

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FSA2275 / FSA2275A — DPDT (0.5 Ω) HiFi Audio Switch w/ Negative Swing

Features

- $V_{D D}$ Operating Range: 2.5 to 5.5 V
- External Capacitor Connection for Pop and Click Noise Suppression
- Power-Off Protection on Common Ports
- Ron $=0.5 \Omega$ (Typ.) at $2.5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$
- THD+N = - $105 \mathrm{~dB} ; 2 \mathrm{~V}_{\mathrm{Rms}}, 20 \mathrm{k} \Omega$ Load; $\mathrm{f}=1 \mathrm{kHz}$
- $\mathrm{X}_{\text {TALK }}=-134 \mathrm{~dB}$ at $1 \mathrm{~V}_{\text {RMS }} 50 \Omega$ Load; $\mathrm{f}=1 \mathrm{kHz}$
- Off Isolation =-103 dB at $1 \mathrm{~V}_{\mathrm{Rms}}, 50 \Omega$ Load; $\mathrm{f}=1 \mathrm{kHz}$
- 12-Lead UMLP $1.8 \mathrm{~mm} \times 1.8 \mathrm{~mm}$
- Removed R_SHUNT resistors for FSA2275A

Applications

- Mobile Phone, Tablet, Notebook PC, Media Player
- Docking Station, TV, Set-Top Box, LCD Monitor

Description

The FSA2275 / FSA2275A is a high-performance, Double-Pole Double-Throw (DPDT) analog switch with negative swing audio capability. The FSA2275 / FSA2275A features ultra-low audio RON of 0.5Ω (typical) at $2.5 \mathrm{~V} \mathrm{~V}_{\mathrm{cc}}$. The FSA2275 / FSA2275A operates over a V_{cc} range of 2.5 V to 5.5 V , is fabricated with sub-micron CMOS technology to achieve fast switching speeds, and is designed for break-before-make operation. To minimize pop and click during operation, the turn on ramp time is selectable using an external capacitor (C_EXT).
The FSA2275 / FSA2275A features THD+N specifications that target a Hi-Fidelity audio quality into both 32Ω headphones and line out type loads (>600 Ω).
The FSA2275A removes the shunt resistors which improve noise immunity.

Figure 1. Application Block Diagram

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package Description	Packing Method
FSA2275UMX	-40 to $85^{\circ} \mathrm{C}$	NJ	12-Lead, UMLP, Quad, JEDEC MO252, $1.8 \mathrm{~mm} \times 1.8 \mathrm{~mm}$	5000 Units Tape and Reel
FSA2275AUMX				

Pin Configuration

Figure 2. Pin Assignment (Top Through View)

Figure 3. Pin Assignment (Bottom View)

Pin Descriptions

Pin	Name	Description
1	VDD	Power Supply (2.5 to 5.5 V)
2	C_EXT	Slow Turn On External Capacitor
3	GND	Ground
4	LsPKR	Audio LsPPKR Common I/O Port
5	SELR	Audio RSPPKR Common I/O Port
6	MUTE	Select Pin
7	GND	Mute Enable - Active High
8	R2	Around
9	R1	Audio - Right Channel Source2 I/O Port
10	L2	Audio - Left Channel Source1 I/O Port
11	L1	Audio - Left Channel Source1 I/O Port Port
12		

Truth Table

Mute	SEL	Function	Resistor Terminations
0	0	$\mathrm{L} 1=\mathrm{L}_{\text {SPKR }} ; \mathrm{R} 1=\mathrm{R}_{\text {SPKR }}$	$\mathrm{R}_{\text {SHUNT(s) }}$ connect to L2/R2 (FSA2275 only)
0	1	$\mathrm{L} 2=\mathrm{L}_{\text {SPKR }} ; \mathrm{R} 2=\mathrm{R}_{\text {SPKR }}$	$\mathrm{R}_{\text {SHUNT(s) }}$ connect to L1/R1 (FSA2275 only)
1	0	$\begin{aligned} & \mathrm{L} 1 \neq \mathrm{L}_{\text {SPKR }} ; \mathrm{L} 2 \neq \mathrm{L}_{\text {SPKR }} ; \mathrm{R} 1 \neq \mathrm{R}_{\text {SPKR }} ; \\ & \mathrm{R} 2 \neq \text { R SPKR } \text { (All Paths Hi-Z) } \end{aligned}$	$\mathrm{R}_{\text {SHUNT(s) }}$ OPEN (FSA2275 only)
1	1	$\begin{aligned} & \mathrm{L} 1 \neq \mathrm{L}_{\text {SPKR }} ; \mathrm{L} 2 \neq \mathrm{L}_{\text {SPKR }} ; \mathrm{R} 1 \neq \mathrm{R}_{\mathrm{SPKR}} ; \\ & \mathrm{R} 2 \neq \mathrm{R}_{\mathrm{SPKR}} \text { (All Paths Hi-Z) } \end{aligned}$	$\mathrm{R}_{\text {SHUNT(s) }}$ OPEN (FSA2275 only)

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
$V_{D D}$	Supply/Control Voltage		-0.3	6.0	V
$\mathrm{V}_{\text {CNTRL }}$	Control Input Voltage	SEL, MUTE	-0.3	6.0	V
$V_{\text {Sw }}$	DC Switch I/O Voltage	L1, L2, R1, R2, LsPKR, R ${ }_{\text {SPKR }}$	-3.5	3.5	V
I_{K}	ESD Input Diode Current			-50	mA
Isw	Switch I/O Current			700	mA
ESD	Human Body Model, ANSI/ESDA/ JEDEC JS-001-2012	All Pins	5		kV
	Charged Device Model, JEDEC: JESD22-C101		2		
	IEC 61000-4-2 System	Contact	8		
		Air Gap	15		
T_{A}	Absolute Maximum Operating Temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Typ.	Max.	Unit
$V_{D D}$	Supply Voltage	2.5	3.3	5.5	V	
$\mathrm{~V}_{\mathrm{SW}}$	DC Switch I/O Voltage	L1, L2, R1, R2, LSPKR, R ${ }_{\text {SPKR }}$	-3.0		3.0	V
$\mathrm{~V}_{\mathrm{CNTRL}}$	Control Input Voltage	SEL, MUTE	0	3.6	$\mathrm{~V}_{\mathrm{DD}}$	V
I_{SW}	DC Switch I/O Current			100		mA
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	25	+85	${ }^{\circ} \mathrm{C}$	

DC Characteristics

$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$ (Typ.) $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and T_{A} (Typ.) $=25^{\circ} \mathrm{C}$, unless otherwise specified. ${ }^{(1)}$

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{DD}}(\mathrm{V})$	$\begin{aligned} \mathrm{T}_{\mathrm{A}}= & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$			Unit
				Min.	Typ.	Max.	
$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {CNTRL }}$ Pin Input High Voltage (SEL, MUTE)	C_EXT = FLOAT		1.6		V_{DD}	V
$\mathrm{V}_{\text {IL }}$	$V_{\text {CNTRL }}$ Pin Input Low Voltage (SEL, MUTE)	C_EXT = FLOAT		0		0.4	V
Ion	Switch-to-GND ON Leakage Current	$\begin{aligned} & \text { L1, R1, L2, R2 }=-3 \mathrm{~V} \text { to } 3 \mathrm{~V}, \\ & \text { LsPRR, RSPKR }=\text { Float }(\text { Isw }=0 \mathrm{~mA}) \\ & \text { MUTE }=\text { LOW, SEL }=0 \text { or } \mathrm{V}_{\text {DD }} \\ & \text { C_EXT }=\text { FLOAT, Figure } 6 \end{aligned}$	2.5 to 5.5	-1.0	0.1	1.0	$\mu \mathrm{A}$
Ino_mute	Switch-to-GND OFF Leakage Current (when Muted)		2.5 to 5.5	-1.0	0.1	1.0	$\mu \mathrm{A}$
loff	Input Leakage Current ${ }^{(2)}$	$\begin{aligned} & \text { L1, R1, L2, R2 }=-3 \mathrm{~V} \text { to } 3 \mathrm{~V}, \\ & \text { LsPKR, RsPKR }=\text { Float }(\text { ISw }=0 \mathrm{~mA}) \\ & \text { MUTE }=\text { LOW, SEL }=0 \text { or } \mathrm{V}_{\mathrm{DD}}, \\ & \text { C_EXT }=\text { FLOAT } \end{aligned}$	0	-1.0	0.1	1.0	$\mu \mathrm{A}$
1 N	Control Input Leakage Current ${ }^{(3)}$ (SEL, MUTE)	$\begin{aligned} & \text { L1, R1, L2, R2 }=-3 \mathrm{~V} \text { to } 3 \mathrm{~V}, \\ & \text { LSPRR, }_{\text {SPPKR }}=\text { Float }(\mathrm{Isw}=0 \mathrm{~mA}), \\ & \mathrm{C} \text { EXT }=\text { FLOAT } \end{aligned}$	2.5 to 5.5	-0.5	0.1	0.5	$\mu \mathrm{A}$
$I_{\text {D }}$	V ${ }_{\text {DD }}$ Supply Current	$\begin{aligned} & \text { MUTE = LOW, SEL = } 0 \text { or } V_{D D}, \\ & \text { C_EXT }=\text { FLOAT } \end{aligned}$	5.5		7	18	$\mu \mathrm{A}$
IDDZ	V ${ }_{\text {d }}$ Hi-Z Supply Current	$\begin{aligned} & \mathrm{MUTE}=\mathrm{HIGH}, \mathrm{SEL}=0 \text { or } \mathrm{V}_{\mathrm{DD}}, \\ & \text { C_EXT }=\mathrm{FLOAT} \end{aligned}$	5.5			1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {DTT }}$	Increase in IDD per Control Voltage	$\begin{aligned} & \text { MUTE = LOW, SEL }=0 \text { or } 1.8 \mathrm{~V} \\ & \text { SEL = LOW, MUTE }=0 \text { or } 1.8 \mathrm{~V} \\ & \text { C_EXT = FLOAT } \end{aligned}$	5.5			15	$\mu \mathrm{A}$
Ron	Switch On Resistance	$\mathrm{I}_{\mathrm{Sw}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Sw}}=-3 \mathrm{~V}$ to 3 V C_EXT = FLOAT, Figure 4	2.5 to 5.5		0.5	1.0	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Matching, Channel to Channel	$\begin{aligned} & \mathrm{I}_{\mathrm{SW}}=100 \mathrm{~mA}, \mathrm{~V}_{\text {Sw }}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{E}} \mathrm{EXT}=\mathrm{FLOAT} \end{aligned}$	2.5 to 5.5		65		$\mathrm{m} \Omega$
$\mathrm{R}_{\text {fLAT }}$	On Resistance Flatness	$\begin{aligned} & \text { Isw }=100 \mathrm{~mA}, \mathrm{~V}_{\text {Sw }}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \\ & \text { C_EXT }=\text { FLOAT } \end{aligned}$	2.5 to 5.5		1	8	$\mathrm{m} \Omega$
$\mathrm{R}_{\text {SHUNT }}$	Click and Pop Resistance (FSA2275 only) (L1, L2, R1, R2, LsPKR, RSPKR)	$V_{L X _R X}=3.0 \mathrm{~V}, \mathrm{MUTE}=0$, SEL $=0$ or $V_{D D}, C _E X T=F L O A T$		6	10	14	k Ω

Notes:

1. Limits over the recommended temperature operating range $\left(T_{A}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ are correlated by statistical quality.
2. Only valid for $\mathrm{V}_{\mathrm{Sw}}>0 \mathrm{~V}$.
3. $\mathrm{V}_{\text {MUTE }} \leq \mathrm{V}_{\mathrm{DD}}+0.3$ otherwise additional input leakage current may flow.

AC Characteristics
$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}($ Typ. $)=3.3 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{A}}$ (Typ.) $=25^{\circ} \mathrm{C}$, unless otherwise specified

Symbol	Parameter	Condition		V_{DD} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit	
				Min.	Typ.	Max.			
tmute_on	Enable Time (MUTE to Output)	$\begin{aligned} & \mathrm{L} 1=\mathrm{R} 1=\mathrm{L} 2=\mathrm{R} 2=1.5 \mathrm{~V}, \\ & \mathrm{~L}_{\text {SPRR }}, \mathrm{R} \text {, } \mathrm{RPKR}=50 \Omega \text { to } \\ & \text { GND SEL }=0 \text { or } \mathrm{V}_{\mathrm{DD}} ; \\ & \text { See Figure } 7 \text { and Figure } 8 \end{aligned}$	C_EXT=Float C_EXT $=0.1 \mu \mathrm{~F}$		$\begin{aligned} & 2.5, \\ & 3.3, \\ & 5.5 \end{aligned}$		0.4 100		ms
ton_mute	Disable Time (MUTE to Output)	$\begin{aligned} & \mathrm{L} 1=\mathrm{R} 1=\mathrm{L} 2=\mathrm{R} 2=1.5 \mathrm{~V}, \\ & \mathrm{~L}_{\text {SPKR }}, \mathrm{R}_{\mathrm{SPKR}}=50 \Omega \text { to } \\ & \text { GND, SEL }=0 \text { or } \mathrm{V}_{\mathrm{DD}} ; \\ & \text { See Figure } 7 \text { and Figure } 8 \end{aligned}$	C_EXT=Float C_EXT $=0.1 \mu \mathrm{~F}$	$\begin{gathered} 2.5, \\ 3.3, \\ 5.5 \end{gathered}$		20 20		$\mu \mathrm{s}$	
ton_sel	Turn On Time (SEL to Output)	$\begin{aligned} & \mathrm{L} 1(\mathrm{~L} 2)=\mathrm{R} 1(\mathrm{R} 2)=1.5 \mathrm{~V}, \\ & \mathrm{~L} 2(\mathrm{~L} 1)=\mathrm{R} 2(\mathrm{R} 1)=0 \mathrm{~V} \\ & \mathrm{~L}_{\text {SPKR }}, \mathrm{R}_{\text {SPKR }}=50 \Omega \text { to } \\ & \text { GND, SEL }=0 \text { or } \mathrm{V}_{\mathrm{DD}} ; \\ & \text { MUTE }=0 \\ & \text { See Figure } 7 \text { and Figure } 8 \end{aligned}$	C_EXT=Float C_EXT $=0.1 \mu \mathrm{~F}$	$\begin{aligned} & 2.5, \\ & 3.3, \\ & 5.5 \end{aligned}$		0.4 100		ms	
toff_SEL	Turn On Time (SEL to Output)	$\begin{aligned} & \mathrm{L} 1(\mathrm{~L} 2)=\mathrm{R} 1(\mathrm{R} 2)=1.5 \mathrm{~V}, \\ & \mathrm{~L} 2(\mathrm{~L} 1)=\mathrm{R} 2(\mathrm{R} 1)=0 \mathrm{~V} \\ & \mathrm{~L}_{\text {SPKR }}, \mathrm{R}_{\text {SPKR }}=50 \Omega \text { to } \\ & \text { GND, SEL }=0 \text { or } \mathrm{V}_{\mathrm{DD}} ; \\ & \text { MUTE }=0 \\ & \text { See Figure } 7 \text { and Figure } 8 \\ & \hline \end{aligned}$	C_EXT=Float C_EXT=0.1 $\mu \mathrm{F}$	$\begin{gathered} 2.5, \\ 3.3, \\ 5.5 \end{gathered}$		20 20		$\mu \mathrm{s}$	
$t_{\text {BBM }}$	Break Before Make Time (SEL to Output)	$\begin{aligned} & \mathrm{L} 1(\mathrm{~L} 2)=\mathrm{R} 1(\mathrm{R} 2)=1.5 \mathrm{~V}, \mathrm{~L}_{\text {SPKR }}, \\ & \mathrm{RSPKR}=50 \Omega \text { to } \mathrm{GND}, \mathrm{SEL}=0 \text { or } \mathrm{V}_{\mathrm{DD}} ; \\ & \mathrm{C} E X T=\mathrm{FLOAT}, \mathrm{MUTE}=0 \mathrm{~V} ; \\ & \text { See Figure } 7 \text { and Figure } 9 \end{aligned}$		3.3		400		$\mu \mathrm{s}$	
dV/dt_PCS	Pop n Click Suppression Output Voltage Ramp Rate	$\begin{aligned} & \mathrm{L} 1=\mathrm{L} 2=+60 \mathrm{mV}, \mathrm{R} 1=\mathrm{R} 2=-60 \mathrm{mV}, \mathrm{~L}_{\text {sPKR }}, \\ & \mathrm{R}_{\text {SPKR }}=50 \Omega \text { to } \mathrm{GND}, \mathrm{SEL}=0 \text { or } \mathrm{V}_{\mathrm{DD}} ; \\ & \mathrm{C} \text { _EXT }=0.1 \mu \mathrm{~F}, \mathrm{MUTE}=\mathrm{HL} \text { Transition } \end{aligned}$		3.3		4.6		V/s	
OIRR	Off Isolation	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF},$ MUTE $=0 \mathrm{~V}_{\mathrm{SW}}=1 \mathrm{~V}_{\mathrm{RMS}}$ Figure 11		3.3		-103 -92		dB	
OIRRM	Off Isolation-Muted	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \\ & \text { MUTE }=\mathrm{V}_{\mathrm{DD}} ; \mathrm{V}_{\mathrm{SW}}=1 \mathrm{~V}_{\mathrm{RMS}} \text { Figure } 11 \end{aligned}$		3.3		-108 -99		dB	
$\mathrm{X}_{\text {talk }}$	Cross Talk (Adjacent)	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{SW}}=1 \mathrm{~V}_{\mathrm{RMS}}$ Figure 12		3.3		-134		dB	
BW	-3 dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ Figure 10		3.3		230		MHz	
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\text {PRSS }}=\mathrm{V}_{\mathrm{DD}}+100 \mathrm{mV} \mathrm{VMS}$ $R_{L}=20 \mathrm{k} \Omega$ or 32Ω (at $L_{\text {SPKR }}$, $\mathrm{R}_{\mathrm{SPKR})}$, MUTE $=0$ or V_{DD} $\mathrm{V}_{\mathrm{SW}}=$ GND or Float	$\begin{aligned} & \mathrm{f}=217 \mathrm{~Hz} \\ & \hline \mathrm{f}=1 \mathrm{kHz} \\ & \hline \mathrm{f}=20 \mathrm{kHz} \\ & \hline \end{aligned}$	3.3		-111 -103 -89		dB	
THD+N	Total Harmonic Distortion + Noise	$R_{L}=20 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{Sw}}=2 \mathrm{~V}_{\mathrm{RMS}}$ with $\mathrm{A}-$ weighted, Figure 15		3.3		0.00018		\% dB	
		$R_{L}=600 \Omega, f=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{Sw}}=2 \mathrm{~V}_{\mathrm{RMS}}$ with A weighted, Figure 15		3.3		0.00018		\% dB	
		$R_{L}=32 \Omega, f=1 \mathrm{kHz}, V_{\mathrm{Sw}}=1 \mathrm{~V}_{\mathrm{RMS}}$ with-Aweighted, Figure 15		3.3		0.00022		\% dB	

Capacitance

Unless otherwise stated, $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}($ Typ. $)=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and $\mathrm{T}_{\mathrm{A}}($ Typ. $)=25^{\circ} \mathrm{C} .{ }^{(4)}$

Symbol	Parameter	Condition		$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit	
				Min.	Typ.	Max.			
Con	On Capacitance (Common Port)	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \text { PK-PK, } 100 \mathrm{mV}$$\text { DC bias MUTE }=0 \text { V Figure } 14$			3.3		22		pF
$\mathrm{C}_{\text {OFF } 1}$	Off Capacitance (Common Port)	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \mathrm{~V}_{\text {PK-PK, }} 100 \mathrm{mV} \\ & \mathrm{DC} \text { bias MUTE }=\mathrm{V}_{\mathrm{DD}} \text { Figure } 13 \end{aligned}$		3.3		25		pF	
Coff2	Off Capacitance (Non-Common Ports)	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \text { PK-PK, } 100 \mathrm{mV}$ DC bias MUTE $=0 \mathrm{~V}$ Figure 13		3.3		14		pF	
Coff_mute	Off Capacitance - MUTED (Non-Common Ports)	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \mathrm{~V}_{\text {PK-PK }}, 100 \mathrm{mV} \\ & \mathrm{DC} \text { bias, MUTE }=\mathrm{V}_{\mathrm{DD}} \end{aligned}$		3.3		14		pF	
$\mathrm{C}_{\text {cntrl }}$	Control Input Pin	$\begin{aligned} & f=1 \mathrm{MHz}, 100 \mathrm{mV} \text { PP, } \\ & 100 \mathrm{mV} \text { DC bias } \end{aligned}$	SEL	0		3		pF	
	Capacitance (MUTE, SEL)		MUTE			6			

Note:

4. Limits over the recommended temperature operating range $\left(T_{A}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ are correlated by statistical quality control methods.

Test Diagrams

Figure 4. On Resistance

Figure 6. On Leakage

**Each switch port is tested separately
Figure 5. Off Leakage

Figure 7. Test Circuit Load

Figure 8. Turn On/Off Waveforms (SEL or MUTE to Output)

SEL

Figure 9. Break Before Make Interval Timing

Test Diagrams (Continued)

CLincludes test fixture and stray capacitance
Figure 10. Bandwidth

environment (see AC/DC Tables) CROSSTALK $=20$ Log ($\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$)
Figure 12. Adjacent Channel Crosstalk

Figure 14. Channel On Capacitance

Figure 11. Channel Off Isolation

Figure 13. Channel Off Capacitance

C_{L} includes test fixture and stray capacitance
Figure 15. Total Harmonic Distortion (THD+N)

NOTES:
A. PACKAGE DOES NOT CONFORM TO ANY JEDEC STANDARD.

ON Semlconductor
ON
B. DIMENSIONS ARE IN MILLIMETERS.
C. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
D. DRAWING FILENAME: MKT-UMLP12ArevF

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

