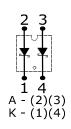
1200V 200A SiC Schottky MPS™ Diode

V _{RRM}	=	1200 V
I _{F (Tc = 100°C)}	=	304 A *
\mathbf{Q}_{C}	=	220 nC *


Silicon Carbide Schottky Diode

Features

- High Avalanche (UIS) Capability
- Enhanced Surge Current Capability
- Superior Figure of Merit Q_C/I_F
- 3000 V Isolation with Low Thermal Resistance
- 175 °C Maximum Operating Temperature
- Temperature Independent Switching Behavior
- Positive Temperature Coefficient of V_F
- Extremely Fast Switching Speed

Package

SOT-227 (Isolated Base)

Advantages

- Low Standby Power Losses
- Improved Circuit Efficiency (Lower Overall Cost)
- Low Switching Losses
- Ease of Paralleling without Thermal Runaway
- Smaller Heat Sink Requirements
- Low Reverse Recovery Current
- Low Device Capacitance
- Low Reverse Leakage Current

Applications

- Boost Diode in Power Factor Correction (PFC)
- Switched Mode Power Supply (SMPS)
- Uninterruptible Power Supply (UPS)
- Motor Drives
- Freewheeling / Anti-parallel Diode in Inverters
- Solar Inverters
- Electric Vehicles (EV) & DC Fast Charging
- Induction Heating & Welding

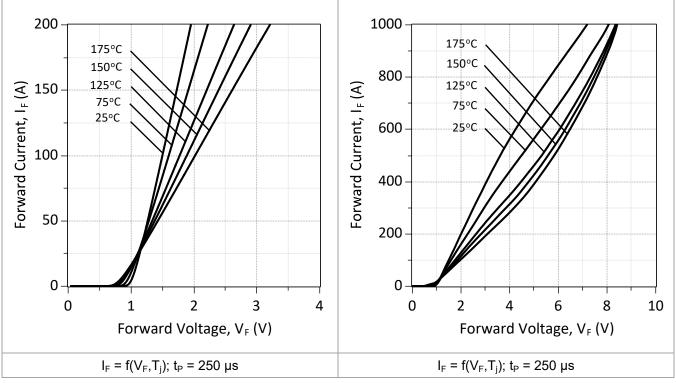
Absolute Maximum Ratings (At T_C = 25 °C Unless Otherwise Stated)

Parameter	Symbol	mbol Conditions Values		Unit	
Repetitive Peak Reverse Voltage (Per Leg)	V_{RRM}		1200	V	
	l _F	$T_C = 25 ^{\circ}C, D = 1$	228 / 456	А	
Continuous Forward Current (Per Leg / Per Device)		$T_C = 100 ^{\circ}C, D = 1$	152 / 304		
(1 of Log / 1 of Dovice)		$T_C = 138 ^{\circ}C, D = 1$	100 / 200		
Non-Repetitive Peak Forward Surge Current, Half Sine Wave (Per Leg)	I _{F,SM}	$T_C = 25 ^{\circ}\text{C}, t_P = 10 \text{ms}$	800	Α	
		T_C = 150 °C, t_P = 10 ms	640	A	
Repetitive Peak Forward Surge Current, Half Sine Wave (Per Leg)	I _{F,RM}	$T_C = 25 ^{\circ}\text{C}, t_P = 10 \text{ms}$	480	Λ	
		T_C = 150 °C, t_P = 10 ms	336	Α	
Non-Repetitive Peak Forward Surge Current (Per Leg)	I _{F,max}	T _C = 25 °C, t _P = 10 μs	4000	А	
i ² t Value (Per Leg)	∫i² dt	$T_C = 25 ^{\circ}\text{C}, t_P = 10 \text{ms}$	3200	A^2s	
Non-Repetitive Avalanche Energy (Per Leg)	E _{AS}	L = 0.3 mH, I _{AS} = 100 A	1200	mJ	
Diode Ruggedness (Per Leg)	dV/dt	$V_R = 0 \sim 960 \text{ V}$	200	V/ns	
Power Dissipation (Per Leg / Per Device)	P _{tot}	T _C = 25 °C	777 / 1554	W	
Operating and Storage Temperature	T_j , T_stg		-55 to 175	°C	

^{*} Per Device

1200V 200A SiC Schottky MPS™ Diode

Electrical Characteristics (Per Leg)


Davamatar	Comple of	Conditions		Values			11:4
Parameter	Symbol			Min.	Тур.	Max.	Unit
Diode Forward Voltage	V	I _F = 100 A, T _j = 25 °C			1.5	1.8	V
	V_{F}	$I_F = 100 \text{ A}, T_j = 175 ^{\circ}\text{C}$			2	2.4	
Reverse Current		V _R = 1200 V, T _j = 25 °C			10	50	μA
	I _R	$V_R = 1200 \text{ V}, T_j = 175 ^{\circ}\text{C}$			100	500	
Total Capacitive Charge	0		V _R = 400 V		156 220		nC
	Q_{C}	$I_F \le I_{F,MAX}$	V _R = 800 V				
Switching Time	4	$dI_F/dt = 200 A/\mu s$ $T_j = 175 °C$	V _R = 400 V		< 10		ns
	t_s		$V_{R} = 800 \text{ V}$		< 10		
Total Capacitance		V _R = 1 V, f = 1 MHz			452		
	С	$V_R = 800 \text{ V}, f = 1 \text{ MHz}$			326		pF

Thermal / Package Characteristics

Davamatar	Cumbal	Conditions	Values			Hnit	
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Thermal Resistance, Junction – Case (Per Leg)	R _{thJC}			0.193		°C/W	
Weight	W_{T}			28		g	
Mounting Torque	T _M	Screws to Heatsink			1.5	Nm	
		Terminal Connection (M4)			1.3		
Isolation Voltage (RMS)	V _{ISO}	t = 1 s (50 / 60 Hz)	3000			- V	
		t = 60 s (50 / 60 Hz)	2500			V	
Creepage Distance on Surface	d _{Ctt}	Terminal to Terminal	10.5				
	d _{Ctb}	Terminal to Backside	8.5			mm	
Striking Distance Through Air	d _{Stt}	Terminal to Terminal	3.2			mama	
	d _{Stb}	Terminal to Backside	6.8			mm	

1200V 200A SiC Schottky MPS™ Diode

Figure 1: Typical Forward Characteristics (Per Leg)

 10^{-4} 10^{-5} Reverse Current, I_R (A) 10^{-6} 10^{-7} 10^{-8} 10^{-9} 400 600 800 200 1000 1200 Reverse Voltage, V_R (V) $I_R = f(V_R, T_j)$

Figure 3: Typical Reverse Characteristics (Per Leg)

Figure 2: Typical High Current Forward **Characteristics (Per Leg)**

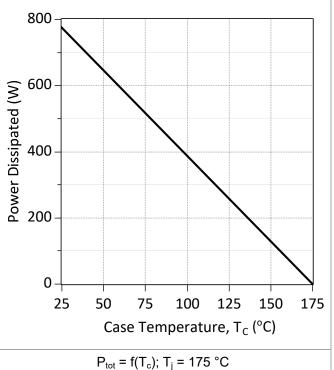


Figure 4: Power Derating Curve (Per Leg)

1200V 200A SiC Schottky MPS™ Diode

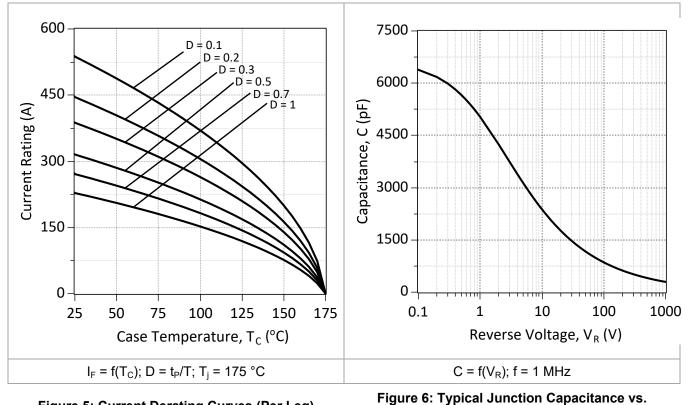


Figure 5: Current Derating Curves (Per Leg)

300 180 Capacitive Charge, Q_{C} (nC) Stored Energy, E_C ($\mathsf{\mu}\mathsf{J}$) 200 120 100 60 0 0 0 300 600 900 0 300 600 900 1200 1200 Reverse Voltage, V_R (V) Reverse Voltage, V_R (V)

Figure 7: Typical Capacitive Charge vs. Reverse **Voltage Characteristics (Per Leg)**

 $Q_c = f(V_R)$; f = 1 MHz

Figure 8: Typical Capacitive Energy vs. Reverse **Voltage Characteristics (Per Leg)**

 $E_C = f(V_R)$; f = 1 MHz

Reverse Voltage Characteristics (Per Leg)

1200V 200A SiC Schottky MPS™ Diode



Figure 9: Transient Thermal Impedance (Per Leg)

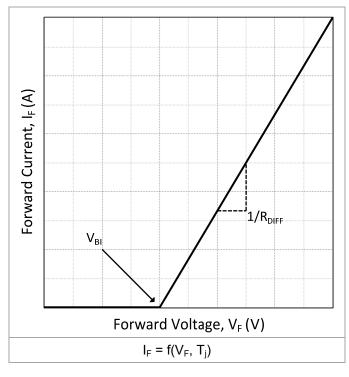


Figure 10: Forward Curve Model (Per Leg)

$$I_F = (V_F - V_{BI})/R_{DIFF}$$
 (A)

Built-In Voltage (V_{BI}):

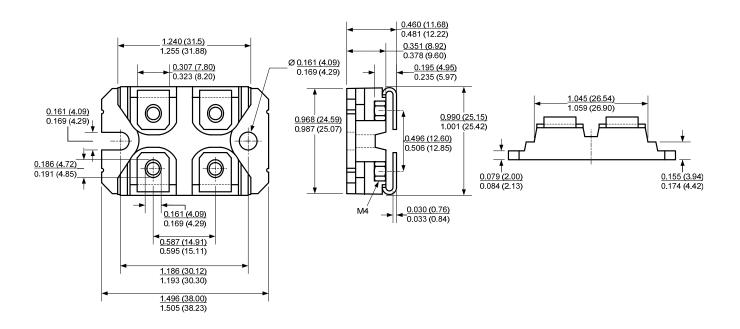
$$V_{BI}(T_i) = m^*T_i + n (V),$$

$$m = -1.47e-03$$
, $n = 1.08$

Differential Resistance (RDIFF):

$$R_{DIFF}(T_j) = a^*T_j^2 + b^*T_j + c (\Omega);$$

 $a = 2.87e-07, b = 3.40e-05, c = 0.0076$


1200V 200A SiC Schottky MPS™ Diode

Package Dimensions

SOT-227

Package Outline

NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- $2. \ \mathsf{DIMENSIONS} \ \mathsf{DO} \ \mathsf{NOT} \ \mathsf{INCLUDE} \ \mathsf{END} \ \mathsf{FLASH}, \ \mathsf{MOLD} \ \mathsf{FLASH}, \ \mathsf{MATERIAL} \ \mathsf{PROTRUSIONS}$

1200V 200A SiC Schottky MPS™ Diode

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS 2), as adopted by EU member states on January 2, 2013 and amended on March 31, 2015 by EU Directive 2015/863. RoHS Declarations for this product can be obtained from your GeneSiC representative.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a GeneSiC representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control systems.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Related Links

- SPICE Models: https://www.genesicsemi.com/schottky-mps
- Evaluation Boards: https://www.genesicsemi.com/technical-support
- Quality Manual: https://www.genesicsemi.com/technical-support/quality-manual
- Compliance: https://www.genesicsemi.com/technical-support/compliance
- Reliability Report: https://www.genesicsemi.com/technical-support/reliability

www.genesicsemi.com/schottky-mps

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

GeneSiC Semiconductor:

GB2X100MPS12-227