
Displacement loop powered sensor

PC420DPP-40

Full scale, 20 mA, ±5%		40 mils (1.0 mm) peak-peak
Frequency response:	±10% ±3 dB	10 Hz - 1.0 kHz* 4.0 Hz - 2.0 kHz*
Repeatability		±2%
Transverse sensitivity, max		5%
Power requirements (2-wire loo Voltage at sensor terminals		12 - 30 VDC
Loop resistance ¹ at 24 VDC, ma	X	700 Ω
Turn on time, 4-20 mA loop		30 seconds
Grounding		case isolated, internally shielded
Temperature range		–40° to +85°C
Vibration limit		500 g peak
Shock limit		2,500 g peak
Sealing		hermetic
Base strain sensitivity, max		0.0002 g/µstrain
Sensing element design		PZT ceramic / shear
Weight		162 grams
Case material		316L stainless steel
Mounting		1/4-28 tapped hole
Output connector		2 pin, MIL-C-5015 style
Mating connector		R6 type
Recommended cabling		J9T2A

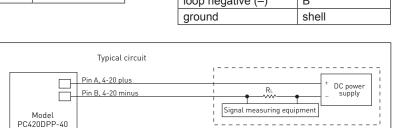
Notes: * Maximum full scale frequency response limited to the lesser of 40 mils peak-peak or 500 g-peak.

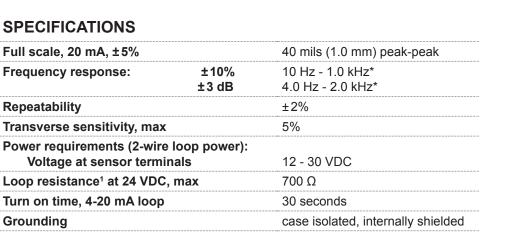
¹ Maximum loop resistance (R₁) can be calculated by:

$$R_{L} = \frac{V_{DC power} - 10 V}{20 \text{ mA}}$$

 $^{\text{2}}$ Lower resistance is allowed, greater than 10 Ω

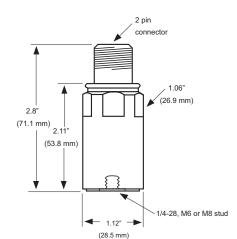
³ Minimum R₁ wattage determined by: (0.0004 x R₁).


DC supply voltage	R _L (max resistance) ²	R _∟ (minimum wattage capability)³
12 VDC	100 Ω	1/8 watt
20 VDC	500 Ω	1/4 watt
24 VDC	700 Ω	1/2 watt
26 VDC	800 Ω	1/2 watt
30 VDC	1,000 Ω	1/2 watt


Interpreting the mA reading: Insert your reading in mA and the full scale value of the sensor into the following equation to find the equivalent vibration level.

Note: Due to continuous process improvement, specifications are subject to change without notice. This document is cleared for public release.

Vibration level =
$$\left(\frac{\text{(reading in mA)} - 4}{16 \text{ mA}}\right)$$
 * full scale value



- Peak-peak detection derived from true RMS detection
- · Minimizes influence of blade pass and gear mesh frequencies
- · Manufactured in ISO 9001 facility

Connections	
Function	Connector pin
loop positive (+)	Α
loop negative (-)	В
ground	shell

PLC / DCS