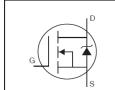


AUIRFZ44N


HEXFET[®] Power MOSFET

Features

- Advanced Planar Technology
- Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications, this Stripe Planar design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

V _{DSS}	55V 17.5mΩ		
R _{DS(on)} max.	17.5mΩ		
I _D	49A		

G	G D	
Gate	Drain	Source

Base part number	Backago Typo	Standard Pack Orderable Part Nu		Orderable Bart Number
Dase part number	Package Type	Form	Quantity	Olderable Fait Nulliber
AUIRFZ44N	TO-220	Tube	50	AUIRFZ44N

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	49		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	35	A	
I _{DM}	Pulsed Drain Current ①	160		
P _D @T _C = 25°C	Power Dissipation	94	W	
	Linear Derating Factor	0.63	W/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) 6	150		
E _{AS} (Tested)	Single Pulse Avalanche Energy Tested Value (5)	530	— mJ	
I _{AR}	Avalanche Current ①	25	A	
E _{AR}	Repetitive Avalanche Energy ①	9.4	mJ	
dv/dt	Peak Diode Recovery dv/dt3	5.0	V/ns	
TJ	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds (1.6mm from case)	300		
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)		

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ ext{ heta}JC}$	Junction-to-Case		1.5	
$R_{ ext{ heta}CS}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{ heta JA}$	Junction-to-Ambient		62	

HEXFET® is a registered trademark of Infineon.

*Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	V _{GS} = 0V, I _D = 250μA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.058		V/°C	Reference to 25° C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			17.5	mΩ	V _{GS} = 10V, I _D = 25A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	V _{DS} = V _{GS} , I _D = 250μA
gfs	Forward Trans conductance	19			S	V _{DS} = 25V, I _D = 25A ④
1	Drain-to-Source Leakage Current			25		V _{DS} =55 V, V _{GS} = 0V
I _{DSS}				250		V _{DS} =44V,V _{GS} = 0V,T _J =150°C
1	Gate-to-Source Forward Leakage			100	n A	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Q _g	Total Gate Charge			63		I _D = 25A
Q_{gs}	Gate-to-Source Charge			14	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain Charge			23		V_{GS} = 10V , See Fig. 6 and 13
t _{d(on)}	Turn-On Delay Time		12			V _{DD} = 28V
t _r	Rise Time		60		ns	I _D = 25A
t _{d(off)}	Turn-Off Delay Time		44		115	R _G = 12Ω
t _f	Fall Time		45			V _{GS} = 10V, See Fig. 10 ④
L _D	Internal Drain Inductance		4.5			Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
C _{iss}	Input Capacitance		1470			V _{GS} = 0V
C _{oss}	Output Capacitance		360		pF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		88			<i>f</i> = 1.0MHz, See Fig. 5
E _{As}	Single pulse Avalanche Energy		530 ⑤	1506	mJ	I _{AS} = 25A, L = 0.47mH
Diode Chara	acteristics					
	Parameter	Min.	Тур.	Max.	Units	Conditions
	Continuous Source Current					MOSFET symbol
I _S	(Body Diode)			49	^	showing the
Is I _{SM}	(Body Diode) Pulsed Source Current (Body Diode) ①			49 160	A	
	Pulsed Source Current				A	showing the integral reverse
I _{SM}	Pulsed Source Current (Body Diode) ①		 63	160	A V	showing the integral reverse p-n junction diode.
I _{SM} V _{SD}	Pulsed Source Current (Body Diode) ① Diode Forward Voltage		 63 170	160 1.3	A V	showing the integral reverse p-n junction diode. $T_J = 25^{\circ}C, I_S = 25A, V_{GS} = 0V$ ④

Notes:

- 0 Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting $T_J = 25^{\circ}C$, L = 0.48mH, $R_G = 25\Omega$, $I_{AS} = 25A$ (See fig. 12)
- $(3) \quad I_{SD} \leq 25A, \, di/dt \leq \, 230A/\mu s, \, V_{DD} \leq \, V_{(BR)DSS}, \, T_J \leq 175^\circ C$
- ④ Pulse width \leq 400µs; duty cycle \leq 2%.
- © This is a typical value at device destruction and represents operation outside rated limits.
- $\ensuremath{\textcircled{}^{\circ}}$ This is a calculated value limited to T_J = 175°C .

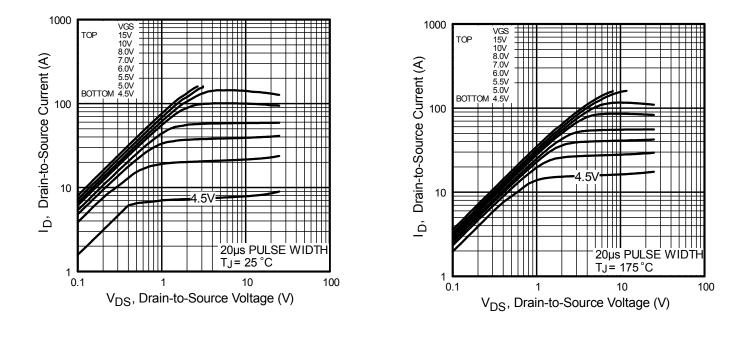


Fig. 1 Typical Output Characteristics

Fig. 2 Typical Output Characteristics

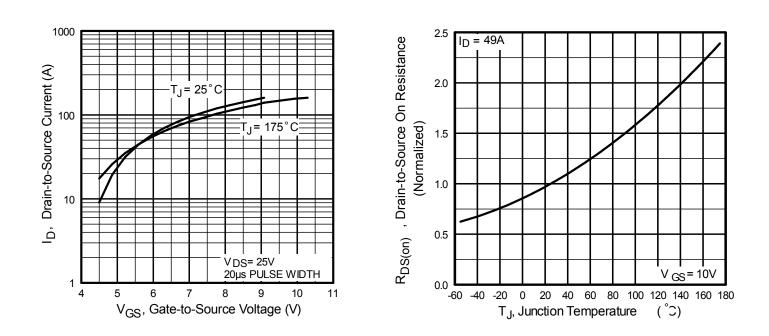


Fig. 3 Typical Transfer Characteristics

Fig. 4 Normalized On-Resistance Vs. Temperature

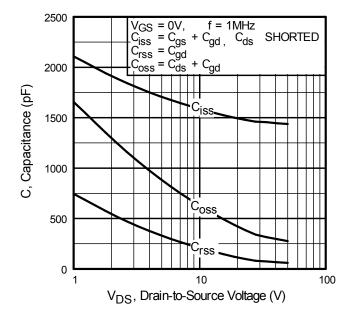
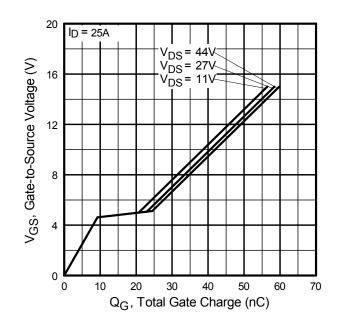
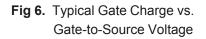
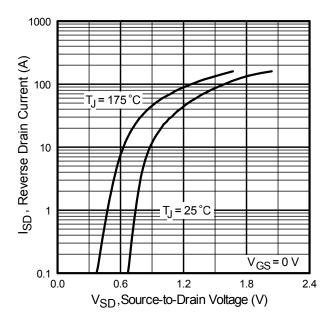
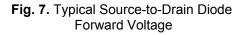






Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

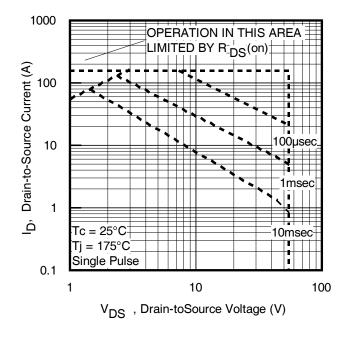


Fig 8. Maximum Safe Operating Area

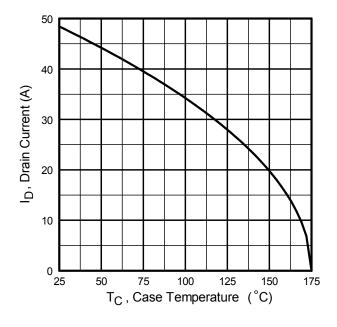


Fig 9. Maximum Drain Current vs. Case Temperature

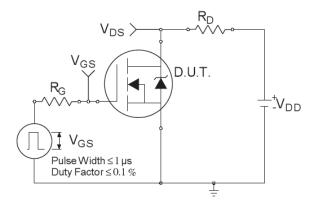


Fig 10a. Switching Time Test Circuit

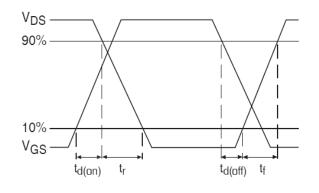


Fig 10b. Switching Time Waveforms

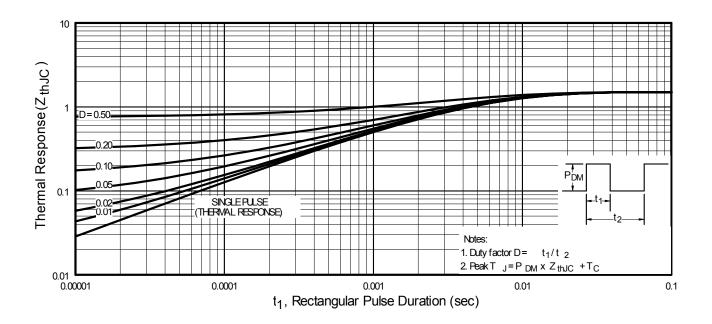


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

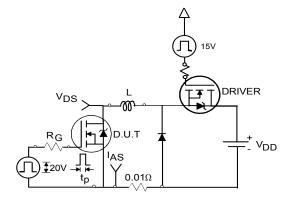
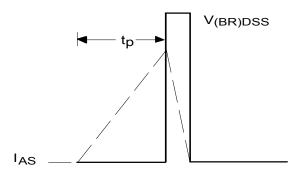



Fig 12a. Unclamped Inductive Test Circuit

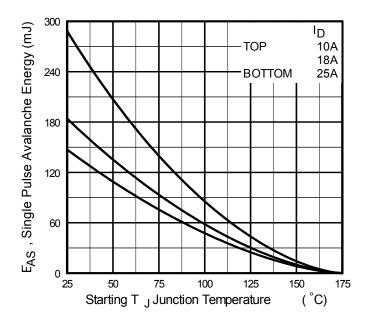


Fig 12c. Maximum Avalanche Energy vs. Drain Current

Fig 12b. Unclamped Inductive Waveforms

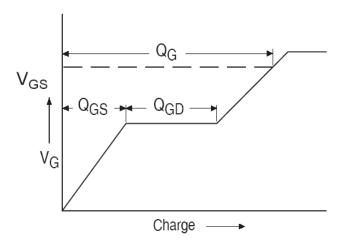
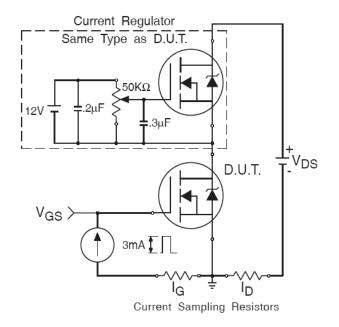
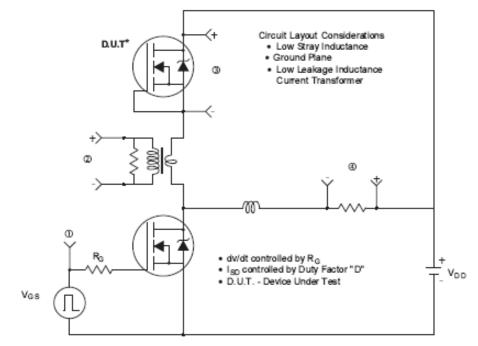
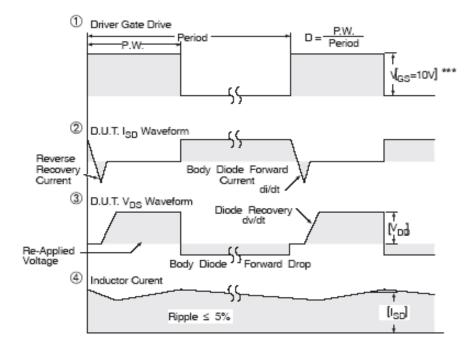


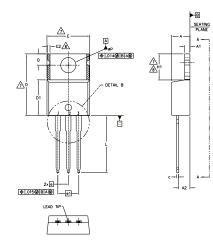
Fig 13a. Gate Charge Waveform


Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel



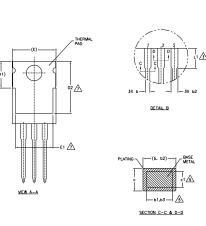

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

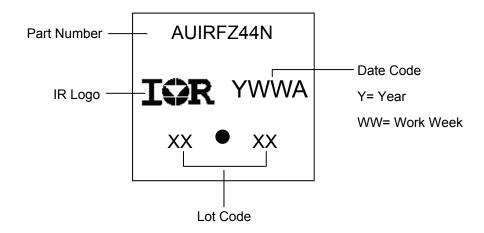
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

- NOTES:
- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994. 1.-
- 2.-
- 3 -
- DIMENSIONING AND TOLERAINCING AS PER ASME 114.5 MF 1934. DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS] LEAD DIMENSION AND FINISH UNCONTROLLED IN L1. DIMENSION D, D1 & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE 4.-MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- <u>/5.-</u> DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.
- 6.-CONTROLLING DIMENSION : INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1 7. – 8.-
- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- UTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE. 9.-

	DIMENSIONS				
SYMBOL	MILLIMETERS		INC		
	MIN.	MAX.	MIN.	MAX.	NOTES
A	3.56	4.83	.140	.190	
A1	1.14	1.40	.045	.055	
A2	2.03	2.92	.080	.115	
b	0.38	1.01	.015	.040	
b1	0.38	0.97	.015	.038	5
b2	1.14	1.78	.045	.070	
b3	1.14	1.73	.045	.068	5
с	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	11.68	12.88	.460	.507	7
E	9.65	10.67	.380	.420	4,7
E1	6.86	8.89	.270	.350	7
E2	-	0.76	-	.030	8
е	2.54	BSC BSC	.100	BSC	
e1	5.08	BSC	.200	BSC	
H1	5.84	6.86	.230	.270	7,8
L	12.70	14.73	.500	.580	
L1	3.56	4.06	.140	.160	3
øР	3.54	4.08	.139	.161	
Q	2.54	3.42	.100	.135	

LEAD ASSIGNMENTS

<u>HEXFET</u> 1.- GATE 2.- DRAIN 3.- SOURCE


IGBTs, CoPACK

1.- GATE 2.- COLLECTOR 3.- EMITTER

DIODES

1.- ANODE 2.- CATHODE 3.- ANODE

TO-220AB Part Marking Information

TO-220AB package is not recommended for Surface Mount Application.

Qualification Information

		Automotive (per AEC-Q101)			
		Comments: This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.			
Moisture Se	nsitivity Level	3L-TO-220AB	N/A		
	Machine Model	Class M3 (+/- 400V) [†]			
		AEC-Q101-002			
ESD	Human Dady Madal	Class H1C (+/- 1250V) [†]			
ESD	Human Body Model	AEC-Q101-001			
	Charged Device Medal	Class C5 (+/- 1250V) [†]			
	Charged Device Model	AEC-Q101-005			
RoHS Compliant			Yes		

† Highest passing voltage.

Revision History

Date	Comments			
9/25/2017	 Updated datasheet with corporate template. Corrected typo error on package outline and part marking on page 8. 			

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.