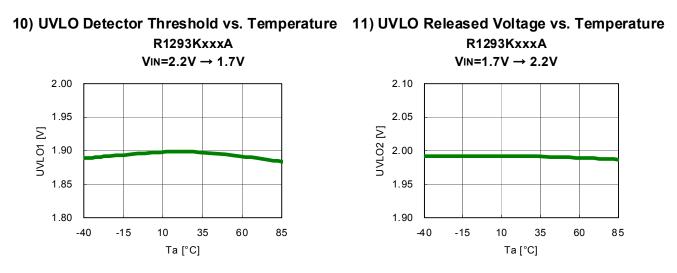


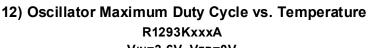

fosc=300kHz, VIN=3.6V, VDELAY=VFB=0V

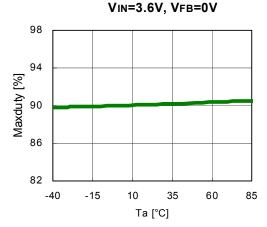

R1293KxxxA fosc=700kHz, Vin=3.6V, Vdelay=Vfb=0V

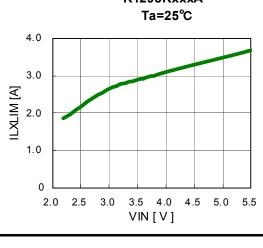


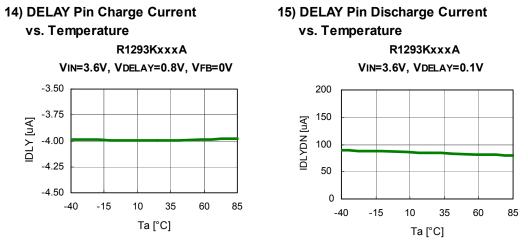
R1293KxxxA fosc=1MHz, VIN=3.6V, VDELAY=VFB=0V

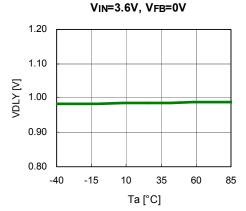


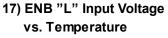

NO.EA-301-160107

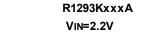


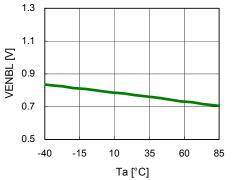

NO.EA-301-160107



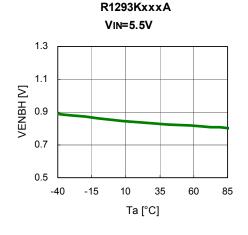


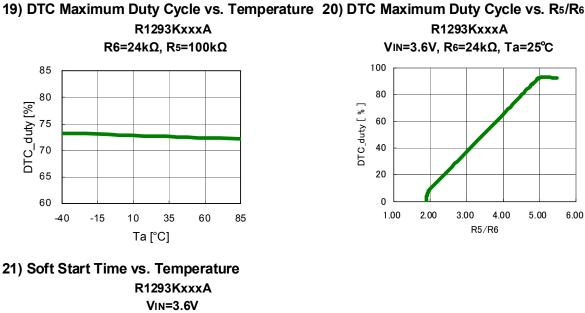

NO.EA-301-160107

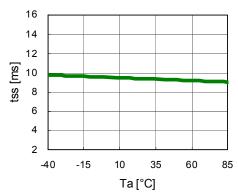




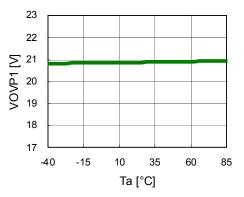
R1293KxxxA

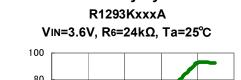


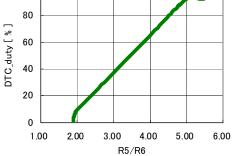


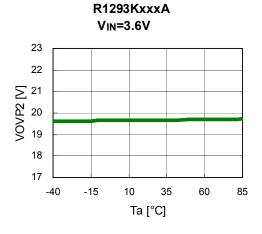


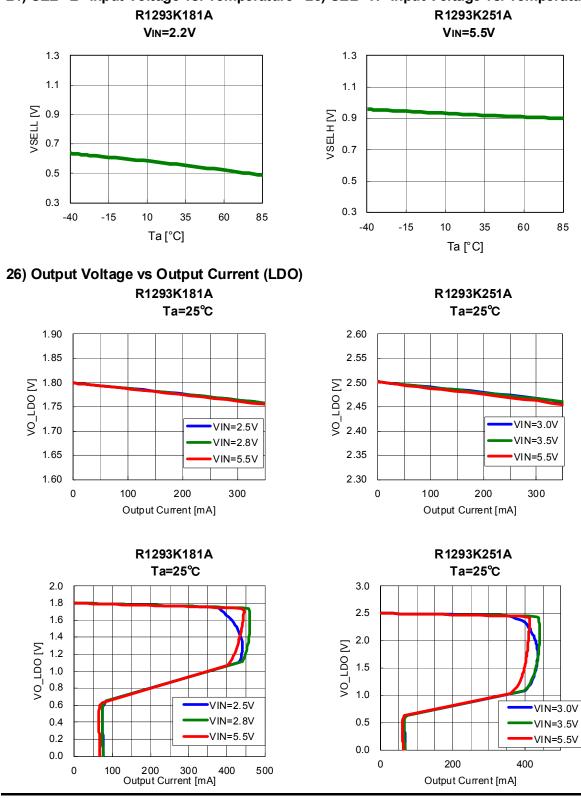
18) ENB "H" Input Voltage vs. Temperature

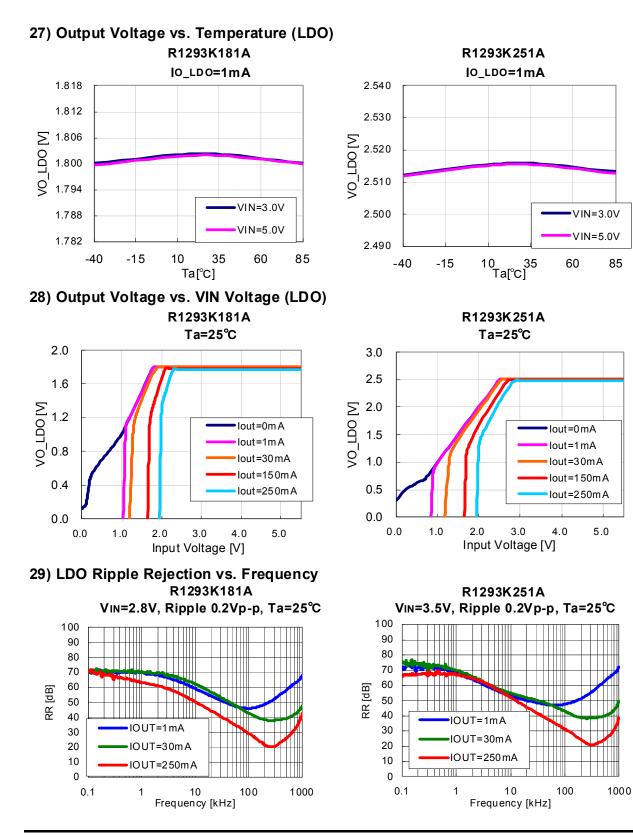

NO.EA-301-160107

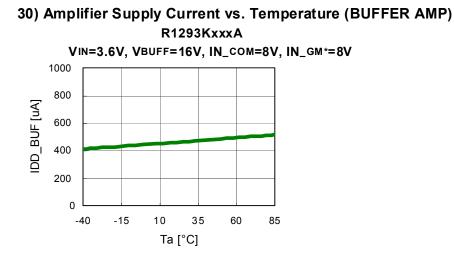




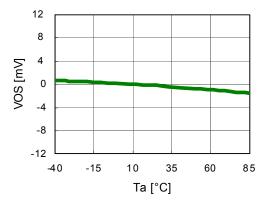




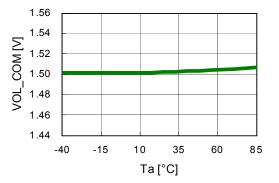

23) OVP Release Voltage vs Temperature


NO.EA-301-160107

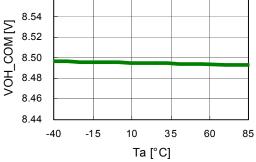
NO.EA-301-160107

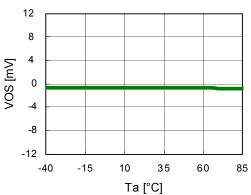


NO.EA-301-160107

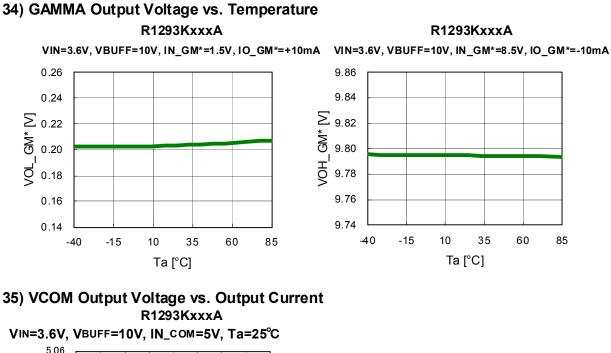


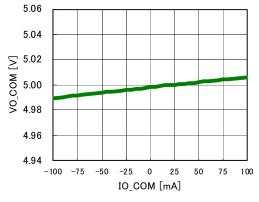
VIN=3.6V, VBUFF=7V, IN_COM=3.5V, IO_COM=0mA

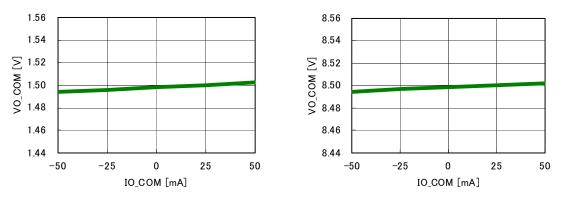




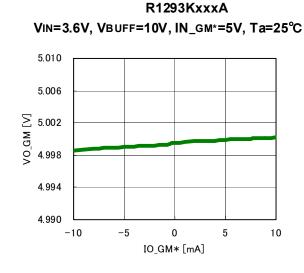
R1293KxxxA VIN=3.6V, VBUFF=10V, IN_COM=8.5V, IO_COM=-50mA 8.56

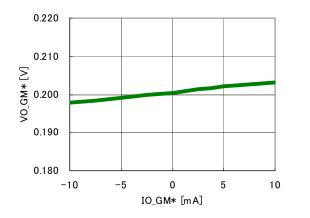

32) GAMMA Offset Voltage vs. Temperature R1293KxxxA

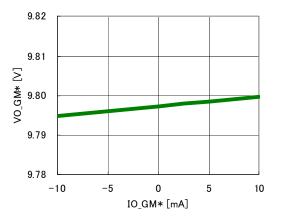




NO.EA-301-160107

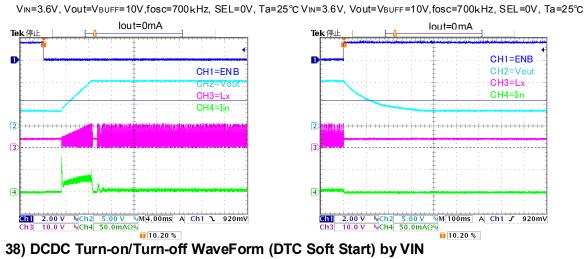



NO.EA-301-160107



36) GAMMA Output Voltage vs. Output Current

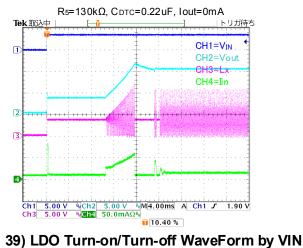
R1293KxxxA VIN=3.6V, VBUFF=10V, IN_GM*=0.2V, Ta=25°C VIN=3.6V, VBUFF=10V, IN_GM*=9.8V, Ta=25°C

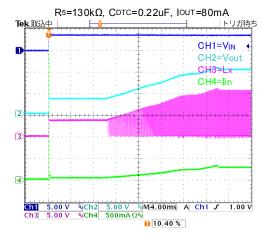


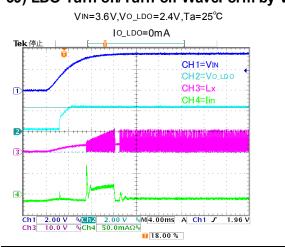
NO.EA-301-160107

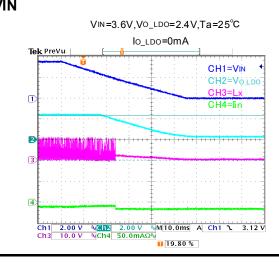
37) DCDC Turn-on/Turn-off WaveForm by ENB

R1293KxxxA

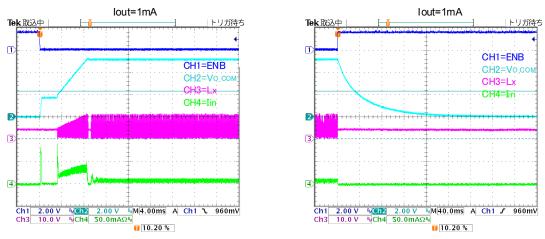

R1293KxxxA



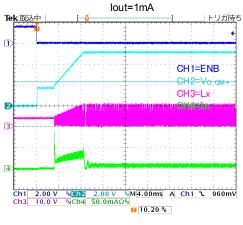

R1293KxxxA


R1293KxxxA

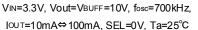
VIN=3.6V, Vout=VBUFF=10V, fosc=700 kHz, SEL=0V, Ta=25°C VIN=3.6V, Vout=VBUFF=10V, fosc=700 kHz, SEL=0V, Fo

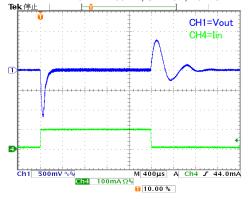


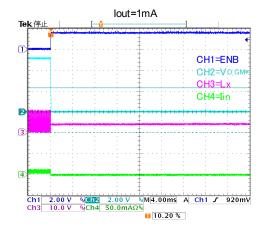
NO.EA-301-160107

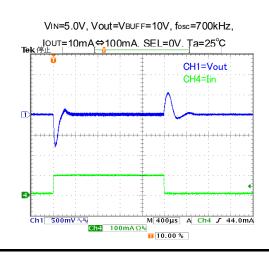

40) VCOM Turn-on/Turn-off WaveForm by ENB

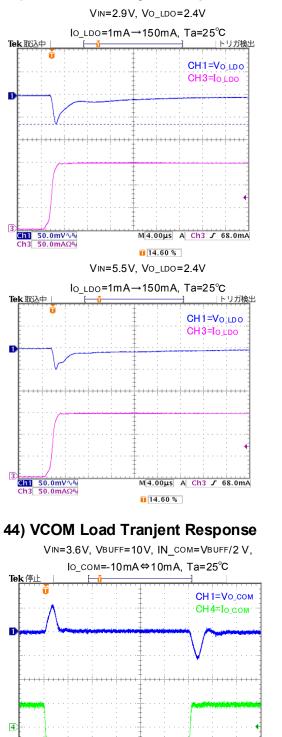
VIN=3.6V, Vout=VBUFF=10V, IN_COM=VBUFF/2 V, SEL=0V, Ta=25℃ 3.6V, Vout=VBUFF=10V, IN_COM=VBUFF/2 V, , SEL=0V, Ta=25℃

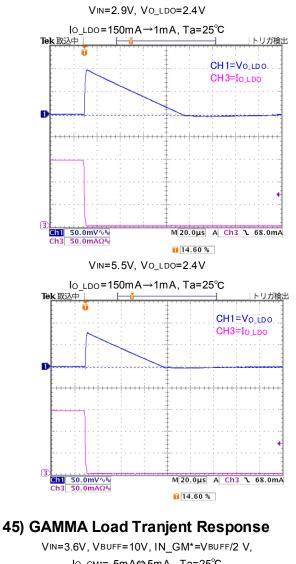


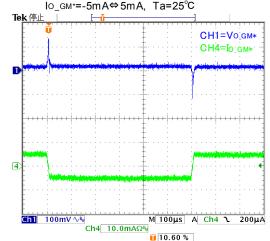

41) GAMMA Turn-on/Turn-off WaveForm by ENB


VIN=3.6V, Vout=VBUFF=10V, IN_GM=VBUFF/2 V, SEL=0V, Ta=250 - 3.6V, Vout=VBUFF=10V, IN_GM=VBUFF/2 V, SEL=0V, Ta=25°C









NO.EA-301-160107

43) LDO Load Tranjent Response

M 100μs A Ch4 λ 200μA

10.80 %

Ch1 50.0mV∿%

Ch4 10.0mAΩ∿

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

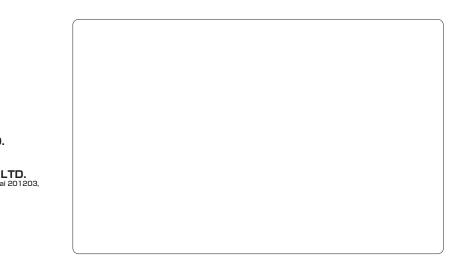
http://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices

RICOH ELECTRONIC DEVICES CO., LTD. Higashi-Shinagawa Office (International Sales) 3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V. Semiconductor Support Centre Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309

BICOH INTERNATIONAL B.V. - German Branch Semiconductor Sales and Support Centre Oberrather Strasse 6, 40472 Düsseldorf, Germany Phone: +49-211-6546-0


RICOH ELECTRONIC DEVICES KOREA CO., LTD. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

RICOH ELECTRONIC DEVICES SHANGHAI CO., LTD.

Room 403, No.2 Building, No.690 Bibo Road, Pu Dong People's Republic of China Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

RICOH ELECTRONIC DEVICES CO., LTD.

Taipei office Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.) Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Ricoh Electronics: R1293K241A-E2